An empirical Q‐matrix validation method for the sequential generalized DINA model

As a core component of most cognitive diagnosis models, the Q‐matrix, or item and attribute association matrix, is typically developed by domain experts, and tends to be subjective. It is critical to validate the Q‐matrix empirically because a misspecified Q‐matrix could result in erroneous attribut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of mathematical & statistical psychology Jg. 73; H. 1; S. 142 - 163
Hauptverfasser: Ma, Wenchao, Torre, Jimmy
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England British Psychological Society 01.02.2020
Schlagworte:
ISSN:0007-1102, 2044-8317, 2044-8317
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As a core component of most cognitive diagnosis models, the Q‐matrix, or item and attribute association matrix, is typically developed by domain experts, and tends to be subjective. It is critical to validate the Q‐matrix empirically because a misspecified Q‐matrix could result in erroneous attribute estimation. Most existing Q‐matrix validation procedures are developed for dichotomous responses. However, in this paper, we propose a method to empirically detect and correct the misspecifications in the Q‐matrix for graded response data based on the sequential generalized deterministic inputs, noisy ‘and’ gate (G‐DINA) model. The proposed Q‐matrix validation procedure is implemented in a stepwise manner based on the Wald test and an effect size measure. The feasibility of the proposed method is examined using simulation studies. Also, a set of data from the Trends in International Mathematics and Science Study (TIMSS) 2011 mathematics assessment is analysed for illustration.
AbstractList As a core component of most cognitive diagnosis models, the Q‐matrix, or item and attribute association matrix, is typically developed by domain experts, and tends to be subjective. It is critical to validate the Q‐matrix empirically because a misspecified Q‐matrix could result in erroneous attribute estimation. Most existing Q‐matrix validation procedures are developed for dichotomous responses. However, in this paper, we propose a method to empirically detect and correct the misspecifications in the Q‐matrix for graded response data based on the sequential generalized deterministic inputs, noisy ‘and’ gate (G‐DINA) model. The proposed Q‐matrix validation procedure is implemented in a stepwise manner based on the Wald test and an effect size measure. The feasibility of the proposed method is examined using simulation studies. Also, a set of data from the Trends in International Mathematics and Science Study (TIMSS) 2011 mathematics assessment is analysed for illustration.
As a core component of most cognitive diagnosis models, the Q-matrix, or item and attribute association matrix, is typically developed by domain experts, and tends to be subjective. It is critical to validate the Q-matrix empirically because a misspecified Q-matrix could result in erroneous attribute estimation. Most existing Q-matrix validation procedures are developed for dichotomous responses. However, in this paper, we propose a method to empirically detect and correct the misspecifications in the Q-matrix for graded response data based on the sequential generalized deterministic inputs, noisy 'and' gate (G-DINA) model. The proposed Q-matrix validation procedure is implemented in a stepwise manner based on the Wald test and an effect size measure. The feasibility of the proposed method is examined using simulation studies. Also, a set of data from the Trends in International Mathematics and Science Study (TIMSS) 2011 mathematics assessment is analysed for illustration.As a core component of most cognitive diagnosis models, the Q-matrix, or item and attribute association matrix, is typically developed by domain experts, and tends to be subjective. It is critical to validate the Q-matrix empirically because a misspecified Q-matrix could result in erroneous attribute estimation. Most existing Q-matrix validation procedures are developed for dichotomous responses. However, in this paper, we propose a method to empirically detect and correct the misspecifications in the Q-matrix for graded response data based on the sequential generalized deterministic inputs, noisy 'and' gate (G-DINA) model. The proposed Q-matrix validation procedure is implemented in a stepwise manner based on the Wald test and an effect size measure. The feasibility of the proposed method is examined using simulation studies. Also, a set of data from the Trends in International Mathematics and Science Study (TIMSS) 2011 mathematics assessment is analysed for illustration.
