An Unsupervised-Learning-Based Approach for Automated Defect Inspection on Textured Surfaces

Automated defect inspection has long been a challenging task especially in industrial applications, where collecting and labeling large amounts of defective samples are usually harsh and impracticable. In this paper, we propose an approach to detect and localize defects with only defect-free samples...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on instrumentation and measurement Ročník 67; číslo 6; s. 1266 - 1277
Hlavní autoři: Mei, Shuang, Yang, Hua, Yin, Zhouping
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9456, 1557-9662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Automated defect inspection has long been a challenging task especially in industrial applications, where collecting and labeling large amounts of defective samples are usually harsh and impracticable. In this paper, we propose an approach to detect and localize defects with only defect-free samples for model training. This approach is carried out by reconstructing image patches with convolutional denoising autoencoder networks at different Gaussian pyramid levels, and synthesizing detection results from these different resolution channels. Reconstruction residuals of the training patches are used as the indicator for direct pixelwise defect prediction, and the reconstruction residual map generated in each channel is combined to generate the final inspection result. This novel method has two prominent characteristics, which benefit the implementation of automatic defect inspection in practice. First, it is absolutely unsupervised that no human intervention is needed throughout the inspection process. Second, multimodal strategy is utilized in this method to synthesize results from multiple pyramid levels. This strategy is capable of improving the robustness and accuracy of the method. To evaluate this approach, experiments on convergence, noise immunity, and defect inspection accuracy are conducted. Furthermore, comparative tests with some excellent algorithms on actual and simulated data sets are performed. Experimental results demonstrated the effectiveness and superiority of the proposed method on homogeneous and nonregular textured surfaces.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9456
1557-9662
DOI:10.1109/TIM.2018.2795178