Deep Reinforcement Learning Robot for Search and Rescue Applications: Exploration in Unknown Cluttered Environments

Rescue robots can be used in urban search and rescue (USAR) applications to perform the important task of exploring unknown cluttered environments. Due to the unpredictable nature of these environments, deep learning techniques can be used to perform these tasks. In this letter, we present the first...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE robotics and automation letters Ročník 4; číslo 2; s. 610 - 617
Hlavní autoři: Niroui, Farzad, Kaicheng Zhang, Kashino, Zendai, Nejat, Goldie
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2377-3766, 2377-3766
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Rescue robots can be used in urban search and rescue (USAR) applications to perform the important task of exploring unknown cluttered environments. Due to the unpredictable nature of these environments, deep learning techniques can be used to perform these tasks. In this letter, we present the first use of deep learning to address the robot exploration task in USAR applications. In particular, we uniquely combine the traditional approach of frontier-based exploration with deep reinforcement learning to allow a robot to autonomously explore unknown cluttered environments. Experiments conducted with a mobile robot in unknown cluttered environments of varying sizes and layouts showed that the proposed exploration approach can effectively determine appropriate frontier locations to navigate to, while being robust to different environment layouts and sizes. Furthermore, a comparison study with other frontier exploration approaches showed that our learning-based frontier exploration technique was able to explore more of an environment earlier on, allowing for potential identification of a larger number of victims at the beginning of the time-critical exploration task.
AbstractList Rescue robots can be used in urban search and rescue (USAR) applications to perform the important task of exploring unknown cluttered environments. Due to the unpredictable nature of these environments, deep learning techniques can be used to perform these tasks. In this letter, we present the first use of deep learning to address the robot exploration task in USAR applications. In particular, we uniquely combine the traditional approach of frontier-based exploration with deep reinforcement learning to allow a robot to autonomously explore unknown cluttered environments. Experiments conducted with a mobile robot in unknown cluttered environments of varying sizes and layouts showed that the proposed exploration approach can effectively determine appropriate frontier locations to navigate to, while being robust to different environment layouts and sizes. Furthermore, a comparison study with other frontier exploration approaches showed that our learning-based frontier exploration technique was able to explore more of an environment earlier on, allowing for potential identification of a larger number of victims at the beginning of the time-critical exploration task.
Author Nejat, Goldie
Kaicheng Zhang
Niroui, Farzad
Kashino, Zendai
Author_xml – sequence: 1
  givenname: Farzad
  surname: Niroui
  fullname: Niroui, Farzad
  email: farzad.niroui@mail.utoronto.ca
  organization: Dept. of Mech. & Ind. Eng., Univ. of Toronto, Toronto, ON, Canada
– sequence: 2
  surname: Kaicheng Zhang
  fullname: Kaicheng Zhang
  email: kc.zhang@mail.utoronto.ca
  organization: Dept. of Mech. & Ind. Eng., Univ. of Toronto, Toronto, ON, Canada
– sequence: 3
  givenname: Zendai
  surname: Kashino
  fullname: Kashino, Zendai