Author Ma, Wenchao
Torre, Jimmy
Author_xml – sequence: 1
  givenname: Wenchao
  orcidid: 0000-0002-6763-0707
  surname: Ma
  fullname: Ma, Wenchao
  email: wenchao.ma@ua.edu
  organization: University of Alabama
– sequence: 2
  givenname: Jimmy
  surname: Torre
  fullname: Torre, Jimmy
  organization: University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30723890$$D View this record in MEDLINE/PubMed
BookMark eNp90c9OFTEUBvCGYOSCbnwA04SNMRk4p53On-UVFUgAIei66UzPSMnM9NrOVXHlI_CMPImFiywIoZtufufk5Ps22froR2LsDcIOprfbDHGxgwJVscZmAvI8qySW62wGAGWGCGKDbcZ4CYBCQfGSbUgohaxqmLHz-chpWLjgWtPzs5u_14OZgvvNf5reWTM5P_KBpgtveecDny6IR_qxpHFyyX-nkUKCf8jyj4cncz54S_0r9qIzfaTX9_8W-_b509e9g-zoy_7h3vwoa6Uqi6w0eYW1aQuBsm5KajplERuUCktUdZvXCI2ytqll1VUmt0oiGFAN1tQCCLnF3q32LoJPJ8VJDy621PdmJL-MWghRQ5X2lYluP6KXfhnGdJ0WMleiSDmqpN7eq2UzkNWL4AYTrvT_uBJ4vwJt8DEG6h4Igr7tQt92oe-6SBge4dZNd4lOwbj-6RFcjfxyPV09s1x_OD4_Xc38A24jmlo
CitedBy_id crossref_primary_10_1177_23328584221081256
crossref_primary_10_1007_s10639_024_13039_6
crossref_primary_10_1111_jedm_12383
crossref_primary_10_1007_s11336_021_09821_x
crossref_primary_10_1111_bmsp_12371
crossref_primary_10_3758_s13428_022_01880_x
crossref_primary_10_1016_j_stueduc_2020_100931
crossref_primary_10_3102_10769986251334789
crossref_primary_10_1177_0146621620909904
crossref_primary_10_3102_10769986241301055
crossref_primary_10_1111_bmsp_12346
crossref_primary_10_1177_0146621620965745
crossref_primary_10_3390_psych3040052
crossref_primary_10_2478_amns_2023_1_00202
crossref_primary_10_3390_electronics13081454
crossref_primary_10_3389_fpsyg_2023_1126106
crossref_primary_10_1111_bmsp_12228
crossref_primary_10_1111_bmsp_12349
crossref_primary_10_1177_0146621619843829
crossref_primary_10_3389_feduc_2022_802828
crossref_primary_10_1080_00273171_2020_1746901
crossref_primary_10_3390_app12104809
crossref_primary_10_1007_s41237_025_00263_8
crossref_primary_10_1007_s11336_019_09683_4
crossref_primary_10_1007_s41237_022_00174_y
crossref_primary_10_1177_0146621620977681
crossref_primary_10_1177_10731911241247483
crossref_primary_10_1080_00273171_2021_1985949
crossref_primary_10_1177_02655322231162840
crossref_primary_10_3102_10769986241240084
crossref_primary_10_1007_s10956_020_09871_3
crossref_primary_10_1016_j_eswa_2021_116454
crossref_primary_10_1177_27527263221136301
crossref_primary_10_3389_fpsyg_2020_02120
crossref_primary_10_1016_j_ijinfomgt_2019_05_006
crossref_primary_10_3389_fpsyg_2020_02246
crossref_primary_10_1080_00273171_2021_1919048
crossref_primary_10_3758_s13428_024_02442_z
crossref_primary_10_3758_s13428_024_02547_5
crossref_primary_10_3758_s13428_023_02126_0
crossref_primary_10_3389_fpsyg_2021_614470
crossref_primary_10_3389_fpsyg_2021_714568
crossref_primary_10_1186_s40536_022_00138_4
Cites_doi 10.1007/978-1-4757-2691-6_7
10.1007/978-1-4757-2691-6_5
10.1177/1094428116630065
10.1177/0146621613479818
10.1037/1082-989X.11.3.287
10.1177/0146621612449069
10.1007/s11336-015-9467-8
10.1111/bmsp.12070
10.1007/s11336-011-9207-7
10.1348/000711007X193957
10.1111/j.1745-3984.2008.00069.x
10.1177/0013164407301545
10.1177/0146621617752991
10.1080/01621459.2014.934827
10.1007/BF02296272
10.1007/s11336-018-9629-6
10.1177/0146621612456591
10.1177/0146621615621717
10.1111/j.1745-3984.1983.tb00212.x
10.1007/978-1-4757-2691-6_8
10.1111/jedm.12036
10.3150/12-BEJ430
10.32614/CRAN.package.GDINA
10.1177/0146621613488436
10.1080/07481756.2017.1327286
10.1177/0146621617707510
10.1007/s13394-013-0090-7
10.1177/0146621618798664
10.1090/S0002-9947-1943-0012401-3
10.1177/014662169501900110
10.1007/BF02295640
10.1177/0146621616686021
10.1111/j.1745-3984.1989.tb00336.x
10.1504/IJQRE.2017.086507
10.1007/s11336-017-9579-4
10.3102/1076998618792484
ContentType Journal Article
Copyright 2019 The British Psychological Society
2019 The British Psychological Society.
Copyright © 2020 The British Psychological Society
Copyright_xml – notice: 2019 The British Psychological Society
– notice: 2019 The British Psychological Society.
