Configuring Mixed-Integer Programming Solvers for Large-Scale Instances
Algorithm configuration techniques automatically search for parameters of solvers and algorithms that provide minimal runtime or maximal solution quality on specified instance sets. Mixed-integer programming (MIP) solvers pose a particular challenge for algorithm configurators due to the difficulty...
Gespeichert in:
| Veröffentlicht in: | Operations Research Forum Jg. 5; H. 2; S. 48 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.06.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 2662-2556, 2662-2556 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Algorithm configuration techniques automatically search for parameters of solvers and algorithms that provide minimal runtime or maximal solution quality on specified instance sets. Mixed-integer programming (MIP) solvers pose a particular challenge for algorithm configurators due to the difficulty of finding optimal, or even feasible, solutions on the large-scale problems commonly found in practice. We introduce the OPTANO Algorithm Tuner (OAT) to find configurations for MIP solvers and other optimization algorithms. We present and evaluate several critical components of OAT for solving MIPs in particular and show that OAT can find configurations that significantly improve the solution time of MIPs on two different datasets. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2662-2556 2662-2556 |
| DOI: | 10.1007/s43069-024-00327-7 |