  email: zendkash@mie.utoronto.ca
  organization: Dept. of Mech. & Ind. Eng., Univ. of Toronto, Toronto, ON, Canada
– sequence: 4
  givenname: Goldie
  surname: Nejat
  fullname: Nejat, Goldie
  email: nejat@mie.utoronto.ca
  organization: Dept. of Mech. & Ind. Eng., Univ. of Toronto, Toronto, ON, Canada
BookMark eNp9UElLAzEUDqJgrb0LXgKeW7N0ksZbqXWBglDteZjJvNHUaTImGZd_70xbRDx4etu38L4TdGidBYTOKBlRStTlYjkdMULViE0UVYoeoB7jUg65FOLwV3-MBiGsCSE0YZKrpIfCNUCNl2Bs6byGDdiIF5B5a-wzXrrcRdwe8GO70i84s0WLDboBPK3ryugsGmfDFZ5_1pXz2wkbi1f21boPi2dVEyN4KPDcvhvvbKcfTtFRmVUBBvvaR6ub-dPsbrh4uL2fTRdDzRMZh5QA6JxJmjEOLE8UF2WSywmlBU9YkWsihC7lWGWCFmM55kooJktdJAmjTGjeRxc73dq7twZCTNeu8ba1TBlTkw7PSYsiO5T2LgQPZVp7s8n8V0pJ2qWbtummXbrpPt2WIv5QtInb56PPTPUf8XxHNADw4zMRRHTXbwhNiZQ
CODEN IRALC6
CitedBy_id crossref_primary_10_1038_s42256_024_00859_x
crossref_primary_10_1007_s13042_024_02170_y
crossref_primary_10_3390_math13010173
crossref_primary_10_1109_TVT_2020_3034800
crossref_primary_10_1109_TGRS_2024_3401393
crossref_primary_10_1017_S0263574721001946
crossref_primary_10_1109_LRA_2022_3190628
crossref_primary_10_1088_1742_6596_2641_1_012003
crossref_primary_10_3390_aerospace12070642
crossref_primary_10_1016_j_anucene_2024_110398
crossref_primary_10_1214_25_AOS2501
crossref_primary_10_3389_frobt_2021_738113
crossref_primary_10_1109_LRA_2021_3093551
crossref_primary_10_1007_s43154_021_00045_6
crossref_primary_10_3389_frobt_2024_1336612
crossref_primary_10_1109_JPROC_2022_3223186
crossref_primary_10_3390_app12189249
crossref_primary_10_3390_s23041813
crossref_primary_10_1002_smb2_12008
crossref_primary_10_1109_LRA_2021_3062011
crossref_primary_10_3390_s21082577
crossref_primary_10_1016_j_jai_2022_100006
crossref_primary_10_3390_jmse12091622
crossref_primary_10_3390_s22218562
crossref_primary_10_1016_j_buildenv_2022_109806
crossref_primary_10_1016_j_eswa_2024_123202
crossref_primary_10_1002_rob_21951
crossref_primary_10_20965_jaciii_2024_p0273
crossref_primary_10_1007_s11227_023_05551_2
crossref_primary_10_1186_s40648_022_00221_z
crossref_primary_10_3390_su142316151
crossref_primary_10_1007_s10846_023_01888_1
crossref_primary_10_1016_j_compag_2025_110651
crossref_primary_10_1109_TIV_2024_3369730
crossref_primary_10_1109_TASE_2024_3475735
crossref_primary_10_3390_s21248331
crossref_primary_10_1007_s43154_020_00030_5
crossref_primary_10_1109_ACCESS_2021_3108177
crossref_primary_10_1109_ACCESS_2025_3581035
crossref_primary_10_3390_s21041076
crossref_primary_10_3390_app14199127
crossref_primary_10_1007_s11432_022_3904_9
crossref_primary_10_3390_app14083215
crossref_primary_10_1109_LRA_2022_3224667
crossref_primary_10_1016_j_comcom_2019_11_031
crossref_primary_10_1109_TAFFC_2022_3221922
crossref_primary_10_1177_02783649231218720
crossref_primary_10_3390_s19163542
crossref_primary_10_1088_1757_899X_705_1_012037
crossref_primary_10_1177_10775463231161847
crossref_primary_10_1109_LRA_2021_3118078
crossref_primary_10_1088_1757_899X_912_3_032023
crossref_primary_10_1109_ACCESS_2020_3036938
crossref_primary_10_1109_ACCESS_2022_3190538
crossref_primary_10_3390_app11052408
crossref_primary_10_1109_JIOT_2022_3142274
crossref_primary_10_1109_ACCESS_2023_3308948
crossref_primary_10_1109_LRA_2024_3396059
crossref_primary_10_1109_ACCESS_2023_3293035
crossref_primary_10_3390_app10238386
crossref_primary_10_1109_TASE_2024_3483932
crossref_primary_10_1109_LRA_2022_3208349
crossref_primary_10_3390_s20226507
crossref_primary_10_1002_asmb_2723
crossref_primary_10_1007_s42452_021_04595_4
crossref_primary_10_1109_TRO_2023_3248510
crossref_primary_10_3390_app13148174
crossref_primary_10_1016_j_engappai_2024_109131
crossref_primary_10_1109_TASE_2022_3180345