– notice: Copyright © 2020 The British Psychological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
K9.
7X8
DOI 10.1111/bmsp.12156
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Psychology
Mathematics
EISSN 2044-8317
EndPage 163
ExternalDocumentID 30723890
10_1111_bmsp_12156
BMSP12156
Genre article
Validation Study
Journal Article
GroupedDBID ---
--Z
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
23N
31~
33P
36B
3V.
4.4
50Y
50Z
52M
52O
52S
52T
52U
52V
52W
53G
5GY
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8AO
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
930
A01
A04
AABNI
AAESR
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AAONW
AAOUF
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABIVO
ABJCF
ABJNI
ABQWH
ABSOO
ABTAH
ABUWG
ABXGK
ACAHQ
ACBKW
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACHQT
ACIWK
ACKIV
ACMXC
ACPOU
ACRPL
ACUHS
ACXQS
ACYXJ
ADBBV
ADBTR
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFKFF
AFKRA
AFPWT
AFWVQ
AFYRF
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AIFKG
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARAPS
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BMXJE
BNVMJ
BPHCQ
BQESF
BROTX
BRXPI
BVXVI
C45
CAG
CCPQU
COF
CS3
D-6
D-7
D-C
D-D
DCZOG
DPXWK
DRFUL
DRMAN
DRSSH
DU5
DWQXO
EAD
EAP
EAS
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EPS
EST
ESX
F00
F01
F5P
FEDTE
FUBAC
FYUFA
G-S
G.N
G50
GNK
GNM
GNUQQ
GODZA
GUQSH
HAOEW
HCIFZ
HGLYW
HMCUK
HVGLF
HZ~
H~9
K6V
K7-
KBYEO
L6V
L7B
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
M1P
M2M
M2O
M2P
M2Q
M7S
MEWTI
MK4
MRFUL
MRMAN
MRSSH
MSFUL
MSMAN
MSSSH
MXFUL
MXMAN
MXSSH
MY~
N04
N06
NF~
NIF
O66
O9-
OHT
OVD
P2P
P2W
P2Y
P2Z
P4B
P4C
P62
PADUT
PALCI
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q.N
Q2X
QB0
R.K
RIWAO
RJQFR
ROL
RX1
S0X
SAMSI
SUPJJ
SV3
TEORI
TN5
TUS
UB1
UKHRP
UPT
VH1
W8V
W99
WBKPD
WH7
WHDPE
WIH
WII
WIJ
WOHZO
WSUWO
WXSBR
XG1
ZY4
ZZTAW
~A~
~IA
~WP
AAMMB
AAYXX
AEFGJ
AEYWJ
AFFHD
AGHNM
AGQPQ
AGXDD
AIDQK
AIDYY
CITATION
O8X
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
K9.
7X8
ID FETCH-LOGICAL-c3576-7a4819ac62139b7ebf5d11b13517159c4910b5ddb938f8a4d5310a05b19ec0023
IEDL.DBID DRFUL
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000509696500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0007-1102
2044-8317
IngestDate Fri Sep 05 13:36:40 EDT 2025
Mon Oct 06 17:24:11 EDT 2025
Mon Jul 21 05:40:53 EDT 2025
Tue Nov 18 21:11:20 EST 2025
Sat Nov 29 06:56:35 EST 2025
Wed Jan 22 16:37:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords sequential G-DINA
Wald test
cognitive diagnosis
stepwise
Trends in International Mathematics and Science Study
Q-matrix validation
G-DINA
discrimination index
Language English
License 2019 The British Psychological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3576-7a4819ac62139b7ebf5d11b13517159c4910b5ddb938f8a4d5310a05b19ec0023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-6763-0707
PMID 30723890
PQID 2345261115
PQPubID 36005
PageCount 22
ParticipantIDs proquest_miscellaneous_2229081357
proquest_journals_2345261115
pubmed_primary_30723890
crossref_primary_10_1111_bmsp_12156
crossref_citationtrail_10_1111_bmsp_12156
wiley_primary_10_1111_bmsp_12156_BMSP12156
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Leicester
PublicationTitle British journal of mathematical & statistical psychology
PublicationTitleAlternate Br J Math Stat Psychol
PublicationYear 2020
Publisher British Psychological Society
Publisher_xml – name: British Psychological Society
References 2017; 41
2017; 4
2016; 19
1943; 54
2006; 11
2004; 69
1997
2014; 26
2011; 76
2018; 83
1995; 19
2012; 36
1989; 26
2018; 42
2013; 19
1982; 47
2013; 37
2019; 44
2019; 43
2015; 110
1983; 20
2008; 45
2017
2016; 40
2008; 68
2018; 51
1960
2016; 81
2013
2008; 61
2014; 51
2016; 69
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
Agresti A. (e_1_2_10_2_1) 2013
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
Efroymson A. (e_1_2_10_14_1) 1960
e_1_2_10_26_1
References_xml – volume: 37
  start-page: 598
  year: 2013
  end-page: 618
  article-title: Statistical refinement of the Q‐matrix in cognitive diagnosis
  publication-title: Applied Psychological Measurement
– volume: 44
  start-page: 45
  year: 2019
  end-page: 77
  article-title: Category‐level model selection for the sequential G‐DINA model
  publication-title: Journal of Educational and Behavioral Statistics
– start-page: 191
  year: 1960
  end-page: 203
– volume: 41
  start-page: 614
  year: 2017
  end-page: 631
  article-title: Inferential item‐fit evaluation in cognitive diagnosis modeling
  publication-title: Applied Psychological Measurement
– volume: 4
  start-page: 159
  year: 2017
  end-page: 190
  article-title: An efficient standard error estimator of the DINA model parameters when analysing clustered data
  publication-title: International Journal of Quantitative Research in Education
– volume: 19
  start-page: 1790
  year: 2013
  end-page: 1817
  article-title: Theory of self‐learning Q‐matrix
  publication-title: Bernoulli
– volume: 40
  start-page: 200
  year: 2016
  end-page: 217
  article-title: Model similarity, model selection, and attribute classification
  publication-title: Applied Psychological Measurement
– volume: 19
  start-page: 506
  year: 2016
  end-page: 532
  article-title: Validity and reliability of situational judgement test scores: A new approach based on cognitive diagnosis models
  publication-title: Organizational Research Methods
– volume: 54
  start-page: 426
  year: 1943
  end-page: 482
  article-title: Tests of statistical hypotheses concerning several parameters when the number of observations is large
  publication-title: Transactions of the American Mathematical Society
– volume: 20
  start-page: 345
  year: 1983
