Enhancing Long‐Term Device Stability Using Thin Film Blends of Small Molecule Semiconductors and Insulating Polymers to Trap Surface‐Induced Polymorphs

The lack of long‐term stability in thin films of organic semiconductors can often be caused by the low structural stability of metastable phases that are frequently formed upon deposition on a substrate surface. Here, thin films of 2,7‐dioctyloxy[1]benzothieno[3,2‐b]benzothiophene (C8O‐BTBT‐OC8) and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced functional materials Ročník 30; číslo 52
Hlavní autori: Salzillo, Tommaso, Campos, Antonio, Babuji, Adara, Santiago, Raul, Bromley, Stefan T., Ocal, Carmen, Barrena, Esther, Jouclas, Rémy, Ruzie, Christian, Schweicher, Guillaume, Geerts, Yves H., Mas‐Torrent, Marta
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc 01.12.2020
Predmet:
ISSN:1616-301X, 1616-3028
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The lack of long‐term stability in thin films of organic semiconductors can often be caused by the low structural stability of metastable phases that are frequently formed upon deposition on a substrate surface. Here, thin films of 2,7‐dioctyloxy[1]benzothieno[3,2‐b]benzothiophene (C8O‐BTBT‐OC8) and blends of this material with polystyrene by solution shearing are fabricated. Both types of films exhibit the metastable surface‐induced herringbone phase (SIP) in all the tested coating conditions. The blended films reveal a higher device performance with a field‐effect mobility close to 1 cm2 V−1 s−1, a threshold voltage close to 0 V, and an on/off current ratio above 107. In situ lattice phonon Raman microscopy is used to study the stability of the SIP polymorph. It is found that films based on only C8O‐BTBT‐OC8 slowly evolve to the Bulk cofacial phase, significantly impacting device electrical performance. In contrast, the blended films stabilize the SIP phase, leading to devices that maintain a high performance over 1.5 years. This work demonstrates that blending small‐molecule organic semiconductors with insulating binding polymers can trap metastable polymorphs, which can lead to devices with both improved performance and long‐term stability. Organic field‐effect transistors based on thin films of a benzothieno[3,2‐b][1]benzothiophene derivative and blends of it with polystyrene are fabricated. In the films based on only the organic semiconductor a phase transformation from the metastable surface‐induced polymorph (SIP) to the bulk polymorph is found. In contrast, the blended films show an improved performance and, remarkably, stabilize the SIP polymorph.
AbstractList The lack of long‐term stability in thin films of organic semiconductors can often be caused by the low structural stability of metastable phases that are frequently formed upon deposition on a substrate surface. Here, thin films of 2,7‐dioctyloxy[1]benzothieno[3,2‐b]benzothiophene (C8O‐BTBT‐OC8) and blends of this material with polystyrene by solution shearing are fabricated. Both types of films exhibit the metastable surface‐induced herringbone phase (SIP) in all the tested coating conditions. The blended films reveal a higher device performance with a field‐effect mobility close to 1 cm2 V−1 s−1, a threshold voltage close to 0 V, and an on/off current ratio above 107. In situ lattice phonon Raman microscopy is used to study the stability of the SIP polymorph. It is found that films based on only C8O‐BTBT‐OC8 slowly evolve to the Bulk cofacial phase, significantly impacting device electrical performance. In contrast, the blended films stabilize the SIP phase, leading to devices that maintain a high performance over 1.5 years. This work demonstrates that blending small‐molecule organic semiconductors with insulating binding polymers can trap metastable polymorphs, which can lead to devices with both improved performance and long‐term stability. Organic field‐effect transistors based on thin films of a benzothieno[3,2‐b][1]benzothiophene derivative and blends of it with polystyrene are fabricated. In the films based on only the organic semiconductor a phase transformation from the metastable surface‐induced polymorph (SIP) to the bulk polymorph is found. In contrast, the blended films show an improved performance and, remarkably, stabilize the SIP polymorph.
The lack of long‐term stability in thin films of organic semiconductors can often be caused by the low structural stability of metastable phases that are frequently formed upon deposition on a substrate surface. Here, thin films of 2,7‐dioctyloxy[1]benzothieno[3,2‐ b ]benzothiophene (C 8 O‐BTBT‐OC 8 ) and blends of this material with polystyrene by solution shearing are fabricated. Both types of films exhibit the metastable surface‐induced herringbone phase (SIP) in all the tested coating conditions. The blended films reveal a higher device performance with a field‐effect mobility close to 1 cm 2 V −1 s −1 , a threshold voltage close to 0 V, and an on/off current ratio above 10 7 . In situ lattice phonon Raman microscopy is used to study the stability of the SIP polymorph. It is found that films based on only C 8 O‐BTBT‐OC 8 slowly evolve to the Bulk cofacial phase, significantly impacting device electrical performance. In contrast, the blended films stabilize the SIP phase, leading to devices that maintain a high performance over 1.5 years. This work demonstrates that blending small‐molecule organic semiconductors with insulating binding polymers can trap metastable polymorphs, which can lead to devices with both improved performance and long‐term stability.
The lack of long‐term stability in thin films of organic semiconductors can often be caused by the low structural stability of metastable phases that are frequently formed upon deposition on a substrate surface. Here, thin films of 2,7‐dioctyloxy[1]benzothieno[3,2‐b]benzothiophene (C8O‐BTBT‐OC8) and blends of this material with polystyrene by solution shearing are fabricated. Both types of films exhibit the metastable surface‐induced herringbone phase (SIP) in all the tested coating conditions. The blended films reveal a higher device performance with a field‐effect mobility close to 1 cm2 V−1 s−1, a threshold voltage close to 0 V, and an on/off current ratio above 107. In situ lattice phonon Raman microscopy is used to study the stability of the SIP polymorph. It is found that films based on only C8O‐BTBT‐OC8 slowly evolve to the Bulk cofacial phase, significantly impacting device electrical performance. In contrast, the blended films stabilize the SIP phase, leading to devices that maintain a high performance over 1.5 years. This work demonstrates that blending small‐molecule organic semiconductors with insulating binding polymers can trap metastable polymorphs, which can lead to devices with both improved performance and long‐term stability.
Author Salzillo, Tommaso
Santiago, Raul
Jouclas, Rémy
Barrena, Esther
Ruzie, Christian
Mas‐Torrent, Marta
Ocal, Carmen
Schweicher, Guillaume
Geerts, Yves H.
Campos, Antonio
Babuji, Adara
Bromley, Stefan T.
Author_xml – sequence: 1
  givenname: Tommaso
  surname: Salzillo
  fullname: Salzillo, Tommaso
  organization: Universidad Autònoma de Barcelona
– sequence: 2
  givenname: Antonio
  surname: Campos
  fullname: Campos, Antonio
  organization: Campus UAB
– sequence: 3
  givenname: Adara
  surname: Babuji
  fullname: Babuji, Adara
  organization: Campus UAB
– sequence: 4
  givenname: Raul
  surname: Santiago
  fullname: Santiago, Raul
  organization: Universitat de Barcelona
– sequence: 5
  givenname: Stefan T.
  surname: Bromley
  fullname: Bromley, Stefan T.
  organization: Institució Catalana de Recerca i Estudis Avançats (ICREA)
– sequence: 6
  givenname: Carmen
  surname: Ocal
  fullname: Ocal, Carmen
  organization: Campus UAB
– sequence: 7
  givenname: Esther
  surname: Barrena
  fullname: Barrena, Esther
  organization: Campus UAB
– sequence: 8
  givenname: Rémy
  surname: Jouclas
  fullname: Jouclas, Rémy
  organization: Université Libre de Bruxelles (ULB)
– sequence: 9
  givenname: Christian
  surname: Ruzie
  fullname: Ruzie, Christian
  organization: Université Libre de Bruxelles (ULB)
– sequence: 10
  givenname: Guillaume
  surname: Schweicher
  fullname: Schweicher, Guillaume
  organization: Université Libre de Bruxelles (ULB)
– sequence: 11
  givenname: Yves H.
  surname: Geerts
  fullname: Geerts, Yves H.
  organization: Université Libre de Bruxelles (ULB)
– sequence: 12
  givenname: Marta
  orcidid: 0000-0002-1586-005X
  surname: Mas‐Torrent
  fullname: Mas‐Torrent, Marta
  email: mmas@icmab.es
  organization: Campus UAB
BookMark eNqFkctKAzEUhoNUsFa3rgOuW5PMrbOsvWihotAK7oZM5sSmZJKazCjd-QjufTufxBkqCoK4Ohf-7_xw_mPUMdYAQmeUDCgh7IIXshwwwgiJKY0OUJfGNO4HhA073z19OELH3m8IoUkShF30PjVrboQyj3hhzePH69sKXIkn8KwE4GXFc6VVtcP3vpWs1srgmdIlvtRgCo-txMuSa41vrAZR6waBUglrilpU1nnMTYHnxteaV-2BO6t3JTT7yuKV41u8rJ3kAhrfectAsZdYt137E3QoufZw-lV76H42XY2v-4vbq_l4tOiLIEqifh6EMk0jCPOIF5zkIgiFTAkTaSjiPAkoo3kMCWOCQsTCHArJadxMERnKlMZBD53v726dfarBV9nG1s40lhkLE5pEaZCwRjXYq4Sz3juQ2dapkrtdRknWBpC1AWTfATRA-AsQqmreYE3luNJ_Y-kee1Eadv-YZKPJ7OaH_QTCC6E8
CitedBy_id crossref_primary_10_1002_adfm_202514912
crossref_primary_10_1007_s11172_024_4438_9
crossref_primary_10_1002_admi_202200815
crossref_primary_10_1002_adfm_202202071
crossref_primary_10_1016_j_surfin_2023_103752
crossref_primary_10_1039_D2QO01002J
crossref_primary_10_1039_D5TC01928A
crossref_primary_10_1002_pssr_202100602
crossref_primary_10_1039_D4TC05403B
crossref_primary_10_1002_adfm_202105456
crossref_primary_10_1002_smll_202406522
crossref_primary_10_1039_D2NR05625A
crossref_primary_10_1039_D2TC05066H
crossref_primary_10_1021_acs_cgd_5c00046
crossref_primary_10_1002_adfm_202200843
crossref_primary_10_1002_aelm_202400887
crossref_primary_10_1039_D1FD00100K
crossref_primary_10_1002_smll_202300151
crossref_primary_10_1002_admi_202500599
crossref_primary_10_1002_ijch_202100067
crossref_primary_10_1002_aelm_202200293
crossref_primary_10_1039_D2CP01408D
crossref_primary_10_1016_j_coelec_2022_101072
Cites_doi 10.1039/C6CE01200K
10.1039/C4EE00688G
10.1021/acsami.0c06418
10.1063/1.2432410
10.1002/adfm.201502446
10.1039/C8CS00283E
10.1002/adma.201905909
10.1021/acs.jpcc.5b11115
10.1002/adfm.201502274
10.1073/pnas.092143399
10.1002/admi.201900950
10.3390/cryst9020085
10.1039/b810993a
10.1021/acsomega.8b00043
10.1021/acs.jpcc.8b03635
10.1039/C5TC04390E
10.1002/adma.201302439
10.1021/ja063290d
10.1021/acs.macromol.9b01284
10.1021/am5075908
10.1002/adfm.201700526
10.1039/C6TC01409G
10.1002/cphc.201701378
10.1021/acsami.8b02851
10.1038/ncomms10908
10.1021/cr100142w
10.1002/admt.201600090
10.1016/S0304-3991(03)00040-8
10.1002/adfm.201803907
10.1038/ncomms4573
10.1038/nmat5035
10.1002/adma.201001446
10.1002/adma.201002682
10.1021/acs.jpclett.7b01634
10.1021/ja074841i
10.1002/adma.201703864
10.1021/acsami.7b19279
10.1039/b804317e
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202006115
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202006115
ADFM202006115
Genre article
GrantInformation_xml – fundername: María de Maeztu
  funderid: MDM‐2017‐0767
– fundername: Spanish Ministry projects
  funderid: FANCY CTQ2016‐80030‐R; GENESIS PID2019‐111682RB‐I00; PID2019‐110907GB‐I00; MICIUN/FEDER RTI2018‐095460‐B‐I00; MAT2016‐77852‐C2‐1‐R
– fundername: Spanish Government
  funderid: BES‐2016‐077519
– fundername: Generalitat de Catalunya
  funderid: 2017‐SGR13; 2017‐SGR‐918; 2017‐SGR668
– fundername: European Union's Horizon 2020 research and innovation programme
  funderid: 811284
– fundername: P‐SPHERE
  funderid: 665919
– fundername: French Community of Belgian
  funderid: 20061
– fundername: FNRS
  funderid: 2.4565.11
– fundername: Ministry of Economy and Competitiveness
  funderid: SEV‐2015‐0496
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3575-b34f995e4b5ada0bc34cf902c94c6b73121b6e722c1e524bedfa162c1508f9163
IEDL.DBID DRFUL
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000571763100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Sun Nov 09 08:52:38 EST 2025
Sat Nov 29 07:18:45 EST 2025
Tue Nov 18 21:59:31 EST 2025
Wed Jan 22 16:31:36 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 52