crossref_primary_10_3390_app11188299
crossref_primary_10_1109_ACCESS_2021_3133567
crossref_primary_10_1109_LRA_2024_3359970
crossref_primary_10_1109_LRA_2024_3521179
crossref_primary_10_1016_j_engappai_2025_111904
crossref_primary_10_1016_j_robot_2025_105010
crossref_primary_10_1016_j_robot_2025_105131
crossref_primary_10_1109_LRA_2022_3212670
crossref_primary_10_1007_s40747_023_01144_x
crossref_primary_10_1017_S026357472510221X
crossref_primary_10_1109_TITS_2023_3285624
crossref_primary_10_1109_LRA_2025_3592098
crossref_primary_10_1016_j_robot_2024_104783
crossref_primary_10_1109_ACCESS_2020_3040896
crossref_primary_10_3390_drones7040246
crossref_primary_10_1038_s41598_025_97231_9
crossref_primary_10_3390_electronics10222751
crossref_primary_10_1088_1742_6596_2115_1_012009
crossref_primary_10_3390_s22114031
crossref_primary_10_1109_LRA_2023_3337593
crossref_primary_10_1007_s10489_020_01758_5
crossref_primary_10_1109_LRA_2021_3094557
crossref_primary_10_1109_TVT_2024_3390571
crossref_primary_10_3390_biomimetics10090627
crossref_primary_10_1109_TVT_2024_3489229
crossref_primary_10_1109_ACCESS_2019_2954281
crossref_primary_10_1038_s41598_021_98643_z
crossref_primary_10_1109_ACCESS_2019_2929120
crossref_primary_10_1007_s10489_022_04356_9
crossref_primary_10_1007_s10846_025_02235_2
crossref_primary_10_1017_S0263574725000062
crossref_primary_10_3390_fi13100261
crossref_primary_10_1007_s40747_024_01777_6
crossref_primary_10_1109_TRO_2024_3422052
crossref_primary_10_1016_j_robot_2024_104727
crossref_primary_10_1109_LRA_2021_3116703
crossref_primary_10_1111_mice_13535
crossref_primary_10_1007_s10846_020_01262_5
crossref_primary_10_1007_s11269_020_02600_w
crossref_primary_10_1016_j_asoc_2022_109482
crossref_primary_10_1109_LRA_2022_3145971
crossref_primary_10_1109_TNNLS_2023_3262956
crossref_primary_10_3389_frai_2024_1308031
crossref_primary_10_1109_TIE_2024_3370939
crossref_primary_10_1109_TRO_2024_3454572
crossref_primary_10_1049_cth2_12125
crossref_primary_10_1007_s10489_023_04959_w
crossref_primary_10_1088_1742_6596_2698_1_012025
crossref_primary_10_1109_ACCESS_2020_3030963
crossref_primary_10_3390_rs13234881
crossref_primary_10_1007_s11633_024_1512_6
crossref_primary_10_1109_LRA_2025_3557233
crossref_primary_10_1109_JAS_2023_123087
crossref_primary_10_1109_LRA_2022_3157028
crossref_primary_10_1109_TNNLS_2021_3124466
crossref_primary_10_3390_s25020439
crossref_primary_10_1109_ACCESS_2020_3030190
crossref_primary_10_1016_j_mechmachtheory_2023_105476
crossref_primary_10_1109_LRA_2024_3502067
crossref_primary_10_1007_s43154_021_00048_3
crossref_primary_10_1109_LRA_2020_3001539
crossref_primary_10_1016_j_cag_2024_104091
crossref_primary_10_1109_ACCESS_2021_3076530
crossref_primary_10_3390_jmse11122258
crossref_primary_10_1049_csy2_70019
crossref_primary_10_1109_LRA_2022_3186511
crossref_primary_10_3390_s21072445
crossref_primary_10_1007_s00034_023_02581_2
crossref_primary_10_3390_drones9070490
crossref_primary_10_1016_j_swevo_2022_101171
crossref_primary_10_1177_02783649241313471
crossref_primary_10_1007_s10846_024_02167_3
crossref_primary_10_1016_j_autcon_2020_103078
crossref_primary_10_1109_TCDS_2023_3250819
crossref_primary_10_3390_s23104766
crossref_primary_10_1109_LRA_2024_3396097
crossref_primary_10_3390_electronics11040574
crossref_primary_10_3389_fnbot_2023_1205775
crossref_primary_10_3390_math13060913
crossref_primary_10_1016_j_future_2022_06_015
crossref_primary_10_1145_3550454_3555483
crossref_primary_10_1016_j_cogr_2023_07_004
crossref_primary_10_1109_ACCESS_2020_3038905
crossref_primary_10_1016_j_ymssp_2025_113029
crossref_primary_10_1109_LRA_2025_3575331
Cites_doi 10.1109/RCAR.2016.7784001
10.1109/IRIS.2017.8250126
10.1007/s10514-011-9249-9
10.1371/journal.pone.0157428
10.1371/journal.pone.0203339
10.1017/9781316671528
10.1007/s10514-012-9298-8
10.1109/SSRR.2007.4381274
10.1371/journal.pone.0198175
10.1177/0278364917734298
10.1177/0278364913495721
10.1109/TCYB.2014.2314294
10.1109/LRA.2016.2520560
10.1109/CIRA.1997.613851
10.1109/IISR.2018.8535823
10.1109/ICRA.2017.7989236
10.1016/j.compeleceng.2016.04.002
10.1109/MSP.2017.2743240
10.1007/s10846-013-9822-x
10.1038/nature14236
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2019.2891991
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 617
ExternalDocumentID 10_1109_LRA_2019_2891991
8606991
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Council of Canada
– fundername: Canada Research Chairs Program
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c357t-10eecb271a23e2b5936f5b7811d352dbc066cf749a61d474396927fcd552126c3
IEDL.DBID RIE
ISICitedReferencesCount 247
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457917800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sun Jun 29 14:09:16 EDT 2025
Sat Nov 29 06:03:02 EST 2025
Tue Nov 18 21:35:38 EST 2025
Wed Aug 27 02:47:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-10eecb271a23e2b5936f5b7811d352dbc066cf749a61d474396927fcd552126c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6242-6459
0000-0002-7248-1099
0000-0002-7080-6857
PQID 2298396930
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_primary_10_1109_LRA_2019_2891991
ieee_primary_8606991
crossref_citationtrail_10_1109_LRA_2019_2891991
proquest_journals_2298396930
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
sampedro (ref18) 2018
ref11
ref10
mei (ref8) 0
ref2
wang (ref3) 2018; 33
(ref5) 0
ref1
ref17
mnih (ref23) 2015; 518
ref16
ref19
(ref31) 0
gruslys (ref32) 2017
ref24
zhang (ref25) 2017
ref20
ref22
mnih (ref27) 0; 48
ref21
hausknecht (ref29) 0
(ref30) 0
ref7
garg (ref28) 0
ref9
ref4
ref6
zhang (ref26) 0
References_xml – ident: ref24
  doi: 10.1109/RCAR.2016.7784001
– ident: ref2
  doi: 10.1109/IRIS.2017.8250126
– ident: ref7
  doi: 10.1007/s10514-011-9249-9
– ident: ref14
  doi: 10.1371/journal.pone.0157428
– volume: 48
  start-page: 1928
  year: 0
  ident: ref27
  article-title: Asynchronous methods for deep reinforcement learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref13
  doi: 10.1371/journal.pone.0203339
– ident: ref4
  doi: 10.1017/9781316671528
– ident: ref11
  doi: 10.1007/s10514-012-9298-8
– year: 2017
  ident: ref32
  article-title: The reactor: A fast and sample-efficient actor-critic agent for reinforcement learning
  publication-title: arXiv170404651 Cs
– ident: ref12
  doi: 10.1109/SSRR.2007.4381274
– ident: ref15
  doi: 10.1371/journal.pone.0198175
– volume: 33
  start-page: 394
  year: 2018
  ident: ref3
  article-title: Robot arm perceptive exploration based significant SLAM in
  publication-title: Int J Robot Automat
– ident: ref20
  doi: 10.1177/0278364917734298
– ident: ref21
  doi: 10.1177/0278364913495721
– year: 2017
  ident: ref25
  article-title: Neural SLAM: Learning to explore with external memory
  publication-title: arXiv170609520 Cs
– start-page: 740
  year: 0
  ident: ref28
  article-title: Unsupervised CNN for single view depth estimation: Geometry to the rescue
  publication-title: Proc
– year: 0
  ident: ref31
– year: 0
  ident: ref30
– ident: ref6
  doi: 10.1109/TCYB.2014.2314294
– start-page: 1
  year: 2018
  ident: ref18
  article-title: A fully-autonomous aerial robot for search and rescue applications in indoor environments using learning-based techniques
  publication-title: J Intell Robot Syst
