Organic Field‐Effect Transistors Based on Ternary Blends Including a Fluorinated Polymer for Achieving Enhanced Device Stability

The stability of organic semiconductors (OSCs) is strongly hampered by the presence of water molecules. One approach that has been proved to lead to organic field‐effect transistors with an enhanced performance is the use of blends of OSCs with insulating binding polymers. In this work, the fabricat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced materials interfaces Ročník 9; číslo 6
Hlavní autori: Tamayo, Adrián, Salzillo, Tommaso, Mas‐Torrent, Marta
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Weinheim John Wiley & Sons, Inc 01.02.2022
Predmet:
ISSN:2196-7350, 2196-7350
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The stability of organic semiconductors (OSCs) is strongly hampered by the presence of water molecules. One approach that has been proved to lead to organic field‐effect transistors with an enhanced performance is the use of blends of OSCs with insulating binding polymers. In this work, the fabrication of OSC thin films based on polymeric ternary blends including a hydrophobic fluorinated polymer is reported as a novel route to engineer long‐term reliable organic field‐effect transistors (OFET) devices. In particular, OFETs based on blends of bis(triisopropylsilylethynyl)pentacene (TIPS) with polystyrene (PS) and poly(pentafluorostyrene) (PFS) are explored. The PS:PFS ratio is tuned in order to find the optimum formulation. It is shown that films including 20% of PFS in the polymeric blend exhibit an improved device performance, which is reflected by a low bias stress and an exceptional environmental stability, without significantly hampering the OFET mobility. This work advocates that adding a small percentage of fluorinated polymers in OSC blends is a promising route to realize more reliable and stable devices without importantly compromising the device mobility. Organic semiconductor thin films based on polymeric ternary blends including a hydrophobic fluorinated polymer are prepared as a novel route to engineer long‐term reliable organic field‐effect transistors. The devices in which 20% of fluorinated polymer is added exhibit an improved bias stress and an exceptional environmental stability, without significantly hampering the charge carrier mobility.
AbstractList The stability of organic semiconductors (OSCs) is strongly hampered by the presence of water molecules. One approach that has been proved to lead to organic field‐effect transistors with an enhanced performance is the use of blends of OSCs with insulating binding polymers. In this work, the fabrication of OSC thin films based on polymeric ternary blends including a hydrophobic fluorinated polymer is reported as a novel route to engineer long‐term reliable organic field‐effect transistors (OFET) devices. In particular, OFETs based on blends of bis(triisopropylsilylethynyl)pentacene (TIPS) with polystyrene (PS) and poly(pentafluorostyrene) (PFS) are explored. The PS:PFS ratio is tuned in order to find the optimum formulation. It is shown that films including 20% of PFS in the polymeric blend exhibit an improved device performance, which is reflected by a low bias stress and an exceptional environmental stability, without significantly hampering the OFET mobility. This work advocates that adding a small percentage of fluorinated polymers in OSC blends is a promising route to realize more reliable and stable devices without importantly compromising the device mobility.
The stability of organic semiconductors (OSCs) is strongly hampered by the presence of water molecules. One approach that has been proved to lead to organic field‐effect transistors with an enhanced performance is the use of blends of OSCs with insulating binding polymers. In this work, the fabrication of OSC thin films based on polymeric ternary blends including a hydrophobic fluorinated polymer is reported as a novel route to engineer long‐term reliable organic field‐effect transistors (OFET) devices. In particular, OFETs based on blends of bis(triisopropylsilylethynyl)pentacene (TIPS) with polystyrene (PS) and poly(pentafluorostyrene) (PFS) are explored. The PS:PFS ratio is tuned in order to find the optimum formulation. It is shown that films including 20% of PFS in the polymeric blend exhibit an improved device performance, which is reflected by a low bias stress and an exceptional environmental stability, without significantly hampering the OFET mobility. This work advocates that adding a small percentage of fluorinated polymers in OSC blends is a promising route to realize more reliable and stable devices without importantly compromising the device mobility. Organic semiconductor thin films based on polymeric ternary blends including a hydrophobic fluorinated polymer are prepared as a novel route to engineer long‐term reliable organic field‐effect transistors. The devices in which 20% of fluorinated polymer is added exhibit an improved bias stress and an exceptional environmental stability, without significantly hampering the charge carrier mobility.
Author Tamayo, Adrián
Salzillo, Tommaso
Mas‐Torrent, Marta
Author_xml – sequence: 1
  givenname: Adrián
  surname: Tamayo
  fullname: Tamayo, Adrián
  organization: Campus de la UAB
– sequence: 2
  givenname: Tommaso
  surname: Salzillo
  fullname: Salzillo, Tommaso
  organization: Campus de la UAB
– sequence: 3
  givenname: Marta
  orcidid: 0000-0002-1586-005X
  surname: Mas‐Torrent
  fullname: Mas‐Torrent, Marta
  email: mmas@icmab.es
  organization: Campus de la UAB
BookMark eNqFkMtKQzEQhoMoeN26DrhuzeVcmmXVVguKgnV9yEkmGkkTTVKlO_EJfEafxFMqKoK4mtv_zTD_Nlr3wQNC-5T0KSHsUOqZ7TPCKKFVLdbQFqOi6tW8JOs_8k20l9I9IYRSRtmAb6HXy3grvVV4bMHp95e3kTGgMp5G6ZNNOcSEj2QCjYPHU4hexgU-cuB1whOv3Fxbf4slHrt5iNbL3CmvglvMIGITIh6qOwtPS83I30mvuvFJVyvA11m21tm82EUbRroEe59xB92MR9Pjs9755enkeHjeU7ysRY9yw5UYaBCmqA3ULdNtYRShDKg2tCgKQlpDWg0F512vVAwErQeVrAgztOQ76GC19yGGxzmk3NyHefeQSw2rOB2UgomqU_VXKhVDShFM8xDtrPu6oaRZWt0srW6-rO6A4hegbJbZBp-jtO5vTKywZ-tg8c-RZnhyMflmPwDhyZea
CitedBy_id crossref_primary_10_1002_adsr_202300034
crossref_primary_10_1063_5_0092224
crossref_primary_10_1002_aelm_202400887
crossref_primary_10_1002_adfm_202202071
crossref_primary_10_1002_smll_202300151
crossref_primary_10_1016_j_cclet_2022_108094
crossref_primary_10_1002_cey2_579
crossref_primary_10_1002_aelm_202200293
crossref_primary_10_1007_s10762_022_00893_z
crossref_primary_10_1039_D2NR05625A
crossref_primary_10_1039_D2TC05066H
crossref_primary_10_1016_j_orgel_2024_107069
Cites_doi 10.1063/1.2980421
10.1126/sciadv.aao1705
10.1021/ma60041a023
10.1038/nmat4785
10.1021/acs.chemrev.6b00618
10.1021/acsami.1c05938
10.1038/srep39623
10.1039/C4EE00688G
10.1063/1.2210791
10.1039/C6CS00509H
10.1039/c2jm34218a
10.1038/s41467-020-15974-7
10.1002/adfm.201000427
10.1038/s41467-018-05235-z
10.1038/s41467-021-22683-2
10.1021/acsami.7b19279
10.1002/admi.201600284
10.1103/PhysRevB.68.085316
10.1002/admt.201600090
10.1063/1.3006349
10.1021/ja304198e
10.1016/j.apsusc.2019.03.090
10.1021/cm5030266
10.1007/s00216-011-5363-y
10.1007/s13391-020-00227-y
10.1016/j.synthmet.2009.07.012
10.1063/1.1968437
10.1088/1361-6641/ab2201
10.1103/PhysRevB.82.075322
10.1016/j.bios.2020.112433
10.1063/1.4917209
10.1002/adfm.200800009
10.1002/admt.201900104
10.1021/ma60044a025
10.1016/j.orgel.2015.03.005
10.1002/adma.201200088
10.1016/j.bios.2019.111844
10.1002/adfm.201503943
10.1063/1.2398798
10.1038/srep20671
10.1039/c1cp20769e
10.1002/adma.201003135
10.1021/am301793m
10.1021/acsami.8b02851
10.1002/adma.201402363
10.1002/adma.200904163
10.1039/c2jm13329f
10.1002/adfm.201502274
10.1021/acsnano.7b02521
10.1038/nature10683
10.1002/adma.200602798
10.1002/adfm.201700526
10.1002/adma.200901136
10.1021/acsomega.8b00043
10.1021/ol0167356
10.1063/1.3660779
10.1021/am9007648
10.1021/acs.chemmater.8b03904
10.1016/j.jelechem.2006.05.012
10.1002/adma.201602479
10.1002/adma.201801874
10.1021/acsami.8b21090
10.1007/s00339-008-5019-8
10.1016/S0141-3910(00)00080-X
10.1103/PhysRevB.77.165311
10.1039/C2TC00280A
10.1002/adma.201601075
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/admi.202101679
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID 10_1002_admi_202101679
ADMI202101679
Genre article
GrantInformation_xml – fundername: FPU fellowship
– fundername: UAB Materials Science PhD program
– fundername: Generalitat de Catalunya
  funderid: 2017‐SGR‐918
– fundername: Severo Ochoa” Programme for Centers of Excellence in R&D
  funderid: FUNFUTURE CEX2019‐000917‐S
– fundername: Spanish Ministry with the project
  funderid: PID2019‐111682RB‐I00
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
DPXWK
EBS
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
M~E
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAFWJ
AAMMB
AAYXX
ABJCF
ABJNI
ACCMX
ADMLS
AEFGJ
AFFHD
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
GROUPED_DOAJ
HCIFZ
KB.
M7S
PDBOC
PHGZM
PHGZT
PQGLB
PTHSS
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3579-13f3c98de9f47fe7b2db4fc012e1df144400bf0bde4332e15c2e91786a602f153
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000743184300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2196-7350
IngestDate Fri Jul 25 11:54:38 EDT 2025
Tue Nov 18 21:45:43 EST 2025
Sat Nov 29 07:24:17 EST 2025
Sat Aug 24 00:57:24 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3579-13f3c98de9f47fe7b2db4fc012e1df144400bf0bde4332e15c2e91786a602f153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1586-005X
OpenAccessLink https://onlinelibrary-wiley-com.ezproxy.unibo.it/doi/epdf/10.1002/admi.202101679
PQID 2631859296
PQPubID 2034582
PageCount 8
ParticipantIDs proquest_journals_2631859296
crossref_primary_10_1002_admi_202101679
crossref_citationtrail_10_1002_admi_202101679
wiley_primary_10_1002_admi_202101679_ADMI202101679
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2013; 1
2019; 11
2017; 46
2014; 26
2020; 16
2011; 13
2008; 77
2020; 167
2020; 11
2019; 481
1974; 7
2012; 402
2009; 159
2017; 117
2011; 110
2010; 22
2018; 9
2010; 20
2018; 3
2009; 95
2012; 134
2018; 4
2021; 119
2018; 30
2011; 23
1975; 8
2010; 2
2012; 24
2014; 7
2011; 480
2012; 22
2007; 19
2019; 4
2007; 600
2009; 21
2019; 31
2000; 69
2017; 27
2008; 18
2019; 34
2005; 86
2002; 4
2008; 93
2010; 82
2021; 13
2016; 6
2016; 1
2021; 12
2016; 3
2021
2017; 16
2006; 88
2017; 11
2015; 21
2020; 150
2003; 68
2015; 117
2016; 28
2012; 4
2018; 10
2016; 26
2006; 100
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
Yildiz O. (e_1_2_8_36_1) 2021
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
Berteau‐rainville M. (e_1_2_8_37_1) 2021; 119
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 3907
  year: 2008
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 2352
  year: 2021
  publication-title: Nat. Commun.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 480
  start-page: 504
  year: 2011
  publication-title: Nature
– volume: 402
  start-page: 1813
  year: 2012
  publication-title: Anal. Bioanal. Chem.
– volume: 4
  start-page: 6176
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 69
  start-page: 341
  year: 2000
  publication-title: Polym. Degrad. Stab.
– volume: 100
  year: 2006
  publication-title: J. Appl. Phys.
– volume: 110
  year: 2011
  publication-title: J. Appl. Phys.