  end-page: 354
  article-title: Rule space: An approach for dealing with misconceptions based on item response theory
  publication-title: Journal of Educational Measurement
– volume: 76
  start-page: 179
  year: 2011
  end-page: 199
  article-title: The generalized DINA model framework
  publication-title: Psychometrika
– volume: 37
  start-page: 419
  year: 2013
  end-page: 437
  article-title: A general cognitive diagnosis model for expert‐defined polytomous attributes
  publication-title: Applied Psychological Measurement
– start-page: 139
  year: 1997
  end-page: 152
– volume: 69
  start-page: 253
  year: 2016
  end-page: 275
  article-title: A sequential cognitive diagnosis model for polytomous responses
  publication-title: British Journal of Mathematical and Statistical Psychology
– volume: 69
  start-page: 333
  year: 2004
  end-page: 353
  article-title: Higher‐order latent trait models for cognitive diagnosis
  publication-title: Psychometrika
– volume: 83
  start-page: 515
  year: 2018
  end-page: 537
  article-title: Hypothesis testing of the Q‐matrix
  publication-title: Psychometrika
– volume: 11
  start-page: 287
  year: 2006
  end-page: 305
  article-title: Measurement of psychological disorders using cognitive diagnosis models
  publication-title: Psychological Methods
– volume: 36
  start-page: 447
  year: 2012
  end-page: 468
  article-title: Recognizing uncertainty in the Q‐matrix via a Bayesian extension of the DINA model
  publication-title: Applied Psychological Measurement
– volume: 81
  start-page: 253
  year: 2016
  end-page: 273
  article-title: A general method of empirical Q‐matrix validation
  publication-title: Psychometrika
– volume: 26
  start-page: 237
  year: 2014
  end-page: 255
  article-title: The identification and validation process of proportional reasoning attributes: An application of a cognitive diagnosis modeling framework
  publication-title: Mathematics Education Research Journal
– volume: 51
  start-page: 281
  year: 2018
  end-page: 296
  article-title: Analysis of clinical data from cognitive diagnosis modeling framework
  publication-title: Measurement and Evaluation in Counseling and Development
– volume: 47
  start-page: 149
  year: 1982
  end-page: 174
  article-title: A Rasch model for partial credit scoring
  publication-title: Psychometrika
– volume: 42
  start-page: 446
  year: 2018
  end-page: 459
  article-title: An EM‐based method for Q‐matrix validation
  publication-title: Applied Psychological Measurement
– volume: 41
  start-page: 277
  year: 2017
  end-page: 293
  article-title: A residual‐based approach to validate ‐matrix specifications
  publication-title: Applied Psychological Measurement
– volume: 68
  start-page: 78
  year: 2008
  end-page: 96
  article-title: The effects of Q‐matrix misspecification on parameter estimates and classification accuracy in the DINA model
  publication-title: Educational and Psychological Measurement
– volume: 83
  start-page: 89
  year: 2018
  end-page: 108
  article-title: Bayesian estimation of the DINA Q matrix
  publication-title: Psychometrika
– volume: 110
  start-page: 850
  year: 2015
  end-page: 866
  article-title: Statistical analysis of Q‐matrix based on diagnostic classification models
  publication-title: Journal of the American Statistical Association
– volume: 45
  start-page: 343
  year: 2008
  end-page: 362
  article-title: An empirically based method of Q‐matrix validation for the DINA model: Development and applications
  publication-title: Journal of Educational Measurement
– year: 2017
– volume: 26
  start-page: 301
  year: 1989
  end-page: 321
  article-title: Using restricted latent class models to map the skill structure of achievement items
  publication-title: Journal of Educational Measurement
– volume: 51
  start-page: 98
  year: 2014
  end-page: 125
  article-title: Differential item functioning assessment in cognitive diagnostic modeling: Application of the Wald test to investigate DIF in the DINA model
  publication-title: Journal of Educational Measurement
– volume: 36
  start-page: 548
  year: 2012
  end-page: 564
  article-title: Data‐driven learning of Q‐matrix
  publication-title: Applied Psychological Measurement
– volume: 19
  start-page: 91
  year: 1995
  end-page: 100
  article-title: Conceptual notes on models for discrete polytomous item responses
  publication-title: Applied Psychological Measurement
– volume: 61
  start-page: 287
  year: 2008
  end-page: 307
  article-title: A general diagnostic model applied to language testing data
  publication-title: British Journal of Mathematical and Statistical Psychology
– start-page: 85
  year: 1997
  end-page: 100
– volume: 43
  start-page: 402
  year: 2019
  end-page: 414
  article-title: Improved Wald statistics for item‐level model comparison in diagnostic classification models
  publication-title: Applied Psychological Measurement
– start-page: 123
  year: 1997
  end-page: 138
– year: 2013
– ident: e_1_2_10_39_1
  doi: 10.1007/978-1-4757-2691-6_7
– ident: e_1_2_10_32_1
  doi: 10.1007/978-1-4757-2691-6_5
– ident: e_1_2_10_30_1
– ident: e_1_2_10_34_1
  doi: 10.1177/1094428116630065
– ident: e_1_2_10_5_1
  doi: 10.1177/0146621613479818
– ident: e_1_2_10_36_1
  doi: 10.1037/1082-989X.11.3.287
– ident: e_1_2_10_8_1
  doi: 10.1177/0146621612449069
– ident: e_1_2_10_11_1
  doi: 10.1007/s11336-015-9467-8
– start-page: 191
  volume-title: Mathematical methods for digital computers
  year: 1960
  ident: e_1_2_10_14_1
– ident: e_1_2_10_22_1
  doi: 10.1111/bmsp.12070
– ident: e_1_2_10_10_1
  doi: 10.1007/s11336-011-9207-7
– ident: e_1_2_10_40_1
  doi: 10.1348/000711007X193957
– ident: e_1_2_10_9_1
  doi: 10.1111/j.1745-3984.2008.00069.x
– ident: e_1_2_10_31_1
  doi: 10.1177/0013164407301545
– ident: e_1_2_10_42_1
  doi: 10.1177/0146621617752991
– ident: e_1_2_10_6_1
  doi: 10.1080/01621459.2014.934827
– ident: e_1_2_10_27_1
  doi: 10.1007/BF02296272
– ident: e_1_2_10_16_1
  doi: 10.1007/s11336-018-9629-6
– ident: e_1_2_10_20_1
  doi: 10.1177/0146621612456591
– ident: e_1_2_10_25_1
  doi: 10.1177/0146621615621717
– ident: e_1_2_10_26_1
– ident: e_1_2_10_35_1
  doi: 10.1111/j.1745-3984.1983.tb00212.x
– ident: e_1_2_10_38_1
  doi: 10.1007/978-1-4757-2691-6_8
– ident: e_1_2_10_18_1
  doi: 10.1111/jedm.12036
– ident: e_1_2_10_21_1
  doi: 10.3150/12-BEJ430
– ident: e_1_2_10_23_1
  doi: 10.32614/CRAN.package.GDINA
– ident: e_1_2_10_7_1
  doi: 10.1177/0146621613488436
– ident: e_1_2_10_15_1
– ident: e_1_2_10_13_1
  doi: 10.1080/07481756.2017.1327286
– ident: e_1_2_10_33_1
  doi: 10.1177/0146621617707510
– ident: e_1_2_10_37_1
  doi: 10.1007/s13394-013-0090-7
– ident: e_1_2_10_19_1
  doi: 10.1177/0146621618798664
– ident: e_1_2_10_41_1
  doi: 10.1090/S0002-9947-1943-0012401-3
– volume-title: Categorical data analysis
  year: 2013
  ident: e_1_2_10_2_1
– ident: e_1_2_10_28_1
  doi: 10.1177/014662169501900110
– ident: e_1_2_10_12_1
  doi: 10.1007/BF02295640
– ident: e_1_2_10_3_1
  doi: 10.1177/0146621616686021
– ident: e_1_2_10_17_1
  doi: 10.1111/j.1745-3984.1989.tb00336.x
– ident: e_1_2_10_29_1
  doi: 10.1504/IJQRE.2017.086507
– ident: e_1_2_10_4_1
  doi: 10.1007/s11336-017-9579-4
– ident: e_1_2_10_24_1
  doi: 10.3102/1076998618792484
SSID ssj0012506
Score 2.4351008
Snippet As a core component of most cognitive diagnosis models, the Q‐matrix, or item and attribute association matrix, is typically developed by domain experts, and...
