Organic Field‐Effect Transistors Based on Ternary Blends Including a Fluorinated Polymer for Achieving Enhanced Device Stability
The stability of organic semiconductors (OSCs) is strongly hampered by the presence of water molecules. One approach that has been proved to lead to organic field‐effect transistors with an enhanced performance is the use of blends of OSCs with insulating binding polymers. In this work, the fabricat...
Uložené v:
| Vydané v: | Advanced materials interfaces Ročník 9; číslo 6 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Weinheim
John Wiley & Sons, Inc
01.02.2022
|
| Predmet: | |
| ISSN: | 2196-7350, 2196-7350 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The stability of organic semiconductors (OSCs) is strongly hampered by the presence of water molecules. One approach that has been proved to lead to organic field‐effect transistors with an enhanced performance is the use of blends of OSCs with insulating binding polymers. In this work, the fabrication of OSC thin films based on polymeric ternary blends including a hydrophobic fluorinated polymer is reported as a novel route to engineer long‐term reliable organic field‐effect transistors (OFET) devices. In particular, OFETs based on blends of bis(triisopropylsilylethynyl)pentacene (TIPS) with polystyrene (PS) and poly(pentafluorostyrene) (PFS) are explored. The PS:PFS ratio is tuned in order to find the optimum formulation. It is shown that films including 20% of PFS in the polymeric blend exhibit an improved device performance, which is reflected by a low bias stress and an exceptional environmental stability, without significantly hampering the OFET mobility. This work advocates that adding a small percentage of fluorinated polymers in OSC blends is a promising route to realize more reliable and stable devices without importantly compromising the device mobility.
Organic semiconductor thin films based on polymeric ternary blends including a hydrophobic fluorinated polymer are prepared as a novel route to engineer long‐term reliable organic field‐effect transistors. The devices in which 20% of fluorinated polymer is added exhibit an improved bias stress and an exceptional environmental stability, without significantly hampering the charge carrier mobility. |
|---|---|
| AbstractList | The stability of organic semiconductors (OSCs) is strongly hampered by the presence of water molecules. One approach that has been proved to lead to organic field‐effect transistors with an enhanced performance is the use of blends of OSCs with insulating binding polymers. In this work, the fabrication of OSC thin films based on polymeric ternary blends including a hydrophobic fluorinated polymer is reported as a novel route to engineer long‐term reliable organic field‐effect transistors (OFET) devices. In particular, OFETs based on blends of bis(triisopropylsilylethynyl)pentacene (TIPS) with polystyrene (PS) and poly(pentafluorostyrene) (PFS) are explored. The PS:PFS ratio is tuned in order to find the optimum formulation. It is shown that films including 20% of PFS in the polymeric blend exhibit an improved device performance, which is reflected by a low bias stress and an exceptional environmental stability, without significantly hampering the OFET mobility. This work advocates that adding a small percentage of fluorinated polymers in OSC blends is a promising route to realize more reliable and stable devices without importantly compromising the device mobility. The stability of