– start-page: 1
  year: 0
  ident: ref26
  article-title: Robot navigation of environments with unknown rough terrain using deep reinforcement learning
  publication-title: Proc IEEE Int Symp Saf Secur Rescue Robot
– year: 0
  ident: ref5
– ident: ref9
  doi: 10.1109/LRA.2016.2520560
– ident: ref10
  doi: 10.1109/CIRA.1997.613851
– ident: ref17
  doi: 10.1109/IISR.2018.8535823
– ident: ref19
  doi: 10.1109/ICRA.2017.7989236
– ident: ref16
  doi: 10.1016/j.compeleceng.2016.04.002
– ident: ref22
  doi: 10.1109/MSP.2017.2743240
– start-page: 505
  year: 0
  ident: ref8
  article-title: Energy-efficient mobile robot exploration
  publication-title: Proc IEEE Int Conf Robot Autom
– start-page: 29
  year: 0
  ident: ref29
  article-title: Deep Recurrent Q-learning for partially observable MDPs
  publication-title: Proc AAAI Fall Symp Series
– ident: ref1
  doi: 10.1007/s10846-013-9822-x
– volume: 518
  start-page: 529
  year: 2015
  ident: ref23
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
SSID ssj0001527395
Score 2.578931
Snippet Rescue robots can be used in urban search and rescue (USAR) applications to perform the important task of exploring unknown cluttered environments. Due to the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 610
SubjectTerms Autonomous agents
Computer architecture
Deep learning
deep learning in robotics and automation
Exploration
Layout
Layouts
Machine learning
Microprocessors
Navigation
Robot sensing systems
Robots
Search and rescue missions
search and rescue robots
Task analysis
Wideband communications
Title Deep Reinforcement Learning Robot for Search and Rescue Applications: Exploration in Unknown Cluttered Environments
URI https://ieeexplore.ieee.org/document/8606991
https://www.proquest.com/docview/2298396930
Volume 4
WOSCitedRecordID wos000457917800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8B4kEPfqERRdKDFxPHx8ZW6o0gxIMSQyThtqztmyEhG-HDo3-7fd1AjMbE25a1S7vf2r6-vvf7AdyoSGqfS8-RbRk7JLbtCG0AkRE5CHWTmyFlxSb4cNiZTMRLAe62uTCIaIPPsE6X9ixfp2pNrrJGx1jbglLVi5zzLFfry59CTGLC35xENkXjadSl0C1RN3sKCvD5tvJYKZUf869dVAZH_2vOMRzmxiPrZmifQAGTUzjYoRQsw_IBcc5GaAlRlfX9sZxD9Y2NUpmumHnAsihjFiXalF2qNbLuzkn2PctC8-wdmyZsnJDvLWG9mdW1Rs36OwlyZzAe9F97j04urOAoz-crM_UiKunyVuR66EoS9Yt9STmn2thjWipjh6iYt0UUtHSbtiyBcHmstE-ZvoHyzqGUpAleAJMGUYzdoOMrYtLTMlZBC4UXuaKjAxVVoLH56KHKWcdJ_GIW2t1HU4QGppBgCnOYKnC7rTHPGDf-KFsmWLblckQqUN3gGuZDchm6pkXUEa95-XutK9ind2dhOVUorRZrvIY99b6aLhc1KD5_9Gv2n_sEx07XXg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD6MKagP3qY4nZoHXwS7S6-Lb2NuTJxDxgZ7K01yKoPRjV38_eak3Zwogm8tTWjSr0lOTs75PoA7GQnlBcKxhCtii8S2La40ICIiB6GqBnpIGbGJoNerj0b8LQcPm1wYRDTBZ1imS3OWr6ZyRa6ySl1b25xS1Xc817VrabbWl0eFuMS4tz6LrPJKt9-g4C1e1rsKCvH5tvYYMZUfM7BZVtpH_2vQMRxm5iNrpHifQA6TUzjYIhUswOIJccb6aChRpfH-sYxF9Z31p2K6ZPoBS-OMWZQoXXYhV8gaW2fZjywNzjN3bJywYULet4Q1J0bZGhVrbaXIncGw3Ro0O1YmrWBJxwuWevJFlMIOapHtoC1I1i_2BGWdKm2RKSG1JSLjwOWRX1MubVp8bgexVB7l-vrSOYd8Mk3wApjQmGJs-3VPEpeeErH0a8idyOZ15cuoCJX1Rw9lxjtO8heT0Ow_qjzUMIUEU5jBVIT7TY1ZyrnxR9kCwbIplyFShNIa1zAblIvQ1i2ijjjVy99r3cJeZ_DaDbvPvZcr2Kf3pEE6Jcgv5yu8hl35sRwv5jfmz_sEBsnZdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning+Robot+for+Search+and+Rescue+Applications%3A+Exploration+in+Unknown+Cluttered+Environments&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Niroui%2C+Farzad&rft.au=Zhang%2C+Kaicheng&rft.au=Kashino%2C+Zendai&rft.au=Nejat%2C+Goldie&rft.date=2019-04-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=4&rft.issue=2&rft.spage=610&rft.epage=617&rft_id=info:doi/10.1109%2FLRA.2019.2891991&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2019_2891991
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon