An empirical Q‐matrix validation method for the sequential generalized DINA model
As a core component of most cognitive diagnosis models, the Q‐matrix, or item and attribute association matrix, is typically developed by domain experts, and tends to be subjective. It is critical to validate the Q‐matrix empirically because a misspecified Q‐matrix could result in erroneous attribut...
Gespeichert in:
| Veröffentlicht in: | British journal of mathematical & statistical psychology Jg. 73; H. 1; S. 142 - 163 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
British Psychological Society
01.02.2020
|
| Schlagworte: | |
| ISSN: | 0007-1102, 2044-8317, 2044-8317 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | As a core component of most cognitive diagnosis models, the Q‐matrix, or item and attribute association matrix, is typically developed by domain experts, and tends to be subjective. It is critical to validate the Q‐matrix empirically because a misspecified Q‐matrix could result in erroneous attribute estimation. Most existing Q‐matrix validation procedures are developed for dichotomous responses. However, in this paper, we propose a method to empirically detect and correct the misspecifications in the Q‐matrix for graded response data based on the sequential generalized deterministic inputs, noisy ‘and’ gate (G‐DINA) model. The proposed Q‐matrix validation procedure is implemented in a stepwise manner based on the Wald test and an effect size measure. The feasibility of the proposed method is examined using simulation studies. Also, a set of data from the Trends in International Mathematics and Science Study (TIMSS) 2011 mathematics assessment is analysed for illustration. |
|---|---|
| AbstractList | As a core component of most cognitive diagnosis models, the Q-matrix, or item and attribute association matrix, is typically developed by domain experts, and tends to be subjective. It is critical to validate the Q-matrix empirically because a misspecified Q-matrix could result in erroneous attribute estimation. Most existing Q-matrix validation procedures are developed for dichotomous responses. However, in this paper, we propose a method to empirically detect and correct the misspecifications in the Q-matrix for graded response data based on the sequential generalized deterministic inputs, noisy 'and' gate (G-DINA) model. The proposed Q-matrix validation procedure is implemented in a stepwise manner based on the Wald test and an effect size measure. The feasibility of the proposed method is examined using simulation studies. Also, a set of data from the Trends in International Mathematics and Science Study (TIMSS) 2011 mathematics assessment is analysed for illustration.As a core component of most cognitive diagnosis models, the Q-matrix, or item and attribute association matrix, is typically developed by domain experts, and tends to be subjective. It is critical to validate the Q-matrix empirically because a misspecified Q-matrix could result in erroneous attribute estimation. Most existing Q-matrix validation procedures are developed for dichotomous responses. However, in this paper, we propose a method to empirically detect and correct the misspecifications in the Q-matrix for graded response data based on the sequential generalized deterministic inputs, noisy 'and' gate (G-DINA) model. The proposed Q-matrix validation procedure is implemented in a stepwise manner based on the Wald test and an effect size measure. The feasibility of the proposed method is examined using simulation studies. Also, a set of data from the Trends in International Mathematics and Science Study (TIMSS) 2011 mathematics assessment is analysed for illustration. As a core component of most cognitive diagnosis models, the Q‐matrix, or item and attribute association matrix, is typically developed by domain experts, and tends to be subjective. It is critical to validate the Q‐matrix empirically because a misspecified Q‐matrix could result in erroneous attribute estimation. Most existing Q‐matrix validation procedures are developed for dichotomous responses. However, in this paper, we propose a method to empirically detect and correct the misspecifications in the Q‐matrix for graded response data based on the sequential generalized deterministic inputs, noisy ‘and’ gate (G‐DINA) model. The proposed Q‐matrix validation procedure is implemented in a stepwise manner based on the Wald test and an effect size measure. The feasibility of the proposed method is examined using simulation studies. Also, a set of data from the Trends in International Mathematics and Science Study (TIMSS) 2011 mathematics assessment is analysed for illustration. |
| Author | Ma, Wenchao Torre, Jimmy |
| Author_xml | – sequence: 1 givenname: Wenchao orcidid: 0000-0002-6763-0707 surname: Ma fullname: Ma, Wenchao email: wenchao.ma@ua.edu organization: University of Alabama – sequence: 2 givenname: Jimmy surname: Torre fullname: Torre, Jimmy organization: University of Hong Kong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30723890$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90c9OFTEUBvCGYOSCbnwA04SNMRk4p53On-UVFUgAIei66UzPSMnM9NrOVXHlI_CMPImFiywIoZtufufk5Ps22froR2LsDcIOprfbDHGxgwJVscZmAvI8qySW62wGAGWGCGKDbcZ4CYBCQfGSbUgohaxqmLHz-chpWLjgWtPzs5u_14OZgvvNf5reWTM5P_KBpgtveecDny6IR_qxpHFyyX-nkUKCf8jyj4cncz54S_0r9qIzfaTX9_8W-_b509e9g-zoy_7h3vwoa6Uqi6w0eYW1aQuBsm5KajplERuUCktUdZvXCI2ytqll1VUmt0oiGFAN1tQCCLnF3q32LoJPJ8VJDy621PdmJL-MWghRQ5X2lYluP6KXfhnGdJ0WMleiSDmqpN7eq2UzkNWL4AYTrvT_uBJ4vwJt8DEG6h4Igr7tQt92oe-6SBge4dZNd4lOwbj-6RFcjfxyPV09s1x_OD4_Xc38A24jmlo |
| CitedBy_id | crossref_primary_10_1177_23328584221081256 crossref_primary_10_1007_s10639_024_13039_6 crossref_primary_10_1111_jedm_12383 crossref_primary_10_1007_s11336_021_09821_x crossref_primary_10_1111_bmsp_12371 crossref_primary_10_3758_s13428_022_01880_x crossref_primary_10_1016_j_stueduc_2020_100931 crossref_primary_10_3102_10769986251334789 crossref_primary_10_1177_0146621620909904 crossref_primary_10_3102_10769986241301055 crossref_primary_10_1111_bmsp_12346 crossref_primary_10_1177_0146621620965745 crossref_primary_10_3390_psych3040052 crossref_primary_10_2478_amns_2023_1_00202 crossref_primary_10_3390_electronics13081454 crossref_primary_10_3389_fpsyg_2023_1126106 crossref_primary_10_1111_bmsp_12228 crossref_primary_10_1111_bmsp_12349 crossref_primary_10_1177_0146621619843829 crossref_primary_10_3389_feduc_2022_802828 crossref_primary_10_1080_00273171_2020_1746901 crossref_primary_10_3390_app12104809 crossref_primary_10_1007_s41237_025_00263_8 crossref_primary_10_1007_s11336_019_09683_4 crossref_primary_10_1007_s41237_022_00174_y crossref_primary_10_1177_0146621620977681 crossref_primary_10_1177_10731911241247483 crossref_primary_10_1080_00273171_2021_1985949 crossref_primary_10_1177_02655322231162840 crossref_primary_10_3102_10769986241240084 crossref_primary_10_1007_s10956_020_09871_3 crossref_primary_10_1016_j_eswa_2021_116454 crossref_primary_10_1177_27527263221136301 crossref_primary_10_3389_fpsyg_2020_02120 crossref_primary_10_1016_j_ijinfomgt_2019_05_006 crossref_primary_10_3389_fpsyg_2020_02246 crossref_primary_10_1080_00273171_2021_1919048 crossref_primary_10_3758_s13428_024_02442_z crossref_primary_10_3758_s13428_024_02547_5 crossref_primary_10_3758_s13428_023_02126_0 crossref_primary_10_3389_fpsyg_2021_614470 crossref_primary_10_3389_fpsyg_2021_714568 crossref_primary_10_1186_s40536_022_00138_4 |
| Cites_doi | 10.1007/978-1-4757-2691-6_7 10.1007/978-1-4757-2691-6_5 10.1177/1094428116630065 10.1177/0146621613479818 10.1037/1082-989X.11.3.287 10.1177/0146621612449069 10.1007/s11336-015-9467-8 10.1111/bmsp.12070 10.1007/s11336-011-9207-7 10.1348/000711007X193957 10.1111/j.1745-3984.2008.00069.x 10.1177/0013164407301545 10.1177/0146621617752991 10.1080/01621459.2014.934827 10.1007/BF02296272 10.1007/s11336-018-9629-6 10.1177/0146621612456591 10.1177/0146621615621717 10.1111/j.1745-3984.1983.tb00212.x 10.1007/978-1-4757-2691-6_8 10.1111/jedm.12036 10.3150/12-BEJ430 10.32614/CRAN.package.GDINA 10.1177/0146621613488436 10.1080/07481756.2017.1327286 10.1177/0146621617707510 10.1007/s13394-013-0090-7 10.1177/0146621618798664 10.1090/S0002-9947-1943-0012401-3 10.1177/014662169501900110 10.1007/BF02295640 10.1177/0146621616686021 10.1111/j.1745-3984.1989.tb00336.x 10.1504/IJQRE.2017.086507 10.1007/s11336-017-9579-4 10.3102/1076998618792484 |
| ContentType | Journal Article |
| Copyright | 2019 The British Psychological Society 2019 The British Psychological Society. Copyright © 2020 The British Psychological Society |
| Copyright_xml | – notice: 2019 The British Psychological Society – notice: 2019 The British Psychological Society. – notice: Copyright © 2020 The British Psychological Society |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 K9. 7X8 |
| DOI | 10.1111/bmsp.12156 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Psychology Mathematics |
| EISSN | 2044-8317 |
| EndPage | 163 |
| ExternalDocumentID | 30723890 10_1111_bmsp_12156 BMSP12156 |
| Genre | article Validation Study Journal Article |
| GroupedDBID | --- --Z -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 23N 31~ 33P 36B 3V. 4.4 50Y 50Z 52M 52O 52S 52T 52U 52V 52W 53G 5GY 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8AO 8FE 8FG 8FI 8FJ 8G5 8R4 8R5 930 A01 A04 AABNI AAESR AAHHS AAHQN AAIPD AAMNL AANHP AAONW AAOUF AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABIVO ABJCF ABJNI ABQWH ABSOO ABTAH ABUWG ABXGK ACAHQ ACBKW ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACHQT ACIWK ACKIV ACMXC ACPOU ACRPL ACUHS ACXQS ACYXJ ADBBV ADBTR ADEMA ADEOM ADIZJ ADKYN ADMGS ADNMO ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFKFF AFKRA AFPWT AFWVQ AFYRF AFZJQ AHBTC AI. AIACR AIAGR AIFKG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARAPS ASPBG ASTYK AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BMXJE BNVMJ BPHCQ BQESF BROTX BRXPI BVXVI C45 CAG CCPQU COF CS3 D-6 D-7 D-C D-D DCZOG DPXWK DRFUL DRMAN DRSSH DU5 DWQXO EAD EAP EAS EBC EBD EBS EJD EMB EMK EMOBN EPS EST ESX F00 F01 F5P FEDTE FUBAC FYUFA G-S G.N G50 GNK GNM GNUQQ GODZA GUQSH HAOEW HCIFZ HGLYW HMCUK HVGLF HZ~ H~9 K6V K7- KBYEO L6V L7B LATKE LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES M1P M2M M2O M2P M2Q M7S MEWTI MK4 MRFUL MRMAN MRSSH MSFUL MSMAN MSSSH MXFUL MXMAN MXSSH MY~ N04 N06 NF~ NIF O66 O9- OHT OVD P2P P2W P2Y P2Z P4B P4C P62 PADUT PALCI PQQKQ PROAC PSQYO PSYQQ PTHSS Q.N Q2X QB0 R.K RIWAO RJQFR ROL RX1 S0X SAMSI SUPJJ SV3 TEORI TN5 TUS UB1 UKHRP UPT VH1 W8V W99 WBKPD WH7 WHDPE WIH WII WIJ WOHZO WSUWO WXSBR XG1 ZY4 ZZTAW ~A~ ~IA ~WP AAMMB AAYXX AEFGJ AEYWJ AFFHD AGHNM AGQPQ AGXDD AIDQK AIDYY CITATION O8X PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM JQ2 K9. 7X8 |
| ID | FETCH-LOGICAL-c3576-7a4819ac62139b7ebf5d11b13517159c4910b5ddb938f8a4d5310a05b19ec0023 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 50 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000509696500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0007-1102 2044-8317 |
| IngestDate | Fri Sep 05 13:36:40 EDT 2025 Mon Oct 06 17:24:11 EDT 2025 Mon Jul 21 05:40:53 EDT 2025 Tue Nov 18 21:11:20 EST 2025 Sat Nov 29 06:56:35 EST 2025 Wed Jan 22 16:37:15 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | sequential G-DINA Wald test cognitive diagnosis stepwise Trends in International Mathematics and Science Study Q-matrix validation G-DINA discrimination index |
| Language | English |
| License | 2019 The British Psychological Society. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3576-7a4819ac62139b7ebf5d11b13517159c4910b5ddb938f8a4d5310a05b19ec0023 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
| ORCID | 0000-0002-6763-0707 |
| PMID | 30723890 |
| PQID | 2345261115 |
| PQPubID | 36005 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_2229081357 proquest_journals_2345261115 pubmed_primary_30723890 crossref_primary_10_1111_bmsp_12156 crossref_citationtrail_10_1111_bmsp_12156 wiley_primary_10_1111_bmsp_12156_BMSP12156 |
| PublicationCentury | 2000 |
| PublicationDate | February 2020 2020-02-00 20200201 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Leicester |
| PublicationTitle | British journal of mathematical & statistical psychology |
| PublicationTitleAlternate | Br J Math Stat Psychol |
| PublicationYear | 2020 |
| Publisher | British Psychological Society |
| Publisher_xml | – name: British Psychological Society |
| References | 2017; 41 2017; 4 2016; 19 1943; 54 2006; 11 2004; 69 1997 2014; 26 2011; 76 2018; 83 1995; 19 2012; 36 1989; 26 2018; 42 2013; 19 1982; 47 2013; 37 2019; 44 2019; 43 2015; 110 1983; 20 2008; 45 2017 2016; 40 2008; 68 2018; 51 1960 2016; 81 2013 2008; 61 2014; 51 2016; 69 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 Agresti A. (e_1_2_10_2_1) 2013 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 Efroymson A. (e_1_2_10_14_1) 1960 e_1_2_10_26_1 |
| References_xml | – volume: 37 start-page: 598 year: 2013 end-page: 618 article-title: Statistical refinement of the Q‐matrix in cognitive diagnosis publication-title: Applied Psychological Measurement – volume: 44 start-page: 45 year: 2019 end-page: 77 article-title: Category‐level model selection for the sequential G‐DINA model publication-title: Journal of Educational and Behavioral Statistics – start-page: 191 year: 1960 end-page: 203 – volume: 41 start-page: 614 year: 2017 end-page: 631 article-title: Inferential item‐fit evaluation in cognitive diagnosis modeling publication-title: Applied Psychological Measurement – volume: 4 start-page: 159 year: 2017 end-page: 190 article-title: An efficient standard error estimator of the DINA model parameters when analysing clustered data publication-title: International Journal of Quantitative Research in Education – volume: 19 start-page: 1790 year: 2013 end-page: 1817 article-title: Theory of self‐learning Q‐matrix publication-title: Bernoulli – volume: 40 start-page: 200 year: 2016 end-page: 217 article-title: Model similarity, model selection, and attribute classification publication-title: Applied Psychological Measurement – volume: 19 start-page: 506 year: 2016 end-page: 532 article-title: Validity and reliability of situational judgement test scores: A new approach based on cognitive diagnosis models publication-title: Organizational Research Methods – volume: 54 start-page: 426 year: 1943 end-page: 482 article-title: Tests of statistical hypotheses concerning several parameters when the number of observations is large publication-title: Transactions of the American Mathematical Society – volume: 20 start-page: 345 year: 1983 end-page: 354 article-title: Rule space: An approach for dealing with misconceptions based on item response theory publication-title: Journal of Educational Measurement – volume: 76 start-page: 179 year: 2011 end-page: 199 article-title: The generalized DINA model framework publication-title: Psychometrika – volume: 37 start-page: 419 year: 2013 end-page: 437 article-title: A general cognitive diagnosis model for expert‐defined polytomous attributes publication-title: Applied Psychological Measurement – start-page: 139 year: 1997 end-page: 152 – volume: 69 start-page: 253 year: 2016 end-page: 275 article-title: A sequential cognitive diagnosis model for polytomous responses publication-title: British Journal of Mathematical and Statistical Psychology – volume: 69 start-page: 333 year: 2004 end-page: 353 article-title: Higher‐order latent trait models for cognitive diagnosis publication-title: Psychometrika – volume: 83 start-page: 515 year: 2018 end-page: 537 article-title: Hypothesis testing of the Q‐matrix publication-title: Psychometrika – volume: 11 start-page: 287 year: 2006 end-page: 305 article-title: Measurement of psychological disorders using cognitive diagnosis models publication-title: Psychological Methods – volume: 36 start-page: 447 year: 2012 end-page: 468 article-title: Recognizing uncertainty in the Q‐matrix via a Bayesian extension of the DINA model publication-title: Applied Psychological Measurement – volume: 81 start-page: 253 year: 2016 end-page: 273 article-title: A general method of empirical Q‐matrix validation publication-title: Psychometrika – volume: 26 start-page: 237 year: 2014 end-page: 255 article-title: The identification and validation process of proportional reasoning attributes: An application of a cognitive diagnosis modeling framework publication-title: Mathematics Education Research Journal – volume: 51 start-page: 281 year: 2018 end-page: 296 article-title: Analysis of clinical data from cognitive diagnosis modeling framework publication-title: Measurement and Evaluation in Counseling and Development – volume: 47 start-page: 149 year: 1982 end-page: 174 article-title: A Rasch model for partial credit scoring publication-title: Psychometrika – volume: 42 start-page: 446 year: 2018 end-page: 459 article-title: An EM‐based method for Q‐matrix validation publication-title: Applied Psychological Measurement – volume: 41 start-page: 277 year: 2017 end-page: 293 article-title: A residual‐based approach to validate ‐matrix specifications publication-title: Applied Psychological Measurement – volume: 68 start-page: 78 year: 2008 end-page: 96 article-title: The effects of Q‐matrix misspecification on parameter estimates and classification accuracy in the DINA model publication-title: Educational and Psychological Measurement – volume: 83 start-page: 89 year: 2018 end-page: 108 article-title: Bayesian estimation of the DINA Q matrix publication-title: Psychometrika – volume: 110 start-page: 850 year: 2015 end-page: 866 article-title: Statistical analysis of Q‐matrix based on diagnostic classification models publication-title: Journal of the American Statistical Association – volume: 45 start-page: 343 year: 2008 end-page: 362 article-title: An empirically based method of Q‐matrix validation for the DINA model: Development and applications publication-title: Journal of Educational Measurement – year: 2017 – volume: 26 start-page: 301 year: 1989 end-page: 321 article-title: Using restricted latent class models to map the skill structure of achievement items publication-title: Journal of Educational Measurement – volume: 51 start-page: 98 year: 2014 end-page: 125 article-title: Differential item functioning assessment in cognitive diagnostic modeling: Application of the Wald test to investigate DIF in the DINA model publication-title: Journal of Educational Measurement – volume: 36 start-page: 548 year: 2012 end-page: 564 article-title: Data‐driven learning of Q‐matrix publication-title: Applied Psychological Measurement – volume: 19 start-page: 91 year: 1995 end-page: 100 article-title: Conceptual notes on models for discrete polytomous item responses publication-title: Applied Psychological Measurement – volume: 61 start-page: 287 year: 2008 end-page: 307 article-title: A general diagnostic model applied to language testing data publication-title: British Journal of Mathematical and Statistical Psychology – start-page: 85 year: 1997 end-page: 100 – volume: 43 start-page: 402 year: 2019 end-page: 414 article-title: Improved Wald statistics for item‐level model comparison in diagnostic classification models publication-title: Applied Psychological Measurement – start-page: 123 year: 1997 end-page: 138 – year: 2013 – ident: e_1_2_10_39_1 doi: 10.1007/978-1-4757-2691-6_7 – ident: e_1_2_10_32_1 doi: 10.1007/978-1-4757-2691-6_5 – ident: e_1_2_10_30_1 – ident: e_1_2_10_34_1 doi: 10.1177/1094428116630065 – ident: e_1_2_10_5_1 doi: 10.1177/0146621613479818 – ident: e_1_2_10_36_1 doi: 10.1037/1082-989X.11.3.287 – ident: e_1_2_10_8_1 doi: 10.1177/0146621612449069 – ident: e_1_2_10_11_1 doi: 10.1007/s11336-015-9467-8 – start-page: 191 volume-title: Mathematical methods for digital computers year: 1960 ident: e_1_2_10_14_1 – ident: e_1_2_10_22_1 doi: 10.1111/bmsp.12070 – ident: e_1_2_10_10_1 doi: 10.1007/s11336-011-9207-7 – ident: e_1_2_10_40_1 doi: 10.1348/000711007X193957 – ident: e_1_2_10_9_1 doi: 10.1111/j.1745-3984.2008.00069.x – ident: e_1_2_10_31_1 doi: 10.1177/0013164407301545 – ident: e_1_2_10_42_1 doi: 10.1177/0146621617752991 – ident: e_1_2_10_6_1 doi: 10.1080/01621459.2014.934827 – ident: e_1_2_10_27_1 doi: 10.1007/BF02296272 – ident: e_1_2_10_16_1 doi: 10.1007/s11336-018-9629-6 – ident: e_1_2_10_20_1 doi: 10.1177/0146621612456591 – ident: e_1_2_10_25_1 doi: 10.1177/0146621615621717 – ident: e_1_2_10_26_1 – ident: e_1_2_10_35_1 doi: 10.1111/j.1745-3984.1983.tb00212.x – ident: e_1_2_10_38_1 doi: 10.1007/978-1-4757-2691-6_8 – ident: e_1_2_10_18_1 doi: 10.1111/jedm.12036 – ident: e_1_2_10_21_1 doi: 10.3150/12-BEJ430 – ident: e_1_2_10_23_1 doi: 10.32614/CRAN.package.GDINA – ident: e_1_2_10_7_1 doi: 10.1177/0146621613488436 – ident: e_1_2_10_15_1 – ident: e_1_2_10_13_1 doi: 10.1080/07481756.2017.1327286 – ident: e_1_2_10_33_1 doi: 10.1177/0146621617707510 – ident: e_1_2_10_37_1 doi: 10.1007/s13394-013-0090-7 – ident: e_1_2_10_19_1 doi: 10.1177/0146621618798664 – ident: e_1_2_10_41_1 doi: 10.1090/S0002-9947-1943-0012401-3 – volume-title: Categorical data analysis year: 2013 ident: e_1_2_10_2_1 – ident: e_1_2_10_28_1 doi: 10.1177/014662169501900110 – ident: e_1_2_10_12_1 doi: 10.1007/BF02295640 – ident: e_1_2_10_3_1 doi: 10.1177/0146621616686021 – ident: e_1_2_10_17_1 doi: 10.1111/j.1745-3984.1989.tb00336.x – ident: e_1_2_10_29_1 doi: 10.1504/IJQRE.2017.086507 – ident: e_1_2_10_4_1 doi: 10.1007/s11336-017-9579-4 – ident: e_1_2_10_24_1 doi: 10.3102/1076998618792484 |
| SSID | ssj0012506 |
| Score | 2.4351008 |
| Snippet | As a core component of most cognitive diagnosis models, the Q‐matrix, or item and attribute association matrix, is typically developed by domain experts, and... As a core component of most cognitive diagnosis models, the Q-matrix, or item and attribute association matrix, is typically developed by domain experts, and... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 142 |
| SubjectTerms | Algorithms Cognition Cognition Disorders - diagnosis cognitive diagnosis Computer Simulation discrimination index Empirical analysis G‐DINA Humans Mathematical analysis Matrix methods Models, Statistical Psychometrics - methods Q‐matrix validation sequential G‐DINA stepwise Task Performance and Analysis Trends in International Mathematics and Science Study Wald test |
| Title | An empirical Q‐matrix validation method for the sequential generalized DINA model |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbmsp.12156 https://www.ncbi.nlm.nih.gov/pubmed/30723890 https://www.proquest.com/docview/2345261115 https://www.proquest.com/docview/2229081357 |
| Volume | 73 |
| WOSCitedRecordID | wos000509696500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2044-8317 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012506 issn: 0007-1102 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7o5oM-eL9Mp0T0RaHQdkubgi_TORR0eIW9laRNZbB1Y3OiPvkT_I3-Ek-SriqKIL619LRJk3P5TpN-B2DXTSRNhEstFV2sauxIiyUOt4RdSbyAUbRNza5_5jebrNUKLibgYPwvjOGHyD-4KcvQ_loZOBfDT0YuusO-5kbwJqHoouLSAhTrV43bs3wVAcO7Z-Cvb2GYczN6UrWT5-PurwHpG8r8Clp11GnM_a-_8zCboU1SM-qxABMyXYSZ85yqdbgI07kLfMIThT0NdfMSXNdSIrv9tiYRIZdvL69dxef_SFA526YUEzEFqAkiX4LPJGZjNjqNDrkzfNbtZxmT-mmzRnTNnWW4bRzfHJ1YWQ0GK6pgKmL5vIqYgUeei1BR-FIkNHYcoer6-YiEoirCDUHjWAQVljBejdGmbW5T4QQyUoBgBQppL5VrQJgnhe2xWPqKwSZyeWALyWnApU25YH4J9sYTEUYZQbmqk9EJx4mKGsJQD2EJdnLZvqHl-FGqPJ7PMDPNYehWVFV1FKQl2M4vo1GplRKeyt4IZRQLPsOXxE6tGj3Im0GniDAnsEuwr6f7l_bDw_PrC320_hfhDZh2VVav94aXoXA_GMlNmIoeUAEGWzDpt9hWpurv3In_1Q |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTtswFD4aBYnuYhswoAOGEdyAFClJ48S5LLAKtLbiV-IushNnqkRD1cK0ccUj8Iw8CefYaQANIaHdJcpJ4tjn57N98h2ALT_XPFc-dyi6OEHmaUfknnSU28zDWHC0TcOu34l6PXFxER-VuTn0L4zlh6gW3MgyjL8mA6cF6WdWrgbjoSFHCKdgOkA9QgWf3j9pn3eqbQSM76HFv5GDcc4v-Ukplefp7pcR6R-Y-RK1mrDT_vyfDf4Cn0q8yVpWQebggy7m4WO3Imsdz0O9coJ_8YTQpyVvXoDTVsH0YNg3NCLs-OHufkCM_n8YqmffFmNitgQ1Q-zL8JnMpmaj27hkvyyjdf9WZ2z_sNdipurOVzhv_zjbO3DKKgxO2sTJiBPJAFGDTEMfwaKKtMp55nmKKvtFiIXSAAGH4lmm4qbIhQwytGpXulx5sU4JEixCrbgq9DIwEWrlhiLTEXHYpL6MXaUlj6V2uVQiasD2ZCSStKQop0oZl8lkqkJdmJgubMBmJTu0xByvSq1OBjQpjXOc-E2qq46CvAEb1WU0K9orkYW-ukEZ4sEX-JHYqCWrCNVr0C0i0IndBuyY8X7j_clu9_TIHH17j_A6zB6cdTtJ57D3cwXqPs3xTab4KtSuRzd6DWbS36gMo--lxj8CJSsC7A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD4aBaHysA0Y0I2LEbyAFClJ48R57NZVoJWq3CTeIjtxpko0VBQQ7Gk_gd_IL9k5dhpAQ0iIt0Q5iR37XD7HJ98B2PZzzXPlc4eiixNknnZE7klHuc08jAVH2zTs-t2o1xNnZ3G_zM2hf2EsP0T1wY0sw_hrMnA9yvInVq6G45EhRwinYDqgKjI1mG4fdU671TYCxvfQ4t_IwTjnl_yklMrzePfziPQfzHyOWk3Y6Xx6Z4c_w8cSb7KWVZB5-KCLBZg7qMhaxwtQr5zgHZ4Q-rTkzYtw3CqYHo4GhkaEHT78vR8So_8tQ_Uc2GJMzJagZoh9GT6T2dRsdBvn7LdltB780Rlr7_dazFTd-QKnnZ8nP_acsgqDkzZxMeJEMkDUINPQR7CoIq1ynnmeosp-EWKhNEDAoXiWqbgpciGDDK3alS5XXqxTggRLUCsuCr0CTIRauaHIdEQcNqkvY1dpyWOpXS6ViBqwM5mJJC0pyqlSxnkyWarQECZmCBuwVcmOLDHHi1KrkwlNSuMcJ36T6qqjIG_AZnUZzYr2SmShL65RhnjwBb4kdmrZKkLVDLpFBDqx24BdM9-vtJ98Pzjum6OvbxHegNl-u5N093u_vkHdpyW-SRRfhdrV5bVeg5n0BnXhcr1U-H-r9QJn |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+Q%E2%80%90matrix+validation+method+for+the+sequential+generalized+DINA+model&rft.jtitle=British+journal+of+mathematical+%26+statistical+psychology&rft.au=Ma%2C+Wenchao&rft.au=de+la+Torre%2C+Jimmy&rft.date=2020-02-01&rft.issn=0007-1102&rft.eissn=2044-8317&rft.volume=73&rft.issue=1&rft.spage=142&rft.epage=163&rft_id=info:doi/10.1111%2Fbmsp.12156&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_bmsp_12156 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1102&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1102&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1102&client=summon |