As a core component of most cognitive diagnosis models, the Q-matrix, or item and attribute association matrix, is typically developed by domain experts, and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 142
SubjectTerms Algorithms
Cognition
Cognition Disorders - diagnosis
cognitive diagnosis
Computer Simulation
discrimination index
Empirical analysis
G‐DINA
Humans
Mathematical analysis
Matrix methods
Models, Statistical
Psychometrics - methods
Q‐matrix validation
sequential G‐DINA
stepwise
Task Performance and Analysis
Trends in International Mathematics and Science Study
Wald test
Title An empirical Q‐matrix validation method for the sequential generalized DINA model
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbmsp.12156
https://www.ncbi.nlm.nih.gov/pubmed/30723890
https://www.proquest.com/docview/2345261115
https://www.proquest.com/docview/2229081357
Volume 73
WOSCitedRecordID wos000509696500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2044-8317
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012506
  issn: 0007-1102
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH7Y1kM9uNStLmVELwqBJG028FKXomBLXQq9hZlkKoU2FquinvwJ_kZ_ie_NpFFRBPGWkJdkMm-Z72VmvgewY3KrynumaQjLkQbNBBq-K2kjsM9dovMNekIVm_BaLb_bDdpTsD_ZC6P5IbIfbuQZKl6Tg3Mx_uTkYjgeKW4ENwcFGw3XyUPh6KLROctmEXB4dzX89Qwc5uyUnpRW8nzc_XVA-oYyv4JWNeo05v7X3nmYTdEmq2vzWIApmZRgpplRtY5LUMxC4BOeEPbU1M2LcFlPmByO-opEhJ2_vbwOic__kaFx9nUpJqYLUDNEvgyfyfTCbAwaA3at-az7zzJmR6etOlM1d5ag0zi-Ojwx0hoMRlTFVMTweA0xA49cG6Eiqk70nNiyBNX18xAJRTWEG8KJYxFU_Z7PazH6tMlNR1iBjAgQLEM-uUnkKjBEC8KRPre5V8M8C42B-NrQHlyJKEOaZdidKCKMUoJyqpMxCCeJCnVhqLqwDNuZ7EjTcvwotTHRZ5i65ji0q1RVHQWdMmxll9GpaKaEJ_LmHmWIBd_Hj_TKsKLtIHsNBkWEOQE2d0-p-5f3hwfNy7Y6WvuL8DoUbcrq1drwDcjf3d7LTZiOHtAAbiuQ87p-JTX1d63l_0g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6oE5wP3i_zGtEXhULb9fo4nUNxG17Bt5K0mQy2bjgV9cmf4G_0l3hO0lVFEcS3lp42afKd5MvtOwA7JrfKvGWahrBcadBKoBF4kg4CB9wjOd-wJVSwCb_ZDK6vw9Nsbw6dhdH6EPmEG3mGaq_JwWlC-pOXi-6gr8QRvFEoOIgjBHihel67qufLCNi_e5r_-gb2c3amT0pbeT7e_tojfaOZX1mr6nZq0__M8AxMZXyTVTRAZmFEpnMw2cjFWgdzUMwbwSe8IfapxZvn4aKSMtntt5WMCDt7e3ntkqL_I0N4tnUwJqZDUDPkvgy_yfTWbGw2OuxGK1q3n2XCqsfNClNRdxbgqnZ4eXBkZFEYjLiMgxHD5w6yBh57NpJFrDzRchPLEhTZz0cuFDtIOISbJCIsB62AOwl6tclNV1ihjIkSLMJY2kvlMjDkC8KVAbe57-BIC-FAim2ICE8iz5BmCXaHNRHFmUQ5RcroRMOhChVhpIqwBNu5bV8Lc_xotTas0ChzzkFklymuOhq6JdjKH6Nb0VoJT2XvHm1IBz_An_RLsKSBkCeDzSISnRCzu6fq-5f0o_3Gxam6WvmL8SZMHF026lH9uHmyCkWbxvhqp_gajN3d3st1GI8fEAy3Gxni3wHztAJf
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH75fp1Ii-KBTartfH6RyKOuYNfCtJm8rA1eGcqE_-BH-jv8Rzkq4qiiC-tfS0TZNzku80yfcBbJncqvLUNA1hudKgmUAj8CRtBA64R3S-YSqU2ITfbAZXV2ErX5tDe2E0P0Txw40iQ_XXFOCym6Sfolx0el1FjuANw4hDKjIlGKmfNS6Pi2kEHN89jX99A8c5O-cnpaU8H3d_HZG-wcyvqFUNO42pfxZ4GiZzvMlq2kFmYEhmszBxUpC19mZhvOgEn_CE0Kcmb56D81rGZKfbVjQi7PTt5bVDjP6PDN2zrcWYmJagZoh9GT6T6aXZ2G3csGvNaN1-lgmrHzZrTKnuzMNlY_9i78DIVRiMuIrJiOFzB1EDjz0bwSI2nkjdxLIEKfv5iIViBwGHcJNEhNUgDbiTYFSb3HSFFcqYIMEClLLbTC4BQ7wgXBlwm_sOZlroDsTYhh7hScQZ0izD9qAlojinKCeljJtokKpQFUaqCsuwWdh2NTHHj1aVQYNGeXD2IrtKuupo6JZho7iMYUVzJTyTt320IR78AD_SL8OidoTiNdgtItAJsbg7qr1_eX-0e3LeUkfLfzFeh7FWvREdHzaPVmDcphRfLRSvQOn-ri9XYTR-QF-4W8sd_h17GgHa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+Q%E2%80%90matrix+validation+method+for+the+sequential+generalized+DINA+model&rft.jtitle=British+journal+of+mathematical+%26+statistical+psychology&rft.au=Ma%2C+Wenchao&rft.au=de+la+Torre%2C+Jimmy&rft.date=2020-02-01&rft.issn=0007-1102&rft.eissn=2044-8317&rft.volume=73&rft.issue=1&rft.spage=142&rft.epage=163&rft_id=info:doi/10.1111%2Fbmsp.12156&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_bmsp_12156
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1102&client=summon