organic semiconductors (OSCs) is strongly hampered by the presence of water molecules. One approach that has been proved to lead to organic field‐effect transistors with an enhanced performance is the use of blends of OSCs with insulating binding polymers. In this work, the fabrication of OSC thin films based on polymeric ternary blends including a hydrophobic fluorinated polymer is reported as a novel route to engineer long‐term reliable organic field‐effect transistors (OFET) devices. In particular, OFETs based on blends of bis(triisopropylsilylethynyl)pentacene (TIPS) with polystyrene (PS) and poly(pentafluorostyrene) (PFS) are explored. The PS:PFS ratio is tuned in order to find the optimum formulation. It is shown that films including 20% of PFS in the polymeric blend exhibit an improved device performance, which is reflected by a low bias stress and an exceptional environmental stability, without significantly hampering the OFET mobility. This work advocates that adding a small percentage of fluorinated polymers in OSC blends is a promising route to realize more reliable and stable devices without importantly compromising the device mobility. Organic semiconductor thin films based on polymeric ternary blends including a hydrophobic fluorinated polymer are prepared as a novel route to engineer long‐term reliable organic field‐effect transistors. The devices in which 20% of fluorinated polymer is added exhibit an improved bias stress and an exceptional environmental stability, without significantly hampering the charge carrier mobility. |
| Author | Tamayo, Adrián Salzillo, Tommaso Mas‐Torrent, Marta |
| Author_xml | – sequence: 1 givenname: Adrián surname: Tamayo fullname: Tamayo, Adrián organization: Campus de la UAB – sequence: 2 givenname: Tommaso surname: Salzillo fullname: Salzillo, Tommaso organization: Campus de la UAB – sequence: 3 givenname: Marta orcidid: 0000-0002-1586-005X surname: Mas‐Torrent fullname: Mas‐Torrent, Marta email: mmas@icmab.es organization: Campus de la UAB |
| BookMark | eNqFkMtKQzEQhoMoeN26DrhuzeVcmmXVVguKgnV9yEkmGkkTTVKlO_EJfEafxFMqKoK4mtv_zTD_Nlr3wQNC-5T0KSHsUOqZ7TPCKKFVLdbQFqOi6tW8JOs_8k20l9I9IYRSRtmAb6HXy3grvVV4bMHp95e3kTGgMp5G6ZNNOcSEj2QCjYPHU4hexgU-cuB1whOv3Fxbf4slHrt5iNbL3CmvglvMIGITIh6qOwtPS83I30mvuvFJVyvA11m21tm82EUbRroEe59xB92MR9Pjs9755enkeHjeU7ysRY9yw5UYaBCmqA3ULdNtYRShDKg2tCgKQlpDWg0F512vVAwErQeVrAgztOQ76GC19yGGxzmk3NyHefeQSw2rOB2UgomqU_VXKhVDShFM8xDtrPu6oaRZWt0srW6-rO6A4hegbJbZBp-jtO5vTKywZ-tg8c-RZnhyMflmPwDhyZea |
| CitedBy_id | crossref_primary_10_1002_adsr_202300034 crossref_primary_10_1063_5_0092224 crossref_primary_10_1002_aelm_202400887 crossref_primary_10_1002_adfm_202202071 crossref_primary_10_1002_smll_202300151 crossref_primary_10_1016_j_cclet_2022_108094 crossref_primary_10_1002_cey2_579 crossref_primary_10_1002_aelm_202200293 crossref_primary_10_1007_s10762_022_00893_z crossref_primary_10_1039_D2NR05625A crossref_primary_10_1039_D2TC05066H crossref_primary_10_1016_j_orgel_2024_107069 |
| Cites_doi | 10.1063/1.2980421 10.1126/sciadv.aao1705 10.1021/ma60041a023 10.1038/nmat4785 10.1021/acs.chemrev.6b00618 10.1021/acsami.1c05938 10.1038/srep39623 10.1039/C4EE00688G 10.1063/1.2210791 10.1039/C6CS00509H 10.1039/c2jm34218a 10.1038/s41467-020-15974-7 10.1002/adfm.201000427 10.1038/s41467-018-05235-z 10.1038/s41467-021-22683-2 10.1021/acsami.7b19279 10.1002/admi.201600284 10.1103/PhysRevB.68.085316 10.1002/admt.201600090 10.1063/1.3006349 10.1021/ja304198e 10.1016/j.apsusc.2019.03.090 10.1021/cm5030266 10.1007/s00216-011-5363-y 10.1007/s13391-020-00227-y 10.1016/j.synthmet.2009.07.012 10.1063/1.1968437 10.1088/1361-6641/ab2201 10.1103/PhysRevB.82.075322 10.1016/j.bios.2020.112433 10.1063/1.4917209 10.1002/adfm.200800009 10.1002/admt.201900104 10.1021/ma60044a025 10.1016/j.orgel.2015.03.005 10.1002/adma.201200088 10.1016/j.bios.2019.111844 10.1002/adfm.201503943 10.1063/1.2398798 10.1038/srep20671 10.1039/c1cp20769e 10.1002/adma.201003135 10.1021/am301793m 10.1021/acsami.8b02851 10.1002/adma.201402363 10.1002/adma.200904163 10.1039/c2jm13329f 10.1002/adfm.201502274 10.1021/acsnano.7b02521 10.1038/nature10683 10.1002/adma.200602798 10.1002/adfm.201700526 10.1002/adma.200901136 10.1021/acsomega.8b00043 10.1021/ol0167356 10.1063/1.3660779 10.1021/am9007648 10.1021/acs.chemmater.8b03904 10.1016/j.jelechem.2006.05.012 10.1002/adma.201602479 10.1002/adma.201801874 10.1021/acsami.8b21090 10.1007/s00339-008-5019-8 10.1016/S0141-3910(00)00080-X 10.1103/PhysRevB.77.165311 10.1039/C2TC00280A 10.1002/adma.201601075 |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/admi.202101679 |
| DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2196-7350 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_admi_202101679 ADMI202101679 |
| Genre | article |
| GrantInformation_xml | – fundername: FPU fellowship – fundername: UAB Materials Science PhD program – fundername: Generalitat de Catalunya funderid: 2017‐SGR‐918 – fundername: Severo Ochoa” Programme for Centers of Excellence in R&D funderid: FUNFUTURE CEX2019‐000917‐S – fundername: Spanish Ministry with the project funderid: PID2019‐111682RB‐I00 |
| GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG DPXWK EBS G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ M~E O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW AAFWJ AAMMB AAYXX ABJCF ABJNI ACCMX ADMLS AEFGJ AFFHD AFKRA AFPKN AGXDD AIDQK AIDYY ARAPS BENPR BGLVJ CCPQU CITATION EJD GROUPED_DOAJ HCIFZ KB. M7S PDBOC PHGZM PHGZT PQGLB PTHSS 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3579-13f3c98de9f47fe7b2db4fc012e1df144400bf0bde4332e15c2e91786a602f153 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000743184300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2196-7350 |
| IngestDate | Fri Jul 25 11:54:38 EDT 2025 Tue Nov 18 21:45:43 EST 2025 Sat Nov 29 07:24:17 EST 2025 Sat Aug 24 00:57:24 EDT 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c3579-13f3c98de9f47fe7b2db4fc012e1df144400bf0bde4332e15c2e91786a602f153 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1586-005X |
| OpenAccessLink | https://onlinelibrary-wiley-com.ezproxy.unibo.it/doi/epdf/10.1002/admi.202101679 |
| PQID | 2631859296 |
| PQPubID | 2034582 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2631859296 crossref_primary_10_1002_admi_202101679 crossref_citationtrail_10_1002_admi_202101679 wiley_primary_10_1002_admi_202101679_ADMI202101679 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Advanced materials interfaces |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2013; 1 2019; 11 2017; 46 2014; 26 2020; 16 2011; 13 2008; 77 2020; 167 2020; 11 2019; 481 1974; 7 2012; 402 2009; 159 2017; 117 2011; 110 2010; 22 2018; 9 2010; 20 2018; 3 2009; 95 2012; 134 2018; 4 2021; 119 2018; 30 2011; 23 1975; 8 2010; 2 2012; 24 2014; 7 2011; 480 2012; 22 2007; 19 2019; 4 2007; 600 2009; 21 2019; 31 2000; 69 2017; 27 2008; 18 2019; 34 2005; 86 2002; 4 2008; 93 2010; 82 2021; 13 2016; 6 2016; 1 2021; 12 2016; 3 2021 2017; 16 2006; 88 2017; 11 2015; 21 2020; 150 2003; 68 2015; 117 2016; 28 2012; 4 2018; 10 2016; 26 2006; 100 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 Yildiz O. (e_1_2_8_36_1) 2021 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 Berteau‐rainville M. (e_1_2_8_37_1) 2021; 119 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 18 start-page: 3907 year: 2008 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 2352 year: 2021 publication-title: Nat. Commun. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 480 start-page: 504 year: 2011 publication-title: Nature – volume: 402 start-page: 1813 year: 2012 publication-title: Anal. Bioanal. Chem. – volume: 4 start-page: 6176 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 69 start-page: 341 year: 2000 publication-title: Polym. Degrad. Stab. – volume: 100 year: 2006 publication-title: J. Appl. Phys. – volume: 110 year: 2011 publication-title: J. Appl. Phys. – volume: 24 start-page: 2441 year: 2012 publication-title: Adv. Mater. – volume: 119 year: 2021 publication-title: Appl. Phys. Express – volume: 117 start-page: 6332 year: 2017 publication-title: Chem. Rev. – volume: 600 start-page: 131 year: 2007 publication-title: J. Electroanal. Chem. – volume: 31 start-page: 2212 year: 2019 publication-title: Chem. Mater. – volume: 20 start-page: 2330 year: 2010 publication-title: Adv. Funct. Mater. – volume: 93 year: 2008 publication-title: Appl. Phys. Lett. – volume: 28 start-page: 7791 year: 2016 publication-title: Adv. Mater. – volume: 21 start-page: 3859 year: 2009 publication-title: Adv. Mater. – volume: 150 year: 2020 publication-title: Biosens. Bioelectron. – volume: 1 start-page: 1272 year: 2013 publication-title: J. Mater. Chem. C – volume: 77 year: 2008 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 82 year: 2010 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 19 start-page: 2785 year: 2007 publication-title: Adv. Mater. – volume: 86 year: 2005 publication-title: Appl. Phys. Lett. – volume: 23 start-page: 127 year: 2011 publication-title: Adv. Mater. – volume: 22 year: 2012 publication-title: J. Mater. Chem. – volume: 26 start-page: 1737 year: 2016 publication-title: Adv. Funct. Mater. – volume: 95 start-page: 139 year: 2009 publication-title: Appl. Phys. A: Mater. Sci. Process. – volume: 22 start-page: 7731 year: 2012 publication-title: J. Mater. Chem. – volume: 16 start-page: 356 year: 2017 publication-title: Nat. Mater. – volume: 22 start-page: 2565 year: 2010 publication-title: Adv. Mater. – volume: 7 start-page: 667 year: 1974 publication-title: Macromolecules – volume: 26 start-page: 6467 year: 2014 publication-title: Chem. Mater. – volume: 3 start-page: 2329 year: 2018 publication-title: ACS Omega – volume: 159 start-page: 2365 year: 2009 publication-title: Synth. Met. – year: 2021 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 2145 year: 2014 publication-title: Energy Environ. Sci. – volume: 4 year: 2019 publication-title: Adv. Mater. Technol. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 13 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 11 start-page: 5179 year: 2017 publication-title: ACS Nano – volume: 2 start-page: 511 year: 2010 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 3223 year: 2018 publication-title: Nat. Commun. – volume: 117 year: 2015 publication-title: J. Appl. Phys. – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 7241 year: 2014 publication-title: Adv. Mater. – volume: 10 start-page: 7296 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 441 year: 2020 publication-title: Electron. Mater. Lett. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 28 year: 2016 publication-title: Adv. Mater. – volume: 3 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 1 year: 2016 publication-title: Adv. Mater. Technol. – volume: 11 start-page: 2136 year: 2020 publication-title: Nat. Commun. – volume: 167 year: 2020 publication-title: Biosens. Bioelectron. – volume: 34 year: 2019 publication-title: Semicond. Sci. Technol. – volume: 88 year: 2006 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 227 year: 1975 publication-title: Macromolecules – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 21 start-page: 111 year: 2015 publication-title: Org. Electron. – volume: 4 start-page: 15 year: 2002 publication-title: Org. Lett. – volume: 68 year: 2003 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 26 start-page: 2379 year: 2016 publication-title: Adv. Funct. Mater. – volume: 481 start-page: 642 year: 2019 publication-title: Appl. Surf. Sci. – volume: 46 start-page: 40 year: 2017 publication-title: Chem. Soc. Rev. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_8_7_1 doi: 10.1063/1.2980421 – ident: e_1_2_8_4_1 doi: 10.1126/sciadv.aao1705 – ident: e_1_2_8_40_1 doi: 10.1021/ma60041a023 – ident: e_1_2_8_3_1 doi: 10.1038/nmat4785 – ident: e_1_2_8_23_1 doi: 10.1021/acs.chemrev.6b00618 – ident: e_1_2_8_64_1 doi: 10.1021/acsami.1c05938 – ident: e_1_2_8_68_1 doi: 10.1038/srep39623 – ident: e_1_2_8_2_1 doi: 10.1039/C4EE00688G – ident: e_1_2_8_54_1 doi: 10.1063/1.2210791 – ident: e_1_2_8_10_1 doi: 10.1039/C6CS00509H – ident: e_1_2_8_9_1 doi: 10.1039/c2jm34218a – ident: e_1_2_8_38_1 doi: 10.1038/s41467-020-15974-7 – ident: e_1_2_8_25_1 doi: 10.1002/adfm.201000427 – ident: e_1_2_8_67_1 doi: 10.1038/s41467-018-05235-z – ident: e_1_2_8_5_1 doi: 10.1038/s41467-021-22683-2 – ident: e_1_2_8_29_1 doi: 10.1021/acsami.7b19279 – ident: e_1_2_8_13_1 doi: 10.1002/admi.201600284 – ident: e_1_2_8_50_1 doi: 10.1103/PhysRevB.68.085316 – ident: e_1_2_8_33_1 doi: 10.1002/admt.201600090 – ident: e_1_2_8_18_1 doi: 10.1063/1.3006349 – ident: e_1_2_8_57_1 doi: 10.1021/ja304198e – ident: e_1_2_8_32_1 doi: 10.1016/j.apsusc.2019.03.090 – ident: e_1_2_8_12_1 doi: 10.1021/cm5030266 – ident: e_1_2_8_63_1 doi: 10.1007/s00216-011-5363-y – ident: e_1_2_8_39_1 doi: 10.1007/s13391-020-00227-y – ident: e_1_2_8_27_1 doi: 10.1016/j.synthmet.2009.07.012 – ident: e_1_2_8_53_1 doi: 10.1063/1.1968437 – ident: e_1_2_8_20_1 doi: 10.1088/1361-6641/ab2201 – ident: e_1_2_8_48_1 doi: 10.1103/PhysRevB.82.075322 – ident: e_1_2_8_66_1 doi: 10.1016/j.bios.2020.112433 – ident: e_1_2_8_60_1 doi: 10.1063/1.4917209 – volume: 119 year: 2021 ident: e_1_2_8_37_1 publication-title: Appl. Phys. Express – ident: e_1_2_8_52_1 doi: 10.1002/adfm.200800009 – ident: e_1_2_8_22_1 doi: 10.1002/admt.201900104 – ident: e_1_2_8_41_1 doi: 10.1021/ma60044a025 – ident: e_1_2_8_16_1 doi: 10.1016/j.orgel.2015.03.005 – ident: e_1_2_8_28_1 doi: 10.1002/adma.201200088 – ident: e_1_2_8_65_1 doi: 10.1016/j.bios.2019.111844 – ident: e_1_2_8_30_1 doi: 10.1002/adfm.201503943 – ident: e_1_2_8_51_1 doi: 10.1063/1.2398798 – ident: e_1_2_8_46_1 doi: 10.1038/srep20671 – ident: e_1_2_8_61_1 doi: 10.1039/c1cp20769e – ident: e_1_2_8_42_1 doi: 10.1002/adma.201003135 – ident: e_1_2_8_15_1 doi: 10.1021/am301793m – ident: e_1_2_8_31_1 doi: 10.1021/acsami.8b02851 – ident: e_1_2_8_14_1 doi: 10.1002/adma.201402363 – ident: e_1_2_8_62_1 doi: 10.1002/adma.200904163 – ident: e_1_2_8_17_1 doi: 10.1039/c2jm13329f – ident: e_1_2_8_34_1 doi: 10.1002/adfm.201502274 – ident: e_1_2_8_19_1 doi: 10.1021/acsnano.7b02521 – ident: e_1_2_8_44_1 doi: 10.1038/nature10683 – ident: e_1_2_8_59_1 doi: 10.1002/adma.200602798 – ident: e_1_2_8_35_1 doi: 10.1002/adfm.201700526 – ident: e_1_2_8_58_1 doi: 10.1002/adma.200901136 – ident: e_1_2_8_1_1 doi: 10.1021/acsomega.8b00043 – ident: e_1_2_8_43_1 doi: 10.1021/ol0167356 – ident: e_1_2_8_26_1 doi: 10.1063/1.3660779 – ident: e_1_2_8_8_1 doi: 10.1021/am9007648 – year: 2021 ident: e_1_2_8_36_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_8_6_1 doi: 10.1021/acs.chemmater.8b03904 – ident: e_1_2_8_49_1 doi: 10.1016/j.jelechem.2006.05.012 – ident: e_1_2_8_69_1 doi: 10.1002/adma.201602479 – ident: e_1_2_8_21_1 doi: 10.1002/adma.201801874 – ident: e_1_2_8_45_1 doi: 10.1021/acsami.8b21090 – ident: e_1_2_8_55_1 doi: 10.1007/s00339-008-5019-8 – ident: e_1_2_8_47_1 doi: 10.1016/S0141-3910(00)00080-X – ident: e_1_2_8_56_1 doi: 10.1103/PhysRevB.77.165311 – ident: e_1_2_8_11_1 doi: 10.1039/C2TC00280A – ident: e_1_2_8_24_1 doi: 10.1002/adma.201601075 |
| SSID | ssj0001121283 |
| Score | 2.3032196 |
| Snippet | The stability of organic semiconductors (OSCs) is strongly hampered by the presence of water molecules. One approach that has been proved to lead to organic... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Field effect transistors Fluoropolymers Insulation OFETs Organic semiconductors Performance enhancement Polymer blends Polymers Polystyrene resins printed electronics Semiconductor devices solution shearing, stability of transistors Stability Thin films Transistors Water chemistry |
| Title | Organic Field‐Effect Transistors Based on Ternary Blends Including a Fluorinated Polymer for Achieving Enhanced Device Stability |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202101679 https://www.proquest.com/docview/2631859296 |
| Volume | 9 |
| WOSCitedRecordID | wos000743184300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2196-7350 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001121283 issn: 2196-7350 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2FAhIbxFNNW9AsqFhEBr_HXqYkEUhNqIQrZWdNxjOqJccOdlM1LBDiC_gUvokv4c6M7ThSeS3YWIllOYrv8X2eOYPQC88TDk1804CyyzRcbjKDctszQh_KDWYyEfpMbTZBZrNgPg_Per3vzVqYq4zkeXB9Ha7-q6nhHBhbLp39B3O3N4UT8BmMDkcwOxz_yvB6dSUbTNTm0w2XoVYpVqFJKYNUgxMIYIkcFkSyJ1huBieZ4seCy8jWaq0LHUyytWToUZmXnhXZZslLRUwcsouUq17EOL_QJIIRl05HZq-Kb7szLh42TAPIj_UzUDoVpZCEsG3zYEk3etVNUqZqgm-10P1As09pPSeKiuWSVsW2mQ4VxGBKq_bPRoUSnep2NKAYNnfYITdQhrq8UK6cIzha3yCOFq1tPHnYAax_Y3zQerM0WaavbFntyiHUNhI20__Z-3hyfnoaR-N5dOxMVh8NuUuZnOYfOyONmFvotk28UPrR6edOV8-CVCBwGnVQ0369-1u72c-2pOkWRiqziR6g-3VJgocaSg9Rj-eP0F1FDWbVY_S1BhRWgPrx5ZuGEu5ACSso4SLHNZSwhhJuoYQp7kAJ11DCACXcQgk3UMIaSriF0hN0PhlHb94a9c4dBnM8EhqWIxwWBgkPhUsEJws7WbiCQTLErURADQ-RYyHMRcKlfB63PGbz0CKBT33TFhCEn6K9vMj5PsKQoAooABPiuMINXJdCqkWYtyCeH9CA0T4ymicas1rWXu6uksVakNuOpQXi1gJ99LK9fqUFXX555VFjoLh-v6vY9qXcANQUfh_Zymh_uEs8HE3ftd8Ofn_PQ3Rv-0Icob3Lcs2foTvs6jKtyucKaj8BRo2y9g |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+Field%E2%80%90Effect+Transistors+Based+on+Ternary+Blends+Including+a+Fluorinated+Polymer+for+Achieving+Enhanced+Device+Stability&rft.jtitle=Advanced+materials+interfaces&rft.au=Tamayo%2C+Adri%C3%A1n&rft.au=Salzillo%2C+Tommaso&rft.au=Marta+Mas%E2%80%90Torrent&rft.date=2022-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-7350&rft.volume=9&rft.issue=6&rft_id=info:doi/10.1002%2Fadmi.202101679&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |