On Finding Optimal (Dynamic) Arborescences

Let G=(V,E) be a directed and weighted graph with a vertex set V of size n and an edge set E of size m such that each edge (u,v)∈E has a real-valued weight w(u,c). An arborescence in G is a subgraph T=(V,E′) such that, for a vertex u∈V, which is the root, there is a unique path in T from u to any ot...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithms Ročník 16; číslo 12; s. 559
Hlavní autoři: Espada, Joaquim, Francisco, Alexandre P., Rocher, Tatiana, Russo, Luís M. S., Vaz, Cátia
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.12.2023
Témata:
ISSN:1999-4893, 1999-4893
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let G=(V,E) be a directed and weighted graph with a vertex set V of size n and an edge set E of size m such that each edge (u,v)∈E has a real-valued weight w(u,c). An arborescence in G is a subgraph T=(V,E′) such that, for a vertex u∈V, which is the root, there is a unique path in T from u to any other vertex v∈V. The weight of T is the sum of the weights of its edges. In this paper, given G, we are interested in finding an arborescence in G with a minimum weight, i.e., an optimal arborescence. Furthermore, when G is subject to changes, namely, edge insertions and deletions, we are interested in efficiently maintaining a dynamic arborescence in G. This is a well-known problem with applications in several domains such as network design optimization and phylogenetic inference. In this paper, we revisit the algorithmic ideas proposed by several authors for this problem. We provide detailed pseudocode, as well as implementation details, and we present experimental results regarding large scale-free networks and phylogenetic inference. Our implementation is publicly available.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1999-4893
1999-4893
DOI:10.3390/a16120559