– volume: 24
  start-page: 2441
  year: 2012
  publication-title: Adv. Mater.
– volume: 119
  year: 2021
  publication-title: Appl. Phys. Express
– volume: 117
  start-page: 6332
  year: 2017
  publication-title: Chem. Rev.
– volume: 600
  start-page: 131
  year: 2007
  publication-title: J. Electroanal. Chem.
– volume: 31
  start-page: 2212
  year: 2019
  publication-title: Chem. Mater.
– volume: 20
  start-page: 2330
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 93
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 28
  start-page: 7791
  year: 2016
  publication-title: Adv. Mater.
– volume: 21
  start-page: 3859
  year: 2009
  publication-title: Adv. Mater.
– volume: 150
  year: 2020
  publication-title: Biosens. Bioelectron.
– volume: 1
  start-page: 1272
  year: 2013
  publication-title: J. Mater. Chem. C
– volume: 77
  year: 2008
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 82
  year: 2010
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 19
  start-page: 2785
  year: 2007
  publication-title: Adv. Mater.
– volume: 86
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 23
  start-page: 127
  year: 2011
  publication-title: Adv. Mater.
– volume: 22
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 26
  start-page: 1737
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 95
  start-page: 139
  year: 2009
  publication-title: Appl. Phys. A: Mater. Sci. Process.
– volume: 22
  start-page: 7731
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 16
  start-page: 356
  year: 2017
  publication-title: Nat. Mater.
– volume: 22
  start-page: 2565
  year: 2010
  publication-title: Adv. Mater.
– volume: 7
  start-page: 667
  year: 1974
  publication-title: Macromolecules
– volume: 26
  start-page: 6467
  year: 2014
  publication-title: Chem. Mater.
– volume: 3
  start-page: 2329
  year: 2018
  publication-title: ACS Omega
– volume: 159
  start-page: 2365
  year: 2009
  publication-title: Synth. Met.
– year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 2145
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 4
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 13
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 11
  start-page: 5179
  year: 2017
  publication-title: ACS Nano
– volume: 2
  start-page: 511
  year: 2010
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 3223
  year: 2018
  publication-title: Nat. Commun.
– volume: 117
  year: 2015
  publication-title: J. Appl. Phys.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 7241
  year: 2014
  publication-title: Adv. Mater.
– volume: 10
  start-page: 7296
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 441
  year: 2020
  publication-title: Electron. Mater. Lett.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 28
  year: 2016
  publication-title: Adv. Mater.
– volume: 3
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 1
  year: 2016
  publication-title: Adv. Mater. Technol.
– volume: 11
  start-page: 2136
  year: 2020
  publication-title: Nat. Commun.
– volume: 167
  year: 2020
  publication-title: Biosens. Bioelectron.
– volume: 34
  year: 2019
  publication-title: Semicond. Sci. Technol.
– volume: 88
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 227
  year: 1975
  publication-title: Macromolecules
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 21
  start-page: 111
  year: 2015
  publication-title: Org. Electron.
– volume: 4
  start-page: 15
  year: 2002
  publication-title: Org. Lett.
– volume: 68
  year: 2003
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 26
  start-page: 2379
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 481
  start-page: 642
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 46
  start-page: 40
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_8_7_1
  doi: 10.1063/1.2980421
– ident: e_1_2_8_4_1
  doi: 10.1126/sciadv.aao1705
– ident: e_1_2_8_40_1
  doi: 10.1021/ma60041a023
– ident: e_1_2_8_3_1
  doi: 10.1038/nmat4785
– ident: e_1_2_8_23_1
  doi: 10.1021/acs.chemrev.6b00618
– ident: e_1_2_8_64_1
  doi: 10.1021/acsami.1c05938
– ident: e_1_2_8_68_1
  doi: 10.1038/srep39623
– ident: e_1_2_8_2_1
  doi: 10.1039/C4EE00688G
– ident: e_1_2_8_54_1
  doi: 10.1063/1.2210791
– ident: e_1_2_8_10_1
  doi: 10.1039/C6CS00509H
– ident: e_1_2_8_9_1
  doi: 10.1039/c2jm34218a
– ident: e_1_2_8_38_1
  doi: 10.1038/s41467-020-15974-7
– ident: e_1_2_8_25_1
  doi: 10.1002/adfm.201000427
– ident: e_1_2_8_67_1
  doi: 10.1038/s41467-018-05235-z
– ident: e_1_2_8_5_1
  doi: 10.1038/s41467-021-22683-2
– ident: e_1_2_8_29_1
  doi: 10.1021/acsami.7b19279
– ident: e_1_2_8_13_1
  doi: 10.1002/admi.201600284
– ident: e_1_2_8_50_1
  doi: 10.1103/PhysRevB.68.085316
– ident: e_1_2_8_33_1
  doi: 10.1002/admt.201600090
– ident: e_1_2_8_18_1
  doi: 10.1063/1.3006349
– ident: e_1_2_8_57_1
  doi: 10.1021/ja304198e
– ident: e_1_2_8_32_1
  doi: 10.1016/j.apsusc.2019.03.090
– ident: e_1_2_8_12_1
  doi: 10.1021/cm5030266
– ident: e_1_2_8_63_1
  doi: 10.1007/s00216-011-5363-y
– ident: e_1_2_8_39_1
  doi: 10.1007/s13391-020-00227-y
– ident: e_1_2_8_27_1
  doi: 10.1016/j.synthmet.2009.07.012
– ident: e_1_2_8_53_1
  doi: 10.1063/1.1968437
– ident: e_1_2_8_20_1
  doi: 10.1088/1361-6641/ab2201
– ident: e_1_2_8_48_1
  doi: 10.1103/PhysRevB.82.075322
– ident: e_1_2_8_66_1
  doi: 10.1016/j.bios.2020.112433
– ident: e_1_2_8_60_1
  doi: 10.1063/1.4917209
– volume: 119
  year: 2021
  ident: e_1_2_8_37_1
  publication-title: Appl. Phys. Express
– ident: e_1_2_8_52_1
  doi: 10.1002/adfm.200800009
– ident: e_1_2_8_22_1
  doi: 10.1002/admt.201900104
– ident: e_1_2_8_41_1
  doi: 10.1021/ma60044a025
– ident: e_1_2_8_16_1
  doi: 10.1016/j.orgel.2015.03.005
– ident: e_1_2_8_28_1
  doi: 10.1002/adma.201200088
– ident: e_1_2_8_65_1
  doi: 10.1016/j.bios.2019.111844
– ident: e_1_2_8_30_1
  doi: 10.1002/adfm.201503943
– ident: e_1_2_8_51_1
  doi: 10.1063/1.2398798
– ident: e_1_2_8_46_1
  doi: 10.1038/srep20671
– ident: e_1_2_8_61_1
  doi: 10.1039/c1cp20769e
– ident: e_1_2_8_42_1
  doi: 10.1002/adma.201003135
– ident: e_1_2_8_15_1
  doi: 10.1021/am301793m
– ident: e_1_2_8_31_1
  doi: 10.1021/acsami.8b02851
– ident: e_1_2_8_14_1
  doi: 10.1002/adma.201402363
– ident: e_1_2_8_62_1
  doi: 10.1002/adma.200904163
– ident: e_1_2_8_17_1
  doi: 10.1039/c2jm13329f
– ident: e_1_2_8_34_1
  doi: 10.1002/adfm.201502274
– ident: e_1_2_8_19_1
  doi: 10.1021/acsnano.7b02521
– ident: e_1_2_8_44_1
  doi: 10.1038/nature10683
– ident: e_1_2_8_59_1
  doi: 10.1002/adma.200602798
– ident: e_1_2_8_35_1
  doi: 10.1002/adfm.201700526
– ident: e_1_2_8_58_1
  doi: 10.1002/adma.200901136
– ident: e_1_2_8_1_1
  doi: 10.1021/acsomega.8b00043
– ident: e_1_2_8_43_1
  doi: 10.1021/ol0167356
– ident: e_1_2_8_26_1
  doi: 10.1063/1.3660779
– ident: e_1_2_8_8_1
  doi: 10.1021/am9007648
– year: 2021
  ident: e_1_2_8_36_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_8_6_1
  doi: 10.1021/acs.chemmater.8b03904
– ident: e_1_2_8_49_1
  doi: 10.1016/j.jelechem.2006.05.012
– ident: e_1_2_8_69_1
  doi: 10.1002/adma.201602479
– ident: e_1_2_8_21_1
  doi: 10.1002/adma.201801874
– ident: e_1_2_8_45_1
  doi: 10.1021/acsami.8b21090
– ident: e_1_2_8_55_1
  doi: 10.1007/s00339-008-5019-8
– ident: e_1_2_8_47_1
  doi: 10.1016/S0141-3910(00)00080-X
– ident: e_1_2_8_56_1
  doi: 10.1103/PhysRevB.77.165311
– ident: e_1_2_8_11_1
  doi: 10.1039/C2TC00280A
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.201601075
SSID ssj0001121283
Score 2.3032196
Snippet The stability of organic semiconductors (OSCs) is strongly hampered by the presence of water molecules. One approach that has been proved to lead to organic...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Field effect transistors
Fluoropolymers
Insulation
OFETs
Organic semiconductors
Performance enhancement
Polymer blends
Polymers
Polystyrene resins
printed electronics
Semiconductor devices
solution shearing, stability of transistors
Stability
Thin films
Transistors
Water chemistry
Title Organic Field‐Effect Transistors Based on Ternary Blends Including a Fluorinated Polymer for Achieving Enhanced Device Stability
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202101679
https://www.proquest.com/docview/2631859296
Volume 9
WOSCitedRecordID wos000743184300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2196-7350
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001121283
  issn: 2196-7350
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2FAhIbxFNNW9AsqFhEBr_HXqYkEUhNqIQrZWdNxjOqJccOdlM1LBDiC_gUvokv4c6M7ThSeS3YWIllOYrv8X2eOYPQC88TDk1804CyyzRcbjKDctszQh_KDWYyEfpMbTZBZrNgPg_Per3vzVqYq4zkeXB9Ha7-q6nhHBhbLp39B3O3N4UT8BmMDkcwOxz_yvB6dSUbTNTm0w2XoVYpVqFJKYNUgxMIYIkcFkSyJ1huBieZ4seCy8jWaq0LHUyytWToUZmXnhXZZslLRUwcsouUq17EOL_QJIIRl05HZq-Kb7szLh42TAPIj_UzUDoVpZCEsG3zYEk3etVNUqZqgm-10P1As09pPSeKiuWSVsW2mQ4VxGBKq_bPRoUSnep2NKAYNnfYITdQhrq8UK6cIzha3yCOFq1tPHnYAax_Y3zQerM0WaavbFntyiHUNhI20__Z-3hyfnoaR-N5dOxMVh8NuUuZnOYfOyONmFvotk28UPrR6edOV8-CVCBwGnVQ0369-1u72c-2pOkWRiqziR6g-3VJgocaSg9Rj-eP0F1FDWbVY_S1BhRWgPrx5ZuGEu5ACSso4SLHNZSwhhJuoYQp7kAJ11DCACXcQgk3UMIaSriF0hN0PhlHb94a9c4dBnM8EhqWIxwWBgkPhUsEJws7WbiCQTLErURADQ-RYyHMRcKlfB63PGbz0CKBT33TFhCEn6K9vMj5PsKQoAooABPiuMINXJdCqkWYtyCeH9CA0T4ymicas1rWXu6uksVakNuOpQXi1gJ99LK9fqUFXX555VFjoLh-v6vY9qXcANQUfh_Zymh_uEs8HE3ftd8Ofn_PQ3Rv-0Icob3Lcs2foTvs6jKtyucKaj8BRo2y9g
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+Field%E2%80%90Effect+Transistors+Based+on+Ternary+Blends+Including+a+Fluorinated+Polymer+for+Achieving+Enhanced+Device+Stability&rft.jtitle=Advanced+materials+interfaces&rft.au=Tamayo%2C+Adri%C3%A1n&rft.au=Salzillo%2C+Tommaso&rft.au=Marta+Mas%E2%80%90Torrent&rft.date=2022-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-7350&rft.volume=9&rft.issue=6&rft_id=info:doi/10.1002%2Fadmi.202101679&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon