What the Constant Velocity Model Can Teach Us About Pedestrian Motion Prediction

Pedestrian motion prediction is a fundamental task for autonomous robots and vehicles to operate safely. In recent years many complex approaches based on neural networks have been proposed to address this problem. In this work we show that - surprisingly - a simple Constant Velocity Model can outper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters Jg. 5; H. 2; S. 1695 - 1702
Hauptverfasser: Scholler, Christoph, Aravantinos, Vincent, Lay, Florian, Knoll, Alois
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2377-3766, 2377-3766
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Pedestrian motion prediction is a fundamental task for autonomous robots and vehicles to operate safely. In recent years many complex approaches based on neural networks have been proposed to address this problem. In this work we show that - surprisingly - a simple Constant Velocity Model can outperform even state-of-the-art neural models. This indicates that either neural networks are not able to make use of the additional information they are provided with, or that this information is not as relevant as commonly believed. Therefore, we analyze how neural networks process their input and how it impacts their predictions. Our analysis reveals pitfalls in training neural networks for pedestrian motion prediction and clarifies false assumptions about the problem itself. In particular, neural networks implicitly learn environmental priors that negatively impact their generalization capability, the motion history of pedestrians is irrelevant and interactions are too complex to predict. Our work shows how neural networks for pedestrian motion prediction can be thoroughly evaluated and our results indicate which research directions for neural motion prediction are promising in future.
AbstractList Pedestrian motion prediction is a fundamental task for autonomous robots and vehicles to operate safely. In recent years many complex approaches based on neural networks have been proposed to address this problem. In this work we show that – surprisingly – a simple Constant Velocity Model can outperform even state-of-the-art neural models. This indicates that either neural networks are not able to make use of the additional information they are provided with, or that this information is not as relevant as commonly believed. Therefore, we analyze how neural networks process their input and how it impacts their predictions. Our analysis reveals pitfalls in training neural networks for pedestrian motion prediction and clarifies false assumptions about the problem itself. In particular, neural networks implicitly learn environmental priors that negatively impact their generalization capability, the motion history of pedestrians is irrelevant and interactions are too complex to predict. Our work shows how neural networks for pedestrian motion prediction can be thoroughly evaluated and our results indicate which research directions for neural motion prediction are promising in future.
Author Lay, Florian
Scholler, Christoph
Knoll, Alois
Aravantinos, Vincent
Author_xml – sequence: 1
  givenname: Christoph
  orcidid: 0000-0001-5644-1604
  surname: Scholler
  fullname: Scholler, Christoph
  email: schoeller@fortiss.org
  organization: Fortiss, Research Institute of the Free State of Bavaria, Munich, Germany
– sequence: 2
  givenname: Vincent
  surname: Aravantinos
  fullname: Aravantinos, Vincent
  email: vincent.aravantinos@gmail.com
  organization: Fortiss, Research Institute of the Free State of Bavaria, Munich, Germany
– sequence: 3
  givenname: Florian
  surname: Lay
  fullname: Lay, Florian
  email: florian.lay@tum.de
  organization: Fortiss, Research Institute of the Free State of Bavaria, Munich, Germany
– sequence: 4
  givenname: Alois
  surname: Knoll
  fullname: Knoll, Alois
  email: knoll@in.tum.de
  organization: Technical University of Munich, Munich, Germany
BookMark eNp9kM1LAzEQxYNUsGrvgpeA561Jtkk2x1L8ghaLtHpcstkJ3bJuapIe-t-bpUXEg6cZmHnz3vwu0aBzHSB0Q8mYUqLu52_TMSOMjJkSSjF-hoYslzLLpRCDX_0FGoWwJYRQzmSu-BAtPzY64rgBPHNdiLqL-B1aZ5p4wAtXQ4tnusMr0GaD1wFPK7ePeAk1hOibNFm42LgOLz3Ujenba3RudRtgdKpXaP34sJo9Z_PXp5fZdJ6ZnMuY0YlQk8KqvKprzgkxhhhpuKxslVtFa9CT3FIrjLSKE1MBFYxDwaAuNFWE51fo7nh3593XPsUpt27vu2RZsuTAKJFEpC1y3DLeheDBljvffGp_KCkpe3RlQlf26MoTuiQRfyQJhu5fi1437X_C26OwAYAfn0JJJlLebydAfEo
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_LRA_2022_3221335
crossref_primary_10_1109_TRO_2025_3578234
crossref_primary_10_1007_s10489_021_02997_w
crossref_primary_10_3390_app14188339
crossref_primary_10_1016_j_knosys_2023_110775
crossref_primary_10_1177_14727978251321950
crossref_primary_10_1186_s43088_025_00638_6
crossref_primary_10_1016_j_oceaneng_2025_120938
crossref_primary_10_1109_TITS_2022_3156011
crossref_primary_10_1109_TITS_2021_3135136
crossref_primary_10_1016_j_patcog_2020_107800
crossref_primary_10_3390_app14209359
crossref_primary_10_1111_mice_12989
crossref_primary_10_1016_j_trc_2021_103010
crossref_primary_10_1109_TVT_2024_3519178
crossref_primary_10_1109_LRA_2020_3009068
crossref_primary_10_1007_s41315_021_00208_w
crossref_primary_10_1109_ACCESS_2021_3116303
crossref_primary_10_1109_TNSE_2022_3140529
crossref_primary_10_3390_machines10030202
crossref_primary_10_1109_LRA_2021_3057326
crossref_primary_10_3390_s23052773
crossref_primary_10_1007_s00371_025_03936_3
crossref_primary_10_1109_ACCESS_2023_3257109
crossref_primary_10_1109_LRA_2022_3231832
crossref_primary_10_1109_TITS_2024_3457569
crossref_primary_10_1016_j_robot_2024_104830
crossref_primary_10_1016_j_robot_2022_104352
crossref_primary_10_1016_j_patcog_2025_111524
crossref_primary_10_1016_j_ress_2024_110463
crossref_primary_10_3390_electronics13050946
crossref_primary_10_1007_s00521_021_05888_w
crossref_primary_10_1109_TRO_2020_3031268
crossref_primary_10_1109_TIV_2022_3157126
crossref_primary_10_1515_eng_2021_0103
crossref_primary_10_1016_j_trf_2024_12_024
crossref_primary_10_1109_LRA_2022_3148475
crossref_primary_10_3390_s24092794
crossref_primary_10_1002_msd2_12036
crossref_primary_10_1109_LRA_2022_3193243
crossref_primary_10_3390_s25113480
crossref_primary_10_1016_j_ins_2022_06_073
crossref_primary_10_1109_TCE_2023_3318050
crossref_primary_10_1109_LRA_2020_3004324
crossref_primary_10_1016_j_measurement_2024_114797
crossref_primary_10_1109_ACCESS_2023_3327433
crossref_primary_10_1109_ACCESS_2021_3118224
crossref_primary_10_1007_s13177_024_00393_5
crossref_primary_10_1109_TITS_2024_3465234
crossref_primary_10_1007_s00371_021_02109_2
crossref_primary_10_1049_itr2_12501
crossref_primary_10_1109_TITS_2024_3386195
crossref_primary_10_1016_j_engappai_2024_108323
crossref_primary_10_1109_ACCESS_2021_3138614
crossref_primary_10_1109_LRA_2021_3061073
crossref_primary_10_1109_LRA_2020_3005369
crossref_primary_10_26599_JICV_2023_9210036
crossref_primary_10_3390_jmse9091037
crossref_primary_10_1109_LRA_2020_3043169
crossref_primary_10_3390_app132312580
crossref_primary_10_1016_j_engappai_2022_105236
crossref_primary_10_1109_TIE_2023_3239775
crossref_primary_10_1109_TNNLS_2021_3084143
crossref_primary_10_3390_rs15092425
crossref_primary_10_1007_s11370_022_00422_w
crossref_primary_10_1109_LRA_2023_3262420
crossref_primary_10_1109_TITS_2023_3281393
crossref_primary_10_7717_peerj_cs_2842
crossref_primary_10_1109_LRA_2024_3355641
crossref_primary_10_1016_j_jestch_2025_102008
crossref_primary_10_1016_j_robot_2023_104450
crossref_primary_10_1109_LRA_2023_3280809
crossref_primary_10_1016_j_aap_2024_107906
crossref_primary_10_1088_1742_6596_2303_1_012034
crossref_primary_10_1016_j_isatra_2022_07_004
crossref_primary_10_1109_TITS_2022_3205676
crossref_primary_10_1109_TITS_2022_3233906
crossref_primary_10_1109_TII_2022_3165886
crossref_primary_10_1109_LRA_2025_3566610
crossref_primary_10_1109_LRA_2022_3223024
crossref_primary_10_33769_aupse_1292652
crossref_primary_10_3390_app13052999
crossref_primary_10_1002_aaai_12192
crossref_primary_10_1007_s00521_024_09784_x
crossref_primary_10_1016_j_neucom_2025_130649
crossref_primary_10_1109_TPAMI_2021_3107958
crossref_primary_10_1016_j_aei_2021_101450
crossref_primary_10_1016_j_robot_2021_103931
crossref_primary_10_1109_TITS_2023_3337104
crossref_primary_10_1109_TII_2024_3477549
crossref_primary_10_1109_ACCESS_2021_3093471
crossref_primary_10_1109_TASE_2023_3263228
crossref_primary_10_1007_s13042_023_01889_4
crossref_primary_10_1002_rnc_7302
crossref_primary_10_1109_TNNLS_2025_3550350
crossref_primary_10_1109_TITS_2021_3069362
crossref_primary_10_3390_electronics13020331
crossref_primary_10_1016_j_eswa_2025_126557
crossref_primary_10_1109_TASE_2021_3125367
crossref_primary_10_1016_j_aei_2025_103242
crossref_primary_10_1007_s11263_023_01788_9
crossref_primary_10_1109_LRA_2025_3575969
crossref_primary_10_1016_j_aap_2025_108002
crossref_primary_10_1109_TAES_2025_3536436
crossref_primary_10_1016_j_ins_2024_120433
crossref_primary_10_1109_TVT_2021_3115018
crossref_primary_10_1177_02783649241302342
Cites_doi 10.1177/0278364910365417
10.1007/978-3-319-46448-0_42
10.1109/LSP.2014.2364458
10.1103/PhysRevE.51.4282
10.1109/ITSC.2018.8569434
10.1109/IROS.2009.5354147
10.1109/CVPR.2019.00144
10.1109/CVPR.2016.110
10.1162/neco.1989.1.2.270
10.1007/978-3-030-11015-4_13
10.1109/CVPR.2017.233
10.1109/ICRA.2015.7139259
10.1609/aaai.v33i01.33016120
10.1109/CVPR.2011.5995468
10.1111/j.1467-8659.2007.01089.x
10.1109/CVPR.2018.00553
10.1109/ICRA.2018.8461157
10.1109/ROBOT.2010.5509779
10.1109/CVPR.2018.00240
10.1007/978-0-85729-997-0_24
10.1109/ICPR.2018.8545447
10.1007/s11263-018-1104-4
10.1109/ICCVW.2011.6130233
10.1109/ICRA.2018.8460504
10.1109/CVPR.2019.01236
10.1162/neco.1997.9.8.1735
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2020.2969925
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 1702
ExternalDocumentID 10_1109_LRA_2020_2969925
8972605
Genre orig-research
GrantInformation_xml – fundername: German Federal Ministry of Transport and Digital Infrastructure
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-146948f93bdd5500cc0c7c57bfb3f91dea43f1f6c7f950cbe1625e82ed8a19053
IEDL.DBID RIE
ISICitedReferencesCount 177
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526520500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sun Nov 30 05:18:40 EST 2025
Sat Nov 29 06:03:06 EST 2025
Tue Nov 18 22:23:56 EST 2025
Wed Aug 27 02:35:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-146948f93bdd5500cc0c7c57bfb3f91dea43f1f6c7f950cbe1625e82ed8a19053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5644-1604
PQID 2357210706
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_primary_10_1109_LRA_2020_2969925
ieee_primary_8972605
proquest_journals_2357210706
crossref_citationtrail_10_1109_LRA_2020_2969925
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref33
ref11
lipton (ref34) 0
ref10
jaipuria (ref23) 2018
ref2
ref1
ref17
ref16
kingma (ref32) 0
ref19
ref18
brendel (ref35) 0
ref24
goodfellow (ref20) 0
ref26
pellegrini (ref6) 0
ref22
ref28
ref27
ref8
habibi (ref29) 2018
ref7
ref9
ref4
ref3
ref5
devlin (ref36) 2015
amirian (ref21) 0
kingma (ref25) 0
References_xml – year: 2015
  ident: ref36
  article-title: Exploring nearest neighbor approaches for image captioning
  publication-title: arXiv 1505 04467
– ident: ref10
  doi: 10.1177/0278364910365417
– ident: ref22
  doi: 10.1007/978-3-319-46448-0_42
– ident: ref8
  doi: 10.1109/LSP.2014.2364458
– year: 0
  ident: ref21
  article-title: Social ways: Learning multi-modal distributions of pedestrian trajectories with gans
  publication-title: Proc Conf Comput Vision Pattern Recognit Workshops (CVPR Workshops)
– start-page: 45
  year: 0
  ident: ref34
  article-title: Troubling trends in machine learning scholarship
  publication-title: Proc Int Conf Mach Learn Debates
– ident: ref15
  doi: 10.1103/PhysRevE.51.4282
– ident: ref28
  doi: 10.1109/ITSC.2018.8569434
– ident: ref30
  doi: 10.1109/IROS.2009.5354147
– ident: ref2
  doi: 10.1109/CVPR.2019.00144
– ident: ref4
  doi: 10.1109/CVPR.2016.110
– ident: ref33
  doi: 10.1162/neco.1989.1.2.270
– ident: ref14
  doi: 10.1007/978-3-030-11015-4_13
– ident: ref24
  doi: 10.1109/CVPR.2017.233
– ident: ref11
  doi: 10.1109/ICRA.2015.7139259
– ident: ref19
  doi: 10.1609/aaai.v33i01.33016120
– ident: ref13
  doi: 10.1109/CVPR.2011.5995468
– start-page: 261
  year: 0
  ident: ref6
  article-title: You'll never walk alone: Modeling social behavior for multi-target tracking
  publication-title: Proc Int Conf Comput Vision
– ident: ref31
  doi: 10.1111/j.1467-8659.2007.01089.x
– year: 0
  ident: ref32
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Representations
– start-page: 2672
  year: 0
  ident: ref20
  article-title: Generative adversarial nets
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref18
  doi: 10.1109/CVPR.2018.00553
– ident: ref27
  doi: 10.1109/ICRA.2018.8461157
– ident: ref16
  doi: 10.1109/ROBOT.2010.5509779
– ident: ref3
  doi: 10.1109/CVPR.2018.00240
– ident: ref7
  doi: 10.1007/978-0-85729-997-0_24
– year: 0
  ident: ref25
  article-title: Auto-encoding variational bayes
  publication-title: Proc Int Conf Learn Representations
– year: 0
  ident: ref35
  article-title: Approximating CNNs with bag-of-local-features models works surprisingly well on imagenet
  publication-title: Proc Int Conf Learn Representations
– ident: ref26
  doi: 10.1109/ICPR.2018.8545447
– ident: ref9
  doi: 10.1007/s11263-018-1104-4
– year: 2018
  ident: ref29
  article-title: Context-aware pedestrian motion prediction in urban intersections
  publication-title: arxiv 1806 09453
– ident: ref12
  doi: 10.1109/ICCVW.2011.6130233
– ident: ref5
  doi: 10.1109/ICRA.2018.8460504
– ident: ref1
  doi: 10.1109/CVPR.2019.01236
– ident: ref17
  doi: 10.1162/neco.1997.9.8.1735
– year: 2018
  ident: ref23
  article-title: A transferable pedestrian motion prediction model for intersections with different geometries
  publication-title: arXiv 1806 09444
SSID ssj0001527395
Score 2.5805788
Snippet Pedestrian motion prediction is a fundamental task for autonomous robots and vehicles to operate safely. In recent years many complex approaches based on...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1695
SubjectTerms deep learning in robotics and automation
Gallium nitride
History
Motion and path planning
Neural networks
Pedestrians
Predictive models
Tracking
Training
Trajectory
Title What the Constant Velocity Model Can Teach Us About Pedestrian Motion Prediction
URI https://ieeexplore.ieee.org/document/8972605
https://www.proquest.com/docview/2357210706
Volume 5
WOSCitedRecordID wos000526520500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH448aAHf4vTOXLwItgt6680xzE2PKgUceKtNGkCwuhkqx79230v7aagCN5ySEp5X5t8X17yPYDLAc_jpEAEpOYGBYpKPCUL5dkoyPMgDGKt3EXhW3F_nzw_y3QDrtd3YYwx7vCZ6VHT5fKLuX6jrbJ-IgXR7xa0hBD1Xa2v_RRyEpPRKhPJZf_2YYj6z-c9X8ZSUi3sbyuPK6XyY_51i8pk73-vsw-7DXlkwxrtA9gw5SHsfLMUPIKUvLgZsjo2qplfxZ4MLlhIthnVPZuxUV4y5-PMpktGWZ-KpaYwrn5HiX0IKZYuKIFDzWOYTsaPoxuvqZrg6SASlYdTnwwTKwNVFCg_uNZcCx0JZVVg5aAweRjYgY21sDLiCMUAJZBJfFMkObKDKDiBzXJemlNgFsNqZOwj0GFoDZnP20SJHDmjQinpt6G_imimG0txqmwxy5y04DJDDDLCIGswaMPVesRrbafxR98jivm6XxPuNnRWoGXN_7bMyLQHxavg8dnvo85hm55dn7npwGa1eDMXsKXfq5flogutu49x131Qn-veyKI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL3oFNQHv8Xp1Dz4IliXfjePMhyKdQxR8a00aQLC6GTr_P3em3ZTUATf8pDQck-bnJObnAtw7vI8SgpEQCiuUaDIxJGikI4J_Tz3Az9S0l4UTuPBIHl9FcMluFzchdFa28Nn-oqaNpdfjNWMtsq6iYiJfi_DShgEnlvf1vraUSEvMRHOc5FcdNPHa1SAHr_yRCQEVcP-tvbYYio_ZmC7rPS3_vdC27DZ0Ed2XeO9A0u63IWNb6aCezAkN26GvI71au5XsReNSxbSbUaVz0asl5fMOjmz5ymjvE_FhrrQtoJHiX0IKzacUAqHmvvw3L956t06Td0ER_lhXDk4-YkgMcKXRYEChCvFVazCWBrpG-EWOg9845pIxUaEHMFwUQTpxNNFkiM_CP0DaJXjUh8CMxhWLSIPoQ4Co8l-3iQyzpE1ShSTXhu684hmqjEVp9oWo8yKCy4yxCAjDLIGgzZcLEa814Yaf_Tdo5gv-jXhbkNnDlrW_HHTjGx7UL7GPDr6fdQZrN0-PaRZeje4P4Z1ek59AqcDrWoy0yewqj6qt-nk1H5Wn8VJyrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+the+Constant+Velocity+Model+Can+Teach+Us+About+Pedestrian+Motion+Prediction&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Scholler%2C+Christoph&rft.au=Aravantinos%2C+Vincent&rft.au=Lay%2C+Florian&rft.au=Knoll%2C+Alois&rft.date=2020-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=5&rft.issue=2&rft.spage=1696&rft_id=info:doi/10.1109%2FLRA.2020.2969925&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon