Physiologically-Based Pharmacokinetic Predictions of the Effect of Curcumin on Metabolism of Imatinib and Bosutinib: In Vitro and In Vivo Disconnect
Purpose This study aimed to investigate the potential pharmacokinetic interactions between curcumin, imatinib and bosutinib, combining In Vitro and in silico methods. Methods In Vitro metabolism of imatinib and bosutinib were investigated in pooled human liver microsomes and recombinant CYP3A4 enzym...
Uložené v:
| Vydané v: | Pharmaceutical research Ročník 37; číslo 7; s. 128 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.07.2020
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0724-8741, 1573-904X, 1573-904X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Purpose
This study aimed to investigate the potential pharmacokinetic interactions between curcumin, imatinib and bosutinib, combining
In Vitro
and in silico methods.
Methods
In Vitro
metabolism of imatinib and bosutinib were investigated in pooled human liver microsomes and recombinant CYP3A4 enzyme in the presence and absence of curcumin and curcumin glucuronide using an LC-MS/MS assay for N-desmethyl metabolites. A physiologically-based pharmacokinetic (PBPK) model for curcumin formulated as solid lipid nanoparticles (SLN) was constructed using
In Vitro
glucuronidation kinetics and published clinical pharmacokinetic data. The potential effects of curcumin coadministration on systemic exposures of imatinib and bosutinib were predicted in silico using PBPK simulations.
Results
Curcumin demonstrated potent reversible inhibition of cytochrome P450 (CYP)3A4-mediated N-demethylation of imatinib and bosutinib and CYP2C8-mediated metabolism of imatinib with inhibitory constants (k
i,u
) of ≤1.5 μmol. L
−1
. A confirmatory
In Vitro
study with paclitaxel, the 6α-hydroxylation of which is exclusively mediated by CYP2C8, was consistent with a potent inhibition of this enzyme by curcumin. Curcumin glucuronide also inhibited both CYP enzymes
In Vitro
, albeit to a lesser extent than that of curcumin. PBPK model simulations predicted that at recommended dosing regimens of SLN curcumin
,
coadministration would result in an increase in systemic exposures of imatinib and bosutinib of up to only 10%.
Conclusion
A PBPK model for curcumin in a SLN formulation was successfully developed. Although curcumin possesses a strong
In Vitro
inhibitory activity towards CYP3A4 and CYP2C8 enzymes, its interactions with imatinib and bosutinib were unlikely to be of clinical importance due to curcumin’s poor bioavailability. |
|---|---|
| AbstractList | This study aimed to investigate the potential pharmacokinetic interactions between curcumin, imatinib and bosutinib, combining In Vitro and in silico methods. In Vitro metabolism of imatinib and bosutinib were investigated in pooled human liver microsomes and recombinant CYP3A4 enzyme in the presence and absence of curcumin and curcumin glucuronide using an LC-MS/MS assay for N-desmethyl metabolites. A physiologically-based pharmacokinetic (PBPK) model for curcumin formulated as solid lipid nanoparticles (SLN) was constructed using In Vitro glucuronidation kinetics and published clinical pharmacokinetic data. The potential effects of curcumin coadministration on systemic exposures of imatinib and bosutinib were predicted in silico using PBPK simulations. Curcumin demonstrated potent reversible inhibition of cytochrome P450 (CYP)3A4-mediated N-demethylation of imatinib and bosutinib and CYP2C8-mediated metabolism of imatinib with inhibitory constants (k.sub.i,u) of [less than or equal to]1.5 [mu]mol. L.sup.-1. A confirmatory In Vitro study with paclitaxel, the 6[alpha]-hydroxylation of which is exclusively mediated by CYP2C8, was consistent with a potent inhibition of this enzyme by curcumin. Curcumin glucuronide also inhibited both CYP enzymes In Vitro, albeit to a lesser extent than that of curcumin. PBPK model simulations predicted that at recommended dosing regimens of SLN curcumin, coadministration would result in an increase in systemic exposures of imatinib and bosutinib of up to only 10%. A PBPK model for curcumin in a SLN formulation was successfully developed. Although curcumin possesses a strong In Vitro inhibitory activity towards CYP3A4 and CYP2C8 enzymes, its interactions with imatinib and bosutinib were unlikely to be of clinical importance due to curcumin's poor bioavailability. PurposeThis study aimed to investigate the potential pharmacokinetic interactions between curcumin, imatinib and bosutinib, combining In Vitro and in silico methods.MethodsIn Vitro metabolism of imatinib and bosutinib were investigated in pooled human liver microsomes and recombinant CYP3A4 enzyme in the presence and absence of curcumin and curcumin glucuronide using an LC-MS/MS assay for N-desmethyl metabolites. A physiologically-based pharmacokinetic (PBPK) model for curcumin formulated as solid lipid nanoparticles (SLN) was constructed using In Vitro glucuronidation kinetics and published clinical pharmacokinetic data. The potential effects of curcumin coadministration on systemic exposures of imatinib and bosutinib were predicted in silico using PBPK simulations.ResultsCurcumin demonstrated potent reversible inhibition of cytochrome P450 (CYP)3A4-mediated N-demethylation of imatinib and bosutinib and CYP2C8-mediated metabolism of imatinib with inhibitory constants (ki,u) of ≤1.5 μmol. L−1. A confirmatory In Vitro study with paclitaxel, the 6α-hydroxylation of which is exclusively mediated by CYP2C8, was consistent with a potent inhibition of this enzyme by curcumin. Curcumin glucuronide also inhibited both CYP enzymes In Vitro, albeit to a lesser extent than that of curcumin. PBPK model simulations predicted that at recommended dosing regimens of SLN curcumin, coadministration would result in an increase in systemic exposures of imatinib and bosutinib of up to only 10%.ConclusionA PBPK model for curcumin in a SLN formulation was successfully developed. Although curcumin possesses a strong In Vitro inhibitory activity towards CYP3A4 and CYP2C8 enzymes, its interactions with imatinib and bosutinib were unlikely to be of clinical importance due to curcumin’s poor bioavailability. Purpose This study aimed to investigate the potential pharmacokinetic interactions between curcumin, imatinib and bosutinib, combining In Vitro and in silico methods. Methods In Vitro metabolism of imatinib and bosutinib were investigated in pooled human liver microsomes and recombinant CYP3A4 enzyme in the presence and absence of curcumin and curcumin glucuronide using an LC-MS/MS assay for N-desmethyl metabolites. A physiologically-based pharmacokinetic (PBPK) model for curcumin formulated as solid lipid nanoparticles (SLN) was constructed using In Vitro glucuronidation kinetics and published clinical pharmacokinetic data. The potential effects of curcumin coadministration on systemic exposures of imatinib and bosutinib were predicted in silico using PBPK simulations. Results Curcumin demonstrated potent reversible inhibition of cytochrome P450 (CYP)3A4-mediated N-demethylation of imatinib and bosutinib and CYP2C8-mediated metabolism of imatinib with inhibitory constants (k.sub.i,u) of [less than or equal to]1.5 [mu]mol. L.sup.-1. A confirmatory In Vitro study with paclitaxel, the 6[alpha]-hydroxylation of which is exclusively mediated by CYP2C8, was consistent with a potent inhibition of this enzyme by curcumin. Curcumin glucuronide also inhibited both CYP enzymes In Vitro, albeit to a lesser extent than that of curcumin. PBPK model simulations predicted that at recommended dosing regimens of SLN curcumin, coadministration would result in an increase in systemic exposures of imatinib and bosutinib of up to only 10%. Conclusion A PBPK model for curcumin in a SLN formulation was successfully developed. Although curcumin possesses a strong In Vitro inhibitory activity towards CYP3A4 and CYP2C8 enzymes, its interactions with imatinib and bosutinib were unlikely to be of clinical importance due to curcumin's poor bioavailability. Purpose This study aimed to investigate the potential pharmacokinetic interactions between curcumin, imatinib and bosutinib, combining In Vitro and in silico methods. Methods In Vitro metabolism of imatinib and bosutinib were investigated in pooled human liver microsomes and recombinant CYP3A4 enzyme in the presence and absence of curcumin and curcumin glucuronide using an LC-MS/MS assay for N-desmethyl metabolites. A physiologically-based pharmacokinetic (PBPK) model for curcumin formulated as solid lipid nanoparticles (SLN) was constructed using In Vitro glucuronidation kinetics and published clinical pharmacokinetic data. The potential effects of curcumin coadministration on systemic exposures of imatinib and bosutinib were predicted in silico using PBPK simulations. Results Curcumin demonstrated potent reversible inhibition of cytochrome P450 (CYP)3A4-mediated N-demethylation of imatinib and bosutinib and CYP2C8-mediated metabolism of imatinib with inhibitory constants (k i,u ) of ≤1.5 μmol. L −1 . A confirmatory In Vitro study with paclitaxel, the 6α-hydroxylation of which is exclusively mediated by CYP2C8, was consistent with a potent inhibition of this enzyme by curcumin. Curcumin glucuronide also inhibited both CYP enzymes In Vitro , albeit to a lesser extent than that of curcumin. PBPK model simulations predicted that at recommended dosing regimens of SLN curcumin , coadministration would result in an increase in systemic exposures of imatinib and bosutinib of up to only 10%. Conclusion A PBPK model for curcumin in a SLN formulation was successfully developed. Although curcumin possesses a strong In Vitro inhibitory activity towards CYP3A4 and CYP2C8 enzymes, its interactions with imatinib and bosutinib were unlikely to be of clinical importance due to curcumin’s poor bioavailability. This study aimed to investigate the potential pharmacokinetic interactions between curcumin, imatinib and bosutinib, combining In Vitro and in silico methods.PURPOSEThis study aimed to investigate the potential pharmacokinetic interactions between curcumin, imatinib and bosutinib, combining In Vitro and in silico methods.In Vitro metabolism of imatinib and bosutinib were investigated in pooled human liver microsomes and recombinant CYP3A4 enzyme in the presence and absence of curcumin and curcumin glucuronide using an LC-MS/MS assay for N-desmethyl metabolites. A physiologically-based pharmacokinetic (PBPK) model for curcumin formulated as solid lipid nanoparticles (SLN) was constructed using In Vitro glucuronidation kinetics and published clinical pharmacokinetic data. The potential effects of curcumin coadministration on systemic exposures of imatinib and bosutinib were predicted in silico using PBPK simulations.METHODSIn Vitro metabolism of imatinib and bosutinib were investigated in pooled human liver microsomes and recombinant CYP3A4 enzyme in the presence and absence of curcumin and curcumin glucuronide using an LC-MS/MS assay for N-desmethyl metabolites. A physiologically-based pharmacokinetic (PBPK) model for curcumin formulated as solid lipid nanoparticles (SLN) was constructed using In Vitro glucuronidation kinetics and published clinical pharmacokinetic data. The potential effects of curcumin coadministration on systemic exposures of imatinib and bosutinib were predicted in silico using PBPK simulations.Curcumin demonstrated potent reversible inhibition of cytochrome P450 (CYP)3A4-mediated N-demethylation of imatinib and bosutinib and CYP2C8-mediated metabolism of imatinib with inhibitory constants (ki,u) of ≤1.5 μmol. L-1. A confirmatory In Vitro study with paclitaxel, the 6α-hydroxylation of which is exclusively mediated by CYP2C8, was consistent with a potent inhibition of this enzyme by curcumin. Curcumin glucuronide also inhibited both CYP enzymes In Vitro, albeit to a lesser extent than that of curcumin. PBPK model simulations predicted that at recommended dosing regimens of SLN curcumin, coadministration would result in an increase in systemic exposures of imatinib and bosutinib of up to only 10%.RESULTSCurcumin demonstrated potent reversible inhibition of cytochrome P450 (CYP)3A4-mediated N-demethylation of imatinib and bosutinib and CYP2C8-mediated metabolism of imatinib with inhibitory constants (ki,u) of ≤1.5 μmol. L-1. A confirmatory In Vitro study with paclitaxel, the 6α-hydroxylation of which is exclusively mediated by CYP2C8, was consistent with a potent inhibition of this enzyme by curcumin. Curcumin glucuronide also inhibited both CYP enzymes In Vitro, albeit to a lesser extent than that of curcumin. PBPK model simulations predicted that at recommended dosing regimens of SLN curcumin, coadministration would result in an increase in systemic exposures of imatinib and bosutinib of up to only 10%.A PBPK model for curcumin in a SLN formulation was successfully developed. Although curcumin possesses a strong In Vitro inhibitory activity towards CYP3A4 and CYP2C8 enzymes, its interactions with imatinib and bosutinib were unlikely to be of clinical importance due to curcumin's poor bioavailability.CONCLUSIONA PBPK model for curcumin in a SLN formulation was successfully developed. Although curcumin possesses a strong In Vitro inhibitory activity towards CYP3A4 and CYP2C8 enzymes, its interactions with imatinib and bosutinib were unlikely to be of clinical importance due to curcumin's poor bioavailability. This study aimed to investigate the potential pharmacokinetic interactions between curcumin, imatinib and bosutinib, combining In Vitro and in silico methods. In Vitro metabolism of imatinib and bosutinib were investigated in pooled human liver microsomes and recombinant CYP3A4 enzyme in the presence and absence of curcumin and curcumin glucuronide using an LC-MS/MS assay for N-desmethyl metabolites. A physiologically-based pharmacokinetic (PBPK) model for curcumin formulated as solid lipid nanoparticles (SLN) was constructed using In Vitro glucuronidation kinetics and published clinical pharmacokinetic data. The potential effects of curcumin coadministration on systemic exposures of imatinib and bosutinib were predicted in silico using PBPK simulations. Curcumin demonstrated potent reversible inhibition of cytochrome P450 (CYP)3A4-mediated N-demethylation of imatinib and bosutinib and CYP2C8-mediated metabolism of imatinib with inhibitory constants (k ) of ≤1.5 μmol. L . A confirmatory In Vitro study with paclitaxel, the 6α-hydroxylation of which is exclusively mediated by CYP2C8, was consistent with a potent inhibition of this enzyme by curcumin. Curcumin glucuronide also inhibited both CYP enzymes In Vitro, albeit to a lesser extent than that of curcumin. PBPK model simulations predicted that at recommended dosing regimens of SLN curcumin, coadministration would result in an increase in systemic exposures of imatinib and bosutinib of up to only 10%. A PBPK model for curcumin in a SLN formulation was successfully developed. Although curcumin possesses a strong In Vitro inhibitory activity towards CYP3A4 and CYP2C8 enzymes, its interactions with imatinib and bosutinib were unlikely to be of clinical importance due to curcumin's poor bioavailability. |
| ArticleNumber | 128 |
| Audience | Academic |
| Author | Boddy, Alan V McLachlan, Andrew J Adiwidjaja, Jeffry |
| Author_xml | – sequence: 1 givenname: Jeffry surname: Adiwidjaja fullname: Adiwidjaja, Jeffry email: andrew.mclachlan@sydney.edu.au organization: Sydney Pharmacy School, The University of Sydney – sequence: 2 givenname: Alan V surname: Boddy fullname: Boddy, Alan V organization: School of Pharmacy and Medical Sciences, University of South Australia, University of South Australia Cancer Research Institute, University of South Australia – sequence: 3 givenname: Andrew J surname: McLachlan fullname: McLachlan, Andrew J organization: Sydney Pharmacy School, The University of Sydney |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32529309$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1u1DAQxy1URLeFF-CALHHhkuLPtcOtXQqsVMQeAHGzHMfedUnsYidI-x48ME62UFGhyrKsGf_-M6OZOQFHIQYLwHOMzjBC4nXGGNW8QgSVKymr5COwwFzQqkbs2xFYIEGKUzB8DE5yvkYISVyzJ-CYEk5qiuoF-LXZ7bOPXdx6o7tuX13obFu42enUaxO_-2AHb-Am2dabwceQYXRw2Fl46Zw1w2StxmTG3gcYA_xoB93Ezud--ln3evDBN1CHFl7EPM7WG7gO8KsfUpz9s_Ezwrc-mxhCCfoUPHa6y_bZ7XsKvry7_Lz6UF19er9enV9VhnIhK4cIkzXjRrTYuZYbqi2hTNdcCkQ4a5YNl9ShthUYGU1c07RCcoHEsiFUNPQUvDrEvUnxx2jzoPpSg-06HWwcsyIMk7pGguKCvryHXscxhVLdTBEi-ZLcUVvdWeWDi0PSZgqqzgUTjNaUoUKd_Ycqp7W9Ly2wzhf_P4IXt8nHpretukm-12mv_oyxAOQAmBRzTtb9RTBS066ow66ositq3hUli0jeExk_6GnGpRzfPSylB2kuecLWprtuPKD6DYiz0S0 |
| CitedBy_id | crossref_primary_10_3389_fchem_2023_1191075 crossref_primary_10_3390_molecules27248670 crossref_primary_10_1016_j_biopha_2020_110809 crossref_primary_10_1016_j_bmc_2023_117339 crossref_primary_10_1124_pharmrev_120_000106 crossref_primary_10_1007_s00280_023_04566_z crossref_primary_10_1007_s40495_025_00427_w crossref_primary_10_1016_j_critrevonc_2024_104258 crossref_primary_10_1016_j_heliyon_2024_e35070 crossref_primary_10_1016_j_jpba_2024_116383 crossref_primary_10_1016_j_molliq_2022_120596 crossref_primary_10_1002_admi_202400600 crossref_primary_10_1080_08982104_2022_2108441 crossref_primary_10_3390_antiox14030351 crossref_primary_10_1007_s00228_021_03266_y crossref_primary_10_1016_j_colsurfb_2022_112763 |
| Cites_doi | 10.1111/j.1476-5381.2012.01887.x 10.1007/s11095-006-9210-3 10.1111/j.1365-2125.2010.03810.x 10.1007/s00280-018-3654-0 10.1124/dmd.112.048017 10.1002/mnfr.200600283 10.1002/bdd.2062 10.1586/14737175.2015.1044981 10.1002/lt.20519 10.1124/dmd.108.021311 10.1038/psp.2013.69 10.2174/1389200033489361 10.1200/JCO.2017.74.7162 10.1080/17425255.2017.1360279 10.1124/dmd.114.062174 10.1016/j.jchromb.2012.09.007 10.2147/IJN.S132434 10.3109/00498257809069589 10.3109/00498254.2012.697590 10.1124/dmd.119.089656 10.1016/j.ejmech.2018.12.016 10.1007/s00280-018-3730-5 10.1016/j.xphs.2018.10.033 10.4103/0976-0105.177703 10.1007/s11745-999-0453-x 10.1208/s12248-009-9099-y 10.1038/clpt.2013.170 10.5414/CP202076 10.1021/mp500330y 10.1016/j.fct.2011.05.001 10.1021/acs.jmedchem.6b00975 10.1016/B978-0-12-800173-8.00003-9 10.1039/c3fo60180c 10.1124/dmd.114.059451 10.1177/0269881114552744 10.1124/dmd.118.081273 10.3390/cancers11030403 10.1586/ecp.13.4 10.1007/s40262-018-0681-2 10.1016/j.yrtph.2016.01.004 10.1111/j.1365-2125.2011.03911.x 10.1093/ecam/nem045 10.1111/j.1365-2125.2010.03799.x 10.1080/00498254.2016.1208854 10.1007/s00228-011-1001-z 10.1186/2193-9616-1-9 10.1002/bdd.2049 10.1007/s40262-018-0635-8 10.1158/1055-9965.EPI-07-2693 10.1111/j.1365-2125.2012.04364.x 10.1007/s40262-019-00736-6 10.1016/S0006-2952(02)01224-8 10.1111/jphp.12820 10.3390/pharmaceutics6010137 10.1021/jf9024807 10.1124/dmd.116.074450 10.1208/s12249-019-1364-5 10.1124/dmd.110.037036 10.1038/nrd4608 10.1002/cam4.627 10.2174/138920010794328913 10.1021/bi0496844 10.1124/dmd.108.026252 10.1038/clpt.2013.187 10.1124/dmd.115.066597 10.1016/0163-7258(81)90056-5 10.2147/JIR.S205390 10.1016/j.pharmthera.2012.12.007 10.1056/NEJMoa1609324 10.1021/acs.molpharmaceut.8b01246 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 COPYRIGHT 2020 Springer Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: COPYRIGHT 2020 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7TK 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
| DOI | 10.1007/s11095-020-02834-8 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central ProQuest One Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Nursing & Allied Health Premium Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest One Academic Middle East (New) MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7RV name: Nursing & Allied Health Database url: https://search.proquest.com/nahs sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1573-904X |
| ExternalDocumentID | A747439340 32529309 10_1007_s11095_020_02834_8 |
| Genre | Journal Article |
| GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7RV 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BKEYQ BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IHR IJ- IKXTQ IMOTQ INH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L7B LAK LLZTM LSO M1P M4Y MA- MK0 N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 WOW YCJ YLTOR Z45 Z5O Z7S Z7U Z7V Z7W Z7X Z81 Z82 Z83 Z84 Z87 Z88 Z8N Z8O Z8P Z8Q Z8R Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY CGR CUY CVF ECM EIF NPM 7TK 7XB 8FK K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO |
| ID | FETCH-LOGICAL-c3578-f0248945c7d1ffd5c3ae234a95870254b6b583f0dd710ca2fbbd7857076b237b3 |
| IEDL.DBID | 7X7 |
| ISSN | 0724-8741 1573-904X |
| IngestDate | Fri Sep 05 08:33:42 EDT 2025 Tue Nov 04 22:29:35 EST 2025 Sat Nov 29 13:01:53 EST 2025 Sat Nov 29 10:11:09 EST 2025 Wed Feb 19 02:29:41 EST 2025 Tue Nov 18 22:22:14 EST 2025 Sat Nov 29 05:59:38 EST 2025 Fri Feb 21 02:25:02 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | physiologically-based pharmacokinetic (PBPK) imatinib modelling and simulation natural product-drug interactions bosutinib curcumin |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3578-f0248945c7d1ffd5c3ae234a95870254b6b583f0dd710ca2fbbd7857076b237b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 32529309 |
| PQID | 2412228562 |
| PQPubID | 37334 |
| ParticipantIDs | proquest_miscellaneous_2412990731 proquest_journals_2412228562 gale_infotracmisc_A747439340 gale_infotracacademiconefile_A747439340 pubmed_primary_32529309 crossref_primary_10_1007_s11095_020_02834_8 crossref_citationtrail_10_1007_s11095_020_02834_8 springer_journals_10_1007_s11095_020_02834_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20200700 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 7 year: 2020 text: 20200700 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationSubtitle | An Official Journal of the American Association of Pharmaceutical Scientists |
| PublicationTitle | Pharmaceutical research |
| PublicationTitleAbbrev | Pharm Res |
| PublicationTitleAlternate | Pharm Res |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | Rodgers, Rowland (CR34) 2007; 24 Kerdpin, Elliot, Boye, Birkett, Yoovathaworn, Miners (CR30) 2004; 43 Filppula, Neuvonen, Laitila, Neuvonen, Backman (CR18) 2013; 41 Pulla Reddy, Sudharshan, Appu Rao, Lokesh (CR33) 1999; 34 Darwich, Neuhoff, Jamei, Rostami-Hodjegan (CR35) 2010; 11 Fleischer, Chang, Chiang, Chang, Hsieh, Yen (CR3) 2016; 5 Cox, Pipingas, Scholey (CR70) 2015; 29 Gupte, Giramkar, Harke, Kulkarni, Deshmukh, Hingorani, Mahajan, Bhalerao (CR71) 2019; 12 Haupt, Kazmi, Ogilvie, Buckley, Smith, Leatherman, Paris, Parkinson, Parkinson (CR21) 2015; 43 Volak, Hanley, Masse, Hazarika, Harmatz, Badmaev, Majeed, Greenblatt, Court (CR10) 2013; 75 Hatley, Jones, Galetin, Rostami-Hodjegan (CR50) 2017; 38 Kennedy, Wang, Wu (CR12) 2008; 5 Adiwidjaja, McLachlan, Boddy (CR6) 2017; 13 Arellano, Gandia, Lafont, Jongejan, Chatelut (CR19) 2012; 907 Drozdzik, Groer, Penski, Lapczuk, Ostrowski, Lai (CR38) 2014; 11 Hsueh, Hsu, Pan, Zhao (CR13) 2018; 57 Lestari, Indrayanto (CR24) 2014; 39 Roe, Paine, Gurley, Brouwer, Jordan, Griffiths (CR4) 2016; 76 Mach, Chen, Mosley, Kurzrock, Smith (CR62) 2010; 30 Vareed, Kakarala, Ruffin, Crowell, Normolle, Djuric, Brenner (CR26) 2008; 17 Pan, Huang, Lin (CR41) 1999; 27 Nelson, Dahlin, Bisson, Graham, Pauli, Walters (CR55) 2017; 60 Hochhaus, Larson, Guilhot, Radich, Branford, Hughes, Baccarani, Deininger, Cervantes, Fujihara, Ortmann, Menssen, Kantarjian, O'Brien, Druker (CR1) 2017; 376 Zanger, Schwab (CR47) 2013; 138 He, Mo, Li, Tan, Chen, Ouyang (CR74) 2012; 42 Adiwidjaja, Boddy, McLachlan (CR16) 2019; 58 Greil, Greil-Ressler, Weiss, Schonlieb, Magnes, Radl (CR54) 2018; 82 Ireson, Jones, Orr, Coughtrie, Boocock, Williams (CR42) 2002; 11 Feng, Wei, Lee, Zhao (CR76) 2017; 12 Cheng, Li, Wang, Lin, Poiani, Wassef, Hudlikar, Ondar, Brunetti, Kong (CR56) 2019; 16 CR40 Bolger, Licollari, Tan, Greil, Vcelar, Greil-Ressler, Weiss, Schönlieb, Magnes, Radl, Majeed, Sordillo (CR44) 2019; 83 Trevaskis, Kaminskas, Porter (CR75) 2015; 14 Gufford, Chen, Lazarus, Graf, Oberlies, Paine (CR53) 2014; 42 Salehi, Stojanovic-Radic, Matejic, Sharifi-Rad, Anil Kumar, Martins (CR5) 2019; 163 Rowland-Yeo, Jamei, Rostami-Hodjegan (CR60) 2013; 6 Gota, Maru, Soni, Gandhi, Kochar, Agarwal (CR20) 2010; 58 Couto, Al-Majdoub, Gibson, Davies, Achour, Harwood (CR37) 2020; 48 Hu, Maiti, Ma, Zuo, Jones, Cole, Frautschy (CR69) 2015; 15 Dadhaniya, Patel, Muchhara, Bhadja, Mathuria, Vachhani, Soni (CR72) 2011; 49 Kusuhara, Furuie, Inano, Sunagawa, Yamada, Wu, Fukizawa, Morimoto, Ieiri, Morishita, Sumita, Mayahara, Fujita, Maeda, Sugiyama (CR8) 2012; 166 Hoehle, Pfeiffer, Metzler (CR43) 2007; 51 Lee, O'Connor, Ritchie, Galetin, Cook, Ragueneau-Majlessi (CR9) 2015; 43 Zeng, Cai, Zeng, Chen, Zhong, Zhuo, Gan, Huang, Zhao, Yao, Huang, Zhang, Sun, Chen (CR65) 2017; 38 CR17 CR59 CR57 Gao, Chen, Luan, Zou, Piao, Cheng (CR66) 2019; 20 Adiwidjaja, Boddy, McLachlan (CR51) 1672; 2020 Cortes, Gambacorti-Passerini, Deininger, Mauro, Chuah, Kim, Dyagil, Glushko, Milojkovic, le Coutre, Garcia-Gutierrez, Reilly, Jeynes-Ellis, Leip, Bardy-Bouxin, Hochhaus, Brümmendorf (CR2) 2018; 36 CR11 Guri, Gulseren, Corredig (CR25) 2013; 4 Ait-Oudhia, Mager, Straubinger (CR77) 2014; 6 Jamei, Marciniak, Edwards, Wragg, Feng, Barnett, Rostami-Hodjegan (CR32) 2013; 1 Nair, Jacob (CR73) 2016; 7 Ono, Hsyu, Abbas, Loi, Yamazaki (CR52) 2017; 45 Holder, Plummer, Ryan (CR39) 1978; 8 Liu, Ramirez, Ratain (CR63) 2011; 71 Jamei, Turner, Yang, Neuhoff, Polak, Rostami-Hodjegan, Tucker (CR36) 2009; 11 Storka, Vcelar, Klickovic, Gouya, Weisshaar, Aschauer, Bolger, Helson, Wolzt (CR45) 2015; 53 Kim, Tan, Jin, Park, Hayes, Demirhan, Schran, Wang (CR64) 2011; 71 CR29 CR28 Badee, Fowler, de Wildt, Collier, Schmidt, Parrott (CR68) 2019; 58 Houston (CR46) 1981; 15 Anuchapreeda, Leechanachai, Smith, Ambudkar, Limtrakul (CR27) 2002; 64 CR23 Johnson, Tucker, Tanner, Rostami-Hodjegan (CR49) 2005; 11 CR67 Johnson, Gonzalez-Perez, Tian, Lin, Unadkat, Rettie (CR7) 2018; 46 Turner (CR22) 2006 Brantley, Gufford, Dua, Fediuk, Graf, Scarlett (CR15) 2014; 3 Barter, Chowdry, Harlow, Snawder, Lipscomb, Rostami-Hodjegan (CR48) 2008; 36 Guest, Rowland-Yeo, Rostami-Hodjegan, Tucker, Houston, Galetin (CR58) 2011; 71 CR61 Miners, Bowalgaha, Elliot, Baranczewski, Knights (CR31) 2011; 39 Grimstein, Yang, Zhang, Grillo, Huang, Zineh, Wang (CR14) 2019; 108 A Storka (2834_CR45) 2015; 53 Y Gao (2834_CR66) 2019; 20 AM Filppula (2834_CR18) 2013; 41 M Jamei (2834_CR36) 2009; 11 GM Holder (2834_CR39) 1978; 8 M Drozdzik (2834_CR38) 2014; 11 OJ Hatley (2834_CR50) 2017; 38 SJ Brantley (2834_CR15) 2014; 3 N Couto (2834_CR37) 2020; 48 LP Volak (2834_CR10) 2013; 75 JB Houston (2834_CR46) 1981; 15 C Ono (2834_CR52) 2017; 45 2834_CR61 C Arellano (2834_CR19) 2012; 907 CA Lee (2834_CR9) 2015; 43 LJ Haupt (2834_CR21) 2015; 43 J Adiwidjaja (2834_CR6) 2017; 13 H Kusuhara (2834_CR8) 2012; 166 EJ Johnson (2834_CR7) 2018; 46 M Grimstein (2834_CR14) 2019; 108 2834_CR23 2834_CR67 A Hochhaus (2834_CR1) 2017; 376 2834_CR29 2834_CR28 X Zeng (2834_CR65) 2017; 38 JE Cortes (2834_CR2) 2018; 36 J Adiwidjaja (2834_CR51) 1672; 2020 JO Miners (2834_CR31) 2011; 39 UM Zanger (2834_CR47) 2013; 138 S Hu (2834_CR69) 2015; 15 TN Johnson (2834_CR49) 2005; 11 J Kennedy (2834_CR12) 2008; 5 CH Hsueh (2834_CR13) 2018; 57 VS Gota (2834_CR20) 2010; 58 KM Nelson (2834_CR55) 2017; 60 CR Ireson (2834_CR42) 2002; 11 CM Mach (2834_CR62) 2010; 30 B Salehi (2834_CR5) 2019; 163 SI Hoehle (2834_CR43) 2007; 51 MH Pan (2834_CR41) 1999; 27 T Rodgers (2834_CR34) 2007; 24 AS Darwich (2834_CR35) 2010; 11 SK Vareed (2834_CR26) 2008; 17 X He (2834_CR74) 2012; 42 EJ Guest (2834_CR58) 2011; 71 AL Roe (2834_CR4) 2016; 76 AC Pulla Reddy (2834_CR33) 1999; 34 GT Bolger (2834_CR44) 2019; 83 Y Liu (2834_CR63) 2011; 71 T Feng (2834_CR76) 2017; 12 2834_CR40 K Rowland-Yeo (2834_CR60) 2013; 6 DW Kim (2834_CR64) 2011; 71 T Fleischer (2834_CR3) 2016; 5 DB Turner (2834_CR22) 2006 M Jamei (2834_CR32) 2013; 1 NL Trevaskis (2834_CR75) 2015; 14 A Guri (2834_CR25) 2013; 4 BT Gufford (2834_CR53) 2014; 42 J Adiwidjaja (2834_CR16) 2019; 58 O Kerdpin (2834_CR30) 2004; 43 P Dadhaniya (2834_CR72) 2011; 49 S Anuchapreeda (2834_CR27) 2002; 64 ZE Barter (2834_CR48) 2008; 36 R Greil (2834_CR54) 2018; 82 ML Lestari (2834_CR24) 2014; 39 PA Gupte (2834_CR71) 2019; 12 J Badee (2834_CR68) 2019; 58 2834_CR11 D Cheng (2834_CR56) 2019; 16 AB Nair (2834_CR73) 2016; 7 2834_CR59 2834_CR57 S Ait-Oudhia (2834_CR77) 2014; 6 2834_CR17 KH Cox (2834_CR70) 2015; 29 |
| References_xml | – volume: 53 start-page: 54 issue: 1 year: 2015 end-page: 65 ident: CR45 article-title: Safety, tolerability and pharmacokinetics of liposomal curcumin in healthy humans publication-title: Int J Clin Pharmacol Ther – volume: 75 start-page: 450 issue: 2 year: 2013 end-page: 462 ident: CR10 article-title: Effect of a herbal extract containing curcumin and piperine on midazolam, flurbiprofen and paracetamol (acetaminophen) pharmacokinetics in healthy volunteers publication-title: Br J Clin Pharmacol – volume: 41 start-page: 50 issue: 1 year: 2013 end-page: 59 ident: CR18 article-title: Autoinhibition of CYP3A4 leads to important role of CYP2C8 in imatinib metabolism: variability in CYP2C8 activity may alter plasma concentrations and response publication-title: Drug Metab Dispos – volume: 12 start-page: 145 year: 2019 end-page: 152 ident: CR71 article-title: Evaluation of the efficacy and safety of capsule Longvida® optimized curcumin (solid lipid curcumin particles) in knee osteoarthritis: a pilot clinical study publication-title: J Inflamm Res – volume: 48 start-page: 245 issue: 4 year: 2020 end-page: 254 ident: CR37 article-title: Quantitative proteomics of clinically relevant drug-metabolizing enzymes and drug transporters and their intercorrelations in the human small intestine publication-title: Drug Metab Dispos – volume: 39 start-page: 644 issue: 4 year: 2011 end-page: 652 ident: CR31 article-title: Characterization of niflumic acid as a selective inhibitor of human liver microsomal UDP-glucuronosyltransferase 1A9: application to the reaction phenotyping of acetaminophen glucuronidation publication-title: Drug Metab Dispos – volume: 30 start-page: 811 issue: 3 year: 2010 end-page: 814 ident: CR62 article-title: Evaluation of liposomal curcumin cytochrome P450 metabolism publication-title: Anticancer Res – volume: 43 start-page: 1744 issue: 11 year: 2015 end-page: 1750 ident: CR21 article-title: The reliability of estimating ki values for direct, reversible inhibition of cytochrome P450 enzymes from corresponding IC50 values: a retrospective analysis of 343 experiments publication-title: Drug Metab Dispos – volume: 15 start-page: 629 issue: 6 year: 2015 end-page: 637 ident: CR69 article-title: Clinical development of curcumin in neurodegenerative disease publication-title: Expert Rev Neurother – volume: 27 start-page: 486 issue: 4 year: 1999 end-page: 494 ident: CR41 article-title: Biotransformation of curcumin through reduction and glucuronidation in mice publication-title: Drug Metab Dispos – ident: CR29 – volume: 83 start-page: 265 issue: 2 year: 2019 end-page: 275 ident: CR44 article-title: Pharmacokinetics of liposomal curcumin (Lipocurc) infusion: effect of co-medication in cancer patients and comparison with healthy individuals publication-title: Cancer Chemother Pharmacol – ident: CR61 – volume: 38 start-page: 3 issue: 1 year: 2017 end-page: 19 ident: CR65 article-title: Selective reduction in the expression of UGTs and SULTs, a novel mechanism by which piperine enhances the bioavailability of curcumin in rat publication-title: Biopharm Drug Dispos – volume: 42 start-page: 1248 issue: 12 year: 2012 end-page: 1254 ident: CR74 article-title: Effects of curcumin on the pharmacokinetics of talinolol in human with polymorphism publication-title: Xenobiotica. – year: 2006 ident: CR22 publication-title: Rostami-Hodjegan A – volume: 71 start-page: 72 issue: 1 year: 2011 end-page: 87 ident: CR58 article-title: Assessment of algorithms for predicting drug-drug interactions via inhibition mechanisms: comparison of dynamic and static models publication-title: Br J Clin Pharmacol – volume: 14 start-page: 781 issue: 11 year: 2015 end-page: 803 ident: CR75 article-title: From sewer to saviour - targeting the lymphatic system to promote drug exposure and activity publication-title: Nat Rev Drug Discov – volume: 60 start-page: 1620 issue: 5 year: 2017 end-page: 1637 ident: CR55 article-title: The essential medicinal chemistry of curcumin publication-title: J Med Chem – volume: 76 start-page: 1 year: 2016 end-page: 6 ident: CR4 article-title: Assessing natural product-drug interactions: an end-to-end safety framework publication-title: Regul Toxicol Pharmacol – volume: 58 start-page: 189 issue: 2 year: 2019 end-page: 211 ident: CR68 article-title: The ontogeny of UDP-glucuronosyltransferase enzymes, recommendations for future profiling studies and application through physiologically based pharmacokinetic modelling publication-title: Clin Pharmacokinet – volume: 907 start-page: 94 year: 2012 end-page: 100 ident: CR19 article-title: Determination of unbound fraction of imatinib and N-desmethyl imatinib, validation of an UPLC-MS/MS assay and ultrafiltration method publication-title: J Chromatogr B Analyt Technol Biomed Life Sci – volume: 5 start-page: 640 issue: 4 year: 2016 end-page: 648 ident: CR3 article-title: Adjunctive Chinese herbal medicine therapy improves survival of patients with chronic myeloid leukemia: a nationwide population-based cohort study publication-title: Cancer Med – ident: CR67 – volume: 45 start-page: 390 issue: 4 year: 2017 end-page: 398 ident: CR52 article-title: Application of physiologically based pharmacokinetic modeling to the understanding of bosutinib pharmacokinetics: prediction of drug-drug and drug-disease interactions publication-title: Drug Metab Dispos – volume: 11 start-page: 716 issue: 9 year: 2010 end-page: 729 ident: CR35 article-title: Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the "advanced dissolution, absorption, metabolism (ADAM)" model publication-title: Curr Drug Metab – volume: 51 start-page: 932 issue: 8 year: 2007 end-page: 938 ident: CR43 article-title: Glucuronidation of curcuminoids by human microsomal and recombinant UDP-glucuronosyltransferases publication-title: Mol Nutr Food Res – volume: 15 start-page: 521 issue: 3 year: 1981 end-page: 552 ident: CR46 article-title: Drug metabolite kinetics publication-title: Pharmacol Ther – volume: 58 start-page: 911 issue: 7 year: 2019 end-page: 926 ident: CR16 article-title: Physiologically based pharmacokinetic modelling of hyperforin to predict drug interactions with St John's wort publication-title: Clin Pharmacokinet – volume: 11 start-page: 225 issue: 2 year: 2009 end-page: 237 ident: CR36 article-title: Population-based mechanistic prediction of oral drug absorption publication-title: AAPS J – ident: CR11 – ident: CR57 – volume: 82 start-page: 695 issue: 4 year: 2018 end-page: 706 ident: CR54 article-title: A phase 1 dose-escalation study on the safety, tolerability and activity of liposomal curcumin (Lipocurc™) in patients with locally advanced or metastatic cancer publication-title: Cancer Chemother Pharmacol – volume: 166 start-page: 1793 issue: 6 year: 2012 end-page: 1803 ident: CR8 article-title: Pharmacokinetic interaction study of sulphasalazine in healthy subjects and the impact of curcumin as an inhibitor of BCRP publication-title: Br J Pharmacol – volume: 6 start-page: 143 issue: 2 year: 2013 end-page: 157 ident: CR60 article-title: Predicting drug-drug interactions: application of physiologically based pharmacokinetic models under a systems biology approach publication-title: Expert Rev Clin Pharmacol – volume: 29 start-page: 642 issue: 5 year: 2015 end-page: 651 ident: CR70 article-title: Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population publication-title: J Psychopharmacol – volume: 57 start-page: 1337 issue: 10 year: 2018 end-page: 1346 ident: CR13 article-title: Predictive performance of physiologically-based pharmacokinetic models in predicting drug-drug interactions involving enzyme modulation publication-title: Clin Pharmacokinet – volume: 36 start-page: 231 issue: 3 year: 2018 end-page: 237 ident: CR2 article-title: Bosutinib imatinib for newly diagnosed chronic myeloid leukemia: results from the randomized BFORE trial publication-title: J Clin Oncol – volume: 4 start-page: 1410 issue: 9 year: 2013 end-page: 1419 ident: CR25 article-title: Utilization of solid lipid nanoparticles for enhanced delivery of curcumin in cocultures of HT29-MTX and Caco-2 cells publication-title: Food Funct – volume: 376 start-page: 917 issue: 10 year: 2017 end-page: 927 ident: CR1 article-title: Long-term outcomes of imatinib treatment for chronic myeloid leukemia publication-title: N Engl J Med – volume: 64 start-page: 573 issue: 4 year: 2002 end-page: 582 ident: CR27 article-title: Modulation of P-glycoprotein expression and function by curcumin in multidrug-resistant human KB cells publication-title: Biochem Pharmacol – volume: 17 start-page: 1411 issue: 6 year: 2008 end-page: 1417 ident: CR26 article-title: Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects publication-title: Cancer Epidemiol Biomark Prev – volume: 1 start-page: 9 year: 2013 ident: CR32 article-title: The Simcyp population based simulator: architecture, implementation, and quality assurance publication-title: In Silico Pharmacol – volume: 34 start-page: 1025 issue: 10 year: 1999 end-page: 1029 ident: CR33 article-title: Interaction of curcumin with human serum albumin--a spectroscopic study publication-title: Lipids. – volume: 13 start-page: 953 issue: 9 year: 2017 end-page: 972 ident: CR6 article-title: Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions publication-title: Expert Opin Drug Metab Toxicol – volume: 38 start-page: 155 issue: 2 year: 2017 end-page: 160 ident: CR50 article-title: Quantifying gut wall metabolism: methodology matters publication-title: Biopharm Drug Dispos – volume: 138 start-page: 103 issue: 1 year: 2013 end-page: 141 ident: CR47 article-title: Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation publication-title: Pharmacol Ther – volume: 24 start-page: 918 issue: 5 year: 2007 end-page: 933 ident: CR34 article-title: Mechanistic approaches to volume of distribution predictions: understanding the processes publication-title: Pharm Res – volume: 11 start-page: 105 issue: 1 year: 2002 end-page: 111 ident: CR42 article-title: Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine publication-title: Cancer Epidemiol Biomark Prev – volume: 46 start-page: 1046 issue: 7 year: 2018 end-page: 1052 ident: CR7 article-title: Selection of priority natural products for evaluation as potential precipitants of natural product-drug interactions: a NAPDI center recommended approach publication-title: Drug Metab Dispos – volume: 71 start-page: 917 issue: 6 year: 2011 end-page: 920 ident: CR63 article-title: Inhibition of paracetamol glucuronidation by tyrosine kinase inhibitors publication-title: Br J Clin Pharmacol – volume: 43 start-page: 490 issue: 4 year: 2015 end-page: 509 ident: CR9 article-title: Breast cancer resistance protein (ABCG2) in clinical pharmacokinetics and drug interactions: practical recommendations for clinical victim and perpetrator drug-drug interaction study design publication-title: Drug Metab Dispos – volume: 6 start-page: 137 issue: 1 year: 2014 end-page: 174 ident: CR77 article-title: Application of pharmacokinetic and pharmacodynamic analysis to the development of liposomal formulations for oncology publication-title: Pharmaceutics. – ident: CR40 – volume: 7 start-page: 27 issue: 2 year: 2016 end-page: 31 ident: CR73 article-title: A simple practice guide for dose conversion between animals and human publication-title: J Basic Clin Pharm – volume: 108 start-page: 21 issue: 1 year: 2019 end-page: 25 ident: CR14 article-title: Physiologically based pharmacokinetic modeling in regulatory science: an update from the U.S. Food and Drug Administration's Office of Clinical Pharmacology publication-title: J Pharm Sci – volume: 163 start-page: 527 year: 2019 end-page: 545 ident: CR5 article-title: The therapeutic potential of curcumin: a review of clinical trials publication-title: Eur J Med Chem – ident: CR23 – volume: 11 start-page: 3547 issue: 10 year: 2014 end-page: 3555 ident: CR38 article-title: Protein abundance of clinically relevant multidrug transporters along the entire length of the human intestine publication-title: Mol Pharm – volume: 71 start-page: 199 issue: 2 year: 2011 end-page: 206 ident: CR64 article-title: Effects of imatinib mesylate on the pharmacokinetics of paracetamol (acetaminophen) in Korean patients with chronic myelogenous leukaemia publication-title: Br J Clin Pharmacol – volume: 20 start-page: 150 issue: 4 year: 2019 ident: CR66 article-title: Improved oral absorption of poorly soluble curcumin via the concomitant use of borneol publication-title: AAPS PharmSciTech – volume: 39 start-page: 113 year: 2014 end-page: 204 ident: CR24 article-title: Curcumin publication-title: Profiles Drug Subst Excip Relat Methodol – volume: 49 start-page: 1834 issue: 8 year: 2011 end-page: 1842 ident: CR72 article-title: Safety assessment of a solid lipid curcumin particle preparation: acute and subchronic toxicity studies publication-title: Food Chem Toxicol – volume: 8 start-page: 761 issue: 12 year: 1978 end-page: 768 ident: CR39 article-title: The metabolism and excretion of curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) in the rat publication-title: Xenobiotica. – volume: 36 start-page: 2405 issue: 12 year: 2008 end-page: 2409 ident: CR48 article-title: Covariation of human microsomal protein per gram of liver with age: absence of influence of operator and sample storage may justify interlaboratory data pooling publication-title: Drug Metab Dispos – volume: 12 start-page: 6027 year: 2017 end-page: 6044 ident: CR76 article-title: Liposomal curcumin and its application in cancer publication-title: Int J Nanomedicine – volume: 42 start-page: 1675 issue: 10 year: 2014 end-page: 1683 ident: CR53 article-title: Identification of diet-derived constituents as potent inhibitors of intestinal glucuronidation publication-title: Drug Metab Dispos – volume: 2020 start-page: 1 issue: 10 year: 1672 end-page: 18 ident: CR51 article-title: Implementation of a physiologically based pharmacokinetic modelling approach to guide optimal dosing regimens for imatinib and potential drug interactions in paediatrics publication-title: Front Pharmacol – ident: CR17 – volume: 5 start-page: 451 issue: 4 year: 2008 end-page: 456 ident: CR12 article-title: Patient disclosure about herb and supplement use among adults in the US publication-title: Evid Based Complement Alternat Med – volume: 3 year: 2014 ident: CR15 article-title: Physiologically based pharmacokinetic modeling framework for quantitative prediction of an herb-drug interaction publication-title: CPT Pharmacometrics Syst Pharmacol – volume: 16 start-page: 1881 issue: 5 year: 2019 end-page: 1889 ident: CR56 article-title: Pharmacokinetics, pharmacodynamics, and PKPD modeling of curcumin in regulating antioxidant and epigenetic gene expression in healthy human volunteers publication-title: Mol Pharm – ident: CR59 – volume: 58 start-page: 2095 issue: 4 year: 2010 end-page: 2099 ident: CR20 article-title: Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers publication-title: J Agric Food Chem – ident: CR28 – volume: 43 start-page: 7834 issue: 24 year: 2004 end-page: 7842 ident: CR30 article-title: Differential contribution of active site residues in substrate recognition sites 1 and 5 to cytochrome P450 2C8 substrate selectivity and regioselectivity publication-title: Biochemistry. – volume: 11 start-page: 1481 issue: 12 year: 2005 end-page: 1493 ident: CR49 article-title: Changes in liver volume from birth to adulthood: a meta-analysis publication-title: Liver Transpl – volume: 166 start-page: 1793 issue: 6 year: 2012 ident: 2834_CR8 publication-title: Br J Pharmacol doi: 10.1111/j.1476-5381.2012.01887.x – volume: 24 start-page: 918 issue: 5 year: 2007 ident: 2834_CR34 publication-title: Pharm Res doi: 10.1007/s11095-006-9210-3 – volume: 71 start-page: 199 issue: 2 year: 2011 ident: 2834_CR64 publication-title: Br J Clin Pharmacol doi: 10.1111/j.1365-2125.2010.03810.x – volume: 82 start-page: 695 issue: 4 year: 2018 ident: 2834_CR54 publication-title: Cancer Chemother Pharmacol doi: 10.1007/s00280-018-3654-0 – volume: 41 start-page: 50 issue: 1 year: 2013 ident: 2834_CR18 publication-title: Drug Metab Dispos doi: 10.1124/dmd.112.048017 – volume: 51 start-page: 932 issue: 8 year: 2007 ident: 2834_CR43 publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.200600283 – volume: 38 start-page: 155 issue: 2 year: 2017 ident: 2834_CR50 publication-title: Biopharm Drug Dispos doi: 10.1002/bdd.2062 – volume: 15 start-page: 629 issue: 6 year: 2015 ident: 2834_CR69 publication-title: Expert Rev Neurother doi: 10.1586/14737175.2015.1044981 – volume: 11 start-page: 1481 issue: 12 year: 2005 ident: 2834_CR49 publication-title: Liver Transpl doi: 10.1002/lt.20519 – volume: 36 start-page: 2405 issue: 12 year: 2008 ident: 2834_CR48 publication-title: Drug Metab Dispos doi: 10.1124/dmd.108.021311 – volume: 3 year: 2014 ident: 2834_CR15 publication-title: CPT Pharmacometrics Syst Pharmacol doi: 10.1038/psp.2013.69 – ident: 2834_CR23 doi: 10.2174/1389200033489361 – volume: 36 start-page: 231 issue: 3 year: 2018 ident: 2834_CR2 publication-title: J Clin Oncol doi: 10.1200/JCO.2017.74.7162 – volume: 13 start-page: 953 issue: 9 year: 2017 ident: 2834_CR6 publication-title: Expert Opin Drug Metab Toxicol doi: 10.1080/17425255.2017.1360279 – volume: 43 start-page: 490 issue: 4 year: 2015 ident: 2834_CR9 publication-title: Drug Metab Dispos doi: 10.1124/dmd.114.062174 – volume: 907 start-page: 94 year: 2012 ident: 2834_CR19 publication-title: J Chromatogr B Analyt Technol Biomed Life Sci doi: 10.1016/j.jchromb.2012.09.007 – volume: 12 start-page: 6027 year: 2017 ident: 2834_CR76 publication-title: Int J Nanomedicine doi: 10.2147/IJN.S132434 – volume: 8 start-page: 761 issue: 12 year: 1978 ident: 2834_CR39 publication-title: Xenobiotica. doi: 10.3109/00498257809069589 – volume: 42 start-page: 1248 issue: 12 year: 2012 ident: 2834_CR74 publication-title: Xenobiotica. doi: 10.3109/00498254.2012.697590 – volume: 48 start-page: 245 issue: 4 year: 2020 ident: 2834_CR37 publication-title: Drug Metab Dispos doi: 10.1124/dmd.119.089656 – volume: 163 start-page: 527 year: 2019 ident: 2834_CR5 publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2018.12.016 – ident: 2834_CR40 – volume: 83 start-page: 265 issue: 2 year: 2019 ident: 2834_CR44 publication-title: Cancer Chemother Pharmacol doi: 10.1007/s00280-018-3730-5 – volume: 108 start-page: 21 issue: 1 year: 2019 ident: 2834_CR14 publication-title: J Pharm Sci doi: 10.1016/j.xphs.2018.10.033 – volume: 7 start-page: 27 issue: 2 year: 2016 ident: 2834_CR73 publication-title: J Basic Clin Pharm doi: 10.4103/0976-0105.177703 – volume: 34 start-page: 1025 issue: 10 year: 1999 ident: 2834_CR33 publication-title: Lipids. doi: 10.1007/s11745-999-0453-x – volume: 11 start-page: 225 issue: 2 year: 2009 ident: 2834_CR36 publication-title: AAPS J doi: 10.1208/s12248-009-9099-y – ident: 2834_CR61 doi: 10.1038/clpt.2013.170 – volume: 53 start-page: 54 issue: 1 year: 2015 ident: 2834_CR45 publication-title: Int J Clin Pharmacol Ther doi: 10.5414/CP202076 – volume: 11 start-page: 3547 issue: 10 year: 2014 ident: 2834_CR38 publication-title: Mol Pharm doi: 10.1021/mp500330y – volume: 49 start-page: 1834 issue: 8 year: 2011 ident: 2834_CR72 publication-title: Food Chem Toxicol doi: 10.1016/j.fct.2011.05.001 – volume: 60 start-page: 1620 issue: 5 year: 2017 ident: 2834_CR55 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.6b00975 – volume: 39 start-page: 113 year: 2014 ident: 2834_CR24 publication-title: Profiles Drug Subst Excip Relat Methodol doi: 10.1016/B978-0-12-800173-8.00003-9 – volume: 4 start-page: 1410 issue: 9 year: 2013 ident: 2834_CR25 publication-title: Food Funct doi: 10.1039/c3fo60180c – volume: 42 start-page: 1675 issue: 10 year: 2014 ident: 2834_CR53 publication-title: Drug Metab Dispos doi: 10.1124/dmd.114.059451 – volume: 29 start-page: 642 issue: 5 year: 2015 ident: 2834_CR70 publication-title: J Psychopharmacol doi: 10.1177/0269881114552744 – volume: 46 start-page: 1046 issue: 7 year: 2018 ident: 2834_CR7 publication-title: Drug Metab Dispos doi: 10.1124/dmd.118.081273 – ident: 2834_CR11 doi: 10.3390/cancers11030403 – volume: 6 start-page: 143 issue: 2 year: 2013 ident: 2834_CR60 publication-title: Expert Rev Clin Pharmacol doi: 10.1586/ecp.13.4 – volume: 58 start-page: 189 issue: 2 year: 2019 ident: 2834_CR68 publication-title: Clin Pharmacokinet doi: 10.1007/s40262-018-0681-2 – volume: 76 start-page: 1 year: 2016 ident: 2834_CR4 publication-title: Regul Toxicol Pharmacol doi: 10.1016/j.yrtph.2016.01.004 – volume: 71 start-page: 917 issue: 6 year: 2011 ident: 2834_CR63 publication-title: Br J Clin Pharmacol doi: 10.1111/j.1365-2125.2011.03911.x – volume: 5 start-page: 451 issue: 4 year: 2008 ident: 2834_CR12 publication-title: Evid Based Complement Alternat Med doi: 10.1093/ecam/nem045 – volume: 71 start-page: 72 issue: 1 year: 2011 ident: 2834_CR58 publication-title: Br J Clin Pharmacol doi: 10.1111/j.1365-2125.2010.03799.x – ident: 2834_CR17 doi: 10.1080/00498254.2016.1208854 – ident: 2834_CR28 doi: 10.1007/s00228-011-1001-z – volume: 1 start-page: 9 year: 2013 ident: 2834_CR32 publication-title: In Silico Pharmacol doi: 10.1186/2193-9616-1-9 – volume: 38 start-page: 3 issue: 1 year: 2017 ident: 2834_CR65 publication-title: Biopharm Drug Dispos doi: 10.1002/bdd.2049 – volume: 57 start-page: 1337 issue: 10 year: 2018 ident: 2834_CR13 publication-title: Clin Pharmacokinet doi: 10.1007/s40262-018-0635-8 – volume: 17 start-page: 1411 issue: 6 year: 2008 ident: 2834_CR26 publication-title: Cancer Epidemiol Biomark Prev doi: 10.1158/1055-9965.EPI-07-2693 – volume: 75 start-page: 450 issue: 2 year: 2013 ident: 2834_CR10 publication-title: Br J Clin Pharmacol doi: 10.1111/j.1365-2125.2012.04364.x – volume: 58 start-page: 911 issue: 7 year: 2019 ident: 2834_CR16 publication-title: Clin Pharmacokinet doi: 10.1007/s40262-019-00736-6 – volume: 64 start-page: 573 issue: 4 year: 2002 ident: 2834_CR27 publication-title: Biochem Pharmacol doi: 10.1016/S0006-2952(02)01224-8 – ident: 2834_CR29 doi: 10.1111/jphp.12820 – volume: 2020 start-page: 1 issue: 10 year: 1672 ident: 2834_CR51 publication-title: Front Pharmacol – volume: 6 start-page: 137 issue: 1 year: 2014 ident: 2834_CR77 publication-title: Pharmaceutics. doi: 10.3390/pharmaceutics6010137 – volume: 58 start-page: 2095 issue: 4 year: 2010 ident: 2834_CR20 publication-title: J Agric Food Chem doi: 10.1021/jf9024807 – volume: 45 start-page: 390 issue: 4 year: 2017 ident: 2834_CR52 publication-title: Drug Metab Dispos doi: 10.1124/dmd.116.074450 – volume-title: Rostami-Hodjegan A year: 2006 ident: 2834_CR22 – volume: 20 start-page: 150 issue: 4 year: 2019 ident: 2834_CR66 publication-title: AAPS PharmSciTech doi: 10.1208/s12249-019-1364-5 – volume: 39 start-page: 644 issue: 4 year: 2011 ident: 2834_CR31 publication-title: Drug Metab Dispos doi: 10.1124/dmd.110.037036 – volume: 14 start-page: 781 issue: 11 year: 2015 ident: 2834_CR75 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd4608 – volume: 5 start-page: 640 issue: 4 year: 2016 ident: 2834_CR3 publication-title: Cancer Med doi: 10.1002/cam4.627 – volume: 11 start-page: 716 issue: 9 year: 2010 ident: 2834_CR35 publication-title: Curr Drug Metab doi: 10.2174/138920010794328913 – volume: 43 start-page: 7834 issue: 24 year: 2004 ident: 2834_CR30 publication-title: Biochemistry. doi: 10.1021/bi0496844 – ident: 2834_CR59 doi: 10.1124/dmd.108.026252 – ident: 2834_CR57 doi: 10.1038/clpt.2013.187 – volume: 43 start-page: 1744 issue: 11 year: 2015 ident: 2834_CR21 publication-title: Drug Metab Dispos doi: 10.1124/dmd.115.066597 – volume: 15 start-page: 521 issue: 3 year: 1981 ident: 2834_CR46 publication-title: Pharmacol Ther doi: 10.1016/0163-7258(81)90056-5 – volume: 30 start-page: 811 issue: 3 year: 2010 ident: 2834_CR62 publication-title: Anticancer Res – volume: 12 start-page: 145 year: 2019 ident: 2834_CR71 publication-title: J Inflamm Res doi: 10.2147/JIR.S205390 – volume: 138 start-page: 103 issue: 1 year: 2013 ident: 2834_CR47 publication-title: Pharmacol Ther doi: 10.1016/j.pharmthera.2012.12.007 – volume: 376 start-page: 917 issue: 10 year: 2017 ident: 2834_CR1 publication-title: N Engl J Med doi: 10.1056/NEJMoa1609324 – ident: 2834_CR67 – volume: 16 start-page: 1881 issue: 5 year: 2019 ident: 2834_CR56 publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.8b01246 – volume: 27 start-page: 486 issue: 4 year: 1999 ident: 2834_CR41 publication-title: Drug Metab Dispos – volume: 11 start-page: 105 issue: 1 year: 2002 ident: 2834_CR42 publication-title: Cancer Epidemiol Biomark Prev |
| SSID | ssj0008194 |
| Score | 2.4297583 |
| Snippet | Purpose
This study aimed to investigate the potential pharmacokinetic interactions between curcumin, imatinib and bosutinib, combining
In Vitro
and in silico... This study aimed to investigate the potential pharmacokinetic interactions between curcumin, imatinib and bosutinib, combining In Vitro and in silico methods.... Purpose This study aimed to investigate the potential pharmacokinetic interactions between curcumin, imatinib and bosutinib, combining In Vitro and in silico... PurposeThis study aimed to investigate the potential pharmacokinetic interactions between curcumin, imatinib and bosutinib, combining In Vitro and in silico... This study aimed to investigate the potential pharmacokinetic interactions between curcumin, imatinib and bosutinib, combining In Vitro and in silico... |
| SourceID | proquest gale pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 128 |
| SubjectTerms | Analysis Aniline Compounds - metabolism Bioavailability Biochemistry Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Bosutinib Chromatography, High Pressure Liquid Curcumin Curcumin - analogs & derivatives Curcumin - metabolism Curcumin - pharmacokinetics Cytochrome P-450 CYP2C8 - metabolism Cytochrome P-450 CYP3A - metabolism Cytochrome P-450 Enzyme Inhibitors - pharmacokinetics Cytochrome P450 Demethylation Drug Interactions Enzymes Glucuronides - metabolism Humans Hydroxylation Imatinib Imatinib Mesylate - metabolism Inhibitor drugs Liver Medical Law Metabolism Metabolites Microsomes Microsomes, Liver - metabolism Models, Biological Models, Molecular Nanoparticles Nitriles - metabolism Paclitaxel Paclitaxel - metabolism Pharmacokinetics Pharmacology/Toxicology Pharmacy Quinolines - metabolism Research Paper Simulation methods Tandem Mass Spectrometry |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcOBS3jTQIiOhcmAtOc6bW1uo6IFqJUrVWxQ_IkVskyqPSvs_-oOZcV7dCpDg6PXY8mrGM5_jmc-EvPdFFIEhSSYSN2N-zhMmeaJZHHIThnHOfTe3j01Ep6fxxUWyHIrCmjHbfbyStJ56LnZzua0m5gxjos_i--RBgGwzeEb_fj75X4hxljQqEiADAXMolfn9HBvh6K5TvhWV7lyT2uhz_Pj_1v2EbA9okx705vGU3DPlM7K_7Omq1wt6NldfNQu6T5czkfX6Obmx6aGjd1yt2SGEPD0J_QSACgPpssbLHmu_tMopIEracyJj66irVXdZlLQq6TfTgsmtiuYSe04QK5eFpFmp6WHVdLb1iZ6U9Lxo68r-bhvXFf1cNApTclT7gvw4_nJ29JUNrzgwhUw6LEfWtMQPVKTdPNeB8jIjPD9LAnAVcDyVoQxiL-daA9hRmcil1BHS7kehFF4kvZdkq6xKs0OoCbOEhzqIjQp8wX1pvEQFIhM6g0mMcIg7KjNVA8U5vrSxSmdyZlRGCspIrTLS2CEfpzFXPcHHX6U_oI2kuPthZpUNRQywPuTRSg_gdAYQz_O5Q3Y3JGHXqs3u0crSwWs0KaAp_CAHkNQh76ZuHImZcKWpul4GEETkuQ551VvntG5PBIDeeOKQxWiK8-R__lOv_038DXkkrDVjzvIu2WrrzuyRh-q6LZr6rd2LvwDBWSs4 priority: 102 providerName: Springer Nature |
| Title | Physiologically-Based Pharmacokinetic Predictions of the Effect of Curcumin on Metabolism of Imatinib and Bosutinib: In Vitro and In Vivo Disconnect |
| URI | https://link.springer.com/article/10.1007/s11095-020-02834-8 https://www.ncbi.nlm.nih.gov/pubmed/32529309 https://www.proquest.com/docview/2412228562 https://www.proquest.com/docview/2412990731 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1573-904X dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0008194 issn: 0724-8741 databaseCode: 7RV dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-904X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008194 issn: 0724-8741 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLag5cCl7BAoIyOhcmAiHGfngjqlFT0wioYymluU2I4UMU3aJFNp_gc_mPecjalEL1wiOV7kKN9bbD9_j5D3Dvd9AFJq8tBKTCdjoZmyUJqBx5TnBRlzrEwnm_Dn82C1CqNuw63uwip7nagVtSwF7pF_AkuDmxVgrr9cXZuYNQpPV7sUGvfJPqbNRpz7q2HBhdZO00f53AGpd6zu0kx7dc5i-m4yM9HCQv2OYbqtnv-yT7cOTLUdOnv0v1_wmBx0Hig9biHzhNxTxVNyFLUU1tspvRhvZNVTekSjkdx6-4z81iGjvcZcb80ZmEE5NPoFTit0pFGFB0Aa07TMKHiZtOVJxtLJphKby7ygZUG_qwZguM7rS6w5R_-5yFOaFJLOynqjS5_peUGXeVOV-r0u3JT0a14LDNMRzXPy8-z04uSb2WV2MAWy65gZMqmFjit8aWWZdIWdKG47SeiC-oAla-qlbmBnTEpwgETCszSVPlLx-17KbT-1X5C9oizUK0KVl4TMk26ghOtw5qTKDoXLEy4TGERxg1j9b41FR3uO2TfW8UjYjFCIAQqxhkIcGOTj0OeqJf24s_UHREuMGgFGFkl3sQHmh9xa8TGs2MDtsx1mkMOdliDJYre6B07caZI6HlFjkHdDNfbE6LhClZu2DXgVvm0Z5GWL02HeNnfBo2OhQaY9cMfB__1Rr--eyxvykGvZwbjlQ7LXVBv1ljwQN01eVxOQwsVyomVRP4MJ2Z-dzqMFlBY_ln8A27M5sQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuUN6GFhYJyoFYrNfrFxJCTR9q1DaKUIp6M_buWrJI7RInRfkf_A5-I7NrOyGV6K0Hjpt9aO3MzDfrnfkG4A1nQYCClNoschKbZzSyUxpJO_Sp8v0wo9zJTLGJYDAIz86i4Rr8bnNhdFhlaxONoZal0N_IPyDS6I8VCNefL37YumqUvl1tS2jUYnGk5j_xyFZ96u_h__uWsYP90e6h3VQVsIVmdrEzzeIVcU8E0sky6Qk3UczlSeSh6OJxKfVTL3QzKiWCr0hYlqYy0DTwgZ8yN0hdXPcWrHOX-14H1nv7g-GXhe1HfDWEVQHjaGe406Tp1Ml6DjXZ0NTWmI79K1B4FRD-QsQrV7QG-Q7u_2_vbAPuNT422amV4gGsqeIhbA9rku55l4yWOWdVl2yT4ZK-e_4Ifpmg2BYTxnO7h0AvF4O-o1uOE8lwoq-4jNaSMiPoR5OaCVq3dmcTMTvPC1IW5ERNUdHGeXWue_r6hFDkKUkKSXplNTOtj6RfkK_5dFKa303jsiR7eSV0IJKYPobTG3ljT6BTlIV6BkT5SUR96YVKeJxRnio3Eh5LmExwEcUscFoxikVD7K7ri4zjJSW1Fr0YRS82oheHFrxfzLmoaU2uHf1OS2esbR6uLJImdQP3p9nD4h08k6Jj63JqwebKSLRVYrW7FdS4sZVVvJRSC14vuvVMHf9XqHJWj0G_KXAdC57WerHYt8s89FlpZEG3VZTl4v9-qOfX7-UV3DkcnRzHx_3B0Qu4y4ze6ijtTehMJzO1BbfF5TSvJi8bG0Dg202r0B_x7pHW |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCEuvB-GAosE5UCsrtdvJISathFRIbJQi3oz9notWaR2iZOi_A9-Db-OmbWdkEr01gPHzT60dmbmm_HOfAvwyhG-j4KUmiK0EtPJeWimPMzMwOPK84KcO1auL5vwx-Pg5CSMNuB3VwtDaZWdTdSGOqskfSPfQaShjxUI1zt5mxYR7Q8_nP0w6QYpOmntrtNoRORQLX5i-Fa_H-3jf_1aiOHB0d5Hs71hwJTE8mLmxOgVOq70MyvPM1faiRK2k4QuijGGTqmXuoGd8yxDIJaJyNM084kS3vdSYfupjeteg03fxqCnB5uDg3H0ZYkDiLWavMoXDtocx2pLdprCPYvrymhuEr5j_xosXgSHv9DxwnGtRsHh7f_5_d2BW63vzXYbZbkLG6q8B9tRQ9696LOjVS1a3WfbLFrRei_uwy-dLNthxWRhDtAByJaDvqO7jhNZNKWjL63NrMoZ-tesYYim1t58KuenRcmqkn1WM1TASVGfUs-IIoeySFlSZmxQ1XPdesdGJftazKaV_l03ziu2X9SSEpTk7AEcX8kbewi9sirVY2DKS0LuZW6gpOsI7qTKDqUrEpEluIgSBlidSMWyJXyne0cm8YqqmsQwRjGMtRjGgQFvl3POGrqTS0e_IUmNyRbiyjJpSzpwf8QqFu9irIoOr-1wA7bWRqINk-vdndDGrQ2t45XEGvBy2U0zKS-wVNW8GYP-lG9bBjxqdGS5b1u46Mvy0IB-pzSrxf_9UE8u38sLuIF6E38ajQ-fwk2hVZiSt7egN5vO1TO4Ls9nRT193poDBt-uWoP-AA9Nmpk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physiologically-Based+Pharmacokinetic+Predictions+of+the+Effect+of+Curcumin+on+Metabolism+of+Imatinib+and+Bosutinib%3A+In+Vitro+and+In+Vivo+Disconnect&rft.jtitle=Pharmaceutical+research&rft.au=Adiwidjaja+Jeffry&rft.au=Boddy%2C+Alan+V&rft.au=McLachlan%2C+Andrew+J&rft.date=2020-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0724-8741&rft.eissn=1573-904X&rft.volume=37&rft.issue=7&rft_id=info:doi/10.1007%2Fs11095-020-02834-8&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0724-8741&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0724-8741&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0724-8741&client=summon |