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3575-b34f995e4b5ada0bc34cf902c94c6b73121b6e722c1e524bedfa162c1508f9163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1586-005X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adfm.202006115
PQID 2471759372
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2471759372
crossref_primary_10_1002_adfm_202006115
crossref_citationtrail_10_1002_adfm_202006115
wiley_primary_10_1002_adfm_202006115_ADFM202006115
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 122
2017; 8
2018; 28
2019; 9
2007; 107
2007; 129
2019; 6
2019; 52
2017; 27
2002; 99
2014; 26
2008; 10
2017; 29
2020; 12
2020; 32
2002
1937; 22
2016; 18
2015; 7
2007; 78
2016; 120
2003; 97
2011; 111
2016; 4
2010; 22
2018; 19
2016; 7
2018; 17
2018; 3
2014; 5
2016; 1
2019; 48
1866
2011; 23
1907; 30
2018; 10
2014; 7
2016; 26
2006; 128
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
Bernstein J. (e_1_2_7_6_1) 2002
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_11_1
Donnay J. D. H. (e_1_2_7_41_1) 1937; 22
e_1_2_7_26_1
Coropceanu V. (e_1_2_7_10_1) 2007; 107
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Friedel M. G. (e_1_2_7_40_1) 1907; 30
Bravais A. (e_1_2_7_42_1) 1866
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 2329
  year: 2018
  publication-title: ACS Omega
– volume: 8
  start-page: 3690
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 120
  start-page: 1831
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 2145
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 99
  start-page: 5804
  year: 2002
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 97
  start-page: 151
  year: 2003
  publication-title: Ultramicroscopy
– volume: 111
  start-page: 4833
  year: 2011
  publication-title: Chem. Rev.
– volume: 9
  start-page: 85
  year: 2019
  publication-title: Crystals
– volume: 18
  start-page: 6149
  year: 2016
  publication-title: CrystEngComm
– volume: 5
  start-page: 3573
  year: 2014
  publication-title: Nat. Commun.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 17
  start-page: 2
  year: 2018
  publication-title: Nat. Mater.
– volume: 52
  start-page: 7524
  year: 2019
  publication-title: Macromolecules
– volume: 6
  year: 2019
  publication-title: Adv. Mater. Interfaces
– volume: 22
  start-page: 4198
  year: 2010
  publication-title: Adv. Mater.
– year: 1866
– volume: 30
  start-page: 326
  year: 1907
  publication-title: Bull. Minéralogie
– volume: 48
  start-page: 2502
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 3915
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 19
  start-page: 993
  year: 2018
  publication-title: ChemPhysChem
– volume: 10
  start-page: 7296
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 937
  year: 2008
  publication-title: CrystEngComm
– volume: 10
  start-page: 1899
  year: 2008
  publication-title: CrystEngComm
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– year: 2002
– volume: 26
  start-page: 2256
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 128
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 463
  year: 1937
  publication-title: Am. Mineral.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 26
  start-page: 487
  year: 2014
  publication-title: Adv. Mater.
– volume: 1
  year: 2016
  publication-title: Adv. Mater. Technol.
– volume: 4
  start-page: 4863
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 107
  start-page: 926
  year: 2007
  publication-title: Top. Curr. Chem.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 129
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1868
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 23
  start-page: 523
  year: 2011
  publication-title: Adv. Mater.
– volume: 26
  start-page: 2379
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 78
  year: 2007
  publication-title: Rev. Sci. Instrum.
– ident: e_1_2_7_22_1
  doi: 10.1039/C6CE01200K
– ident: e_1_2_7_33_1
  doi: 10.1039/C4EE00688G
– ident: e_1_2_7_35_1
  doi: 10.1021/acsami.0c06418
– ident: e_1_2_7_43_1
  doi: 10.1063/1.2432410
– ident: e_1_2_7_3_1
  doi: 10.1002/adfm.201502446
– volume: 30
  start-page: 326
  year: 1907
  ident: e_1_2_7_40_1
  publication-title: Bull. Minéralogie
– ident: e_1_2_7_7_1
  doi: 10.1039/C8CS00283E
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.201905909
– ident: e_1_2_7_9_1
  doi: 10.1021/acs.jpcc.5b11115
– ident: e_1_2_7_23_1
  doi: 10.1002/adfm.201502274
– ident: e_1_2_7_2_1
  doi: 10.1073/pnas.092143399
– ident: e_1_2_7_15_1
  doi: 10.1002/admi.201900950
– ident: e_1_2_7_28_1
  doi: 10.3390/cryst9020085
– ident: e_1_2_7_5_1
  doi: 10.1039/b810993a
– ident: e_1_2_7_4_1
  doi: 10.1021/acsomega.8b00043
– ident: e_1_2_7_37_1
  doi: 10.1021/acs.jpcc.8b03635
– ident: e_1_2_7_12_1
  doi: 10.1039/C5TC04390E
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201302439
– ident: e_1_2_7_30_1
  doi: 10.1021/ja063290d
– ident: e_1_2_7_39_1
  doi: 10.1021/acs.macromol.9b01284
– ident: e_1_2_7_21_1
  doi: 10.1021/am5075908
– ident: e_1_2_7_32_1
  doi: 10.1002/adfm.201700526
– ident: e_1_2_7_20_1
  doi: 10.1039/C6TC01409G
– ident: e_1_2_7_31_1
  doi: 10.1002/cphc.201701378
– ident: e_1_2_7_29_1
  doi: 10.1021/acsami.8b02851
– ident: e_1_2_7_25_1
  doi: 10.1038/ncomms10908
– volume-title: Polymorphism in Molecular Crystals
  year: 2002
  ident: e_1_2_7_6_1
– ident: e_1_2_7_11_1
  doi: 10.1021/cr100142w
– ident: e_1_2_7_24_1
  doi: 10.1002/admt.201600090
– ident: e_1_2_7_38_1
  doi: 10.1016/S0304-3991(03)00040-8
– volume-title: Etudes Cristallographiques
  year: 1866
  ident: e_1_2_7_42_1
– ident: e_1_2_7_27_1
  doi: 10.1002/adfm.201803907
– volume: 107
  start-page: 926
  year: 2007
  ident: e_1_2_7_10_1
  publication-title: Top. Curr. Chem.
– ident: e_1_2_7_13_1
  doi: 10.1038/ncomms4573
– ident: e_1_2_7_26_1
  doi: 10.1038/nmat5035
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.201001446
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201002682
– ident: e_1_2_7_19_1
  doi: 10.1021/acs.jpclett.7b01634
– ident: e_1_2_7_16_1
  doi: 10.1021/ja074841i
– volume: 22
  start-page: 463
  year: 1937
  ident: e_1_2_7_41_1
  publication-title: Am. Mineral.
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.201703864
– ident: e_1_2_7_34_1
  doi: 10.1021/acsami.7b19279
– ident: e_1_2_7_36_1
  doi: 10.1039/b804317e
SSID ssj0017734
Score 2.4992025
Snippet The lack of long‐term stability in thin films of organic semiconductors can often be caused by the low structural stability of metastable phases that are...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Benzothiophene
Materials science
Metastable phases
organic field‐effect transistors
Organic semiconductors
Polymer blends
polymorphism
Polystyrene resins
Semiconductors
Shearing
Structural stability
Substrates
Thin films
Threshold voltage
Title Enhancing Long‐Term Device Stability Using Thin Film Blends of Small Molecule Semiconductors and Insulating Polymers to Trap Surface‐Induced Polymorphs
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202006115
https://www.proquest.com/docview/2471759372
Volume 30
WOSCitedRecordID wos000571763100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbQwqE9tKUPsZSiOSD1FJE4ToKPwBKBBAjxkPYW-RWKFBK0WSpx4ydw59_xS5hJsmE5VJXgFku2E9kzni_2528Y29BSahKkRhdPQk8Y6Tzl2y1PaIWzzUWsrWiSTSTHx1vjsTyZu8Xf6kP0G27kGc16TQ6udL35IhqqbE43yemXOKBb5oscjTcasMXRaXpx2J8kJEl7shwHxPEKxjPhRp9vvu7hdWB6QZvzmLUJOunn93_uF_apA5yw3VrIMltw5Vf2cU6G8Bt73Cv_kOxGeQmHVXn5dP9wjus1jBytIoBwtCHQ3kFDLwDK9AnpVXENOwXxaaHK4exaFQUctal2sQkx7quSpGSrSQ2qtHBAnHdFHGs4qYo72i2HaQUYKm_g7HaSK-PwvZRIxDjbVqnQBOrv7CLdO9_d97qkDZ4JEfp5OhS5lJETOlJW-dqEwuTS50YKE-skDHigY5dwbgIXcaGdzVUQYwmRYo5YNfzBBmVVuhUGIvJForm2sQyERqgU5RG32jlfavzLMkPmzWYsM52iOSXWKLJWi5lnNOhZP-hD9ruvf9Nqefyz5trMALLOp-uMYxxPIoRzfMh4M9X_6SXbHqVHfWn1LY1-sg_03PJn1thgOrl1v9iS-Tu9qifrna0_A08BAi8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqqFR66AcFdQu0c6jUU0TiOAk-QpcI1N0VKou0t8hfAaSQoN0FiRs_off-u_6SziTZAAeEhDg6sp3InvG82M9vGPuupdQkSI0unoSeMNJ5yrc7ntAKZ5uLWFtRJ5tIRqOdyUQetWxCugvT6EN0G27kGfV6TQ5OG9Lbd6qhyuZ0lZz-iQO6Zr4ssHc08uX-7_Rk0B0lJElztBwHRPIKJgvlRp9vP-zhYWS6g5v3QWsdddL3L_C9H9i7FnLCbmMjH9krV66yt_eECD-xv_vlGQlvlKcwqMrTf7d_xrhiQ9_ROgIISGsK7Q3UBAOgXJ-QnhcXsFcQoxaqHI4vVFHAsEm2i02Ic1-VJCZbTWegSguHxHpXxLKGo6q4of1ymFeAwfISjq-muTIO30upRIyzTZUKjWC2xk7S_fHPA69N2-CZEMGfp0ORSxk5oSNlla9NKEwufW6kMLFOwoAHOnYJ5yZwERfa2VwFMZYQK-aIVsN1tlRWpfvMQES-SDTXNpaB0AiWojziVjvnS43_WabHvMWUZabVNKfUGkXWqDHzjAY96wa9x3509S8bNY9Ha24uLCBrvXqWcYzkSYSAjvcYr-f6iV6y3X467EpfntPoG3tzMB4OssHh6NcGW6HnDZtmky3Np1dui7021_Pz2fRra_j_AcIwBh8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hLUJwoHyKhRbmgMQpauI4SX1s2UZUbFcr2kp7i_zZVkqT1e4WqTd-Anf-Hb-kniSbtgeEhDg6sp3InvG82M9vAD4qIRQJUnsXz-KAa2EDGZrdgCvpZ5vxVBneJJvIJpPd2UxMOzYh3YVp9SH6DTfyjGa9Jge3c-N2blVDpXF0lZz-iSO6Zr7BKZPMADZG3_LTcX-UkGXt0XIaEckrmq2VG0O2c7-H-5HpFm7eBa1N1Mk3_8P3PoOnHeTEvdZGnsMDW72AJ3eECF_Cr4PqnIQ3qjMc19XZ7x8_T_yKjSNL6wh6QNpQaK-xIRgg5frE_KK8xP2SGLVYOzy-lGWJR22yXd-EOPd1RWKy9WKJsjJ4SKx3SSxrnNblNe2X46pGHyzneHy1cFJb_15KJaKtaavU3giWr-A0Pzj5_CXo0jYEOvbgL1Axd0IklqtEGhkqHXPtRMi04DpVWRyxSKU2Y0xHNmFcWeNklPqSx4rOo9X4NQyqurJvAHkS8kwxZVIRceXBUuISZpS1oVD-P0sPIVhPWaE7TXNKrVEWrRozK2jQi37Qh_Cprz9v1Tz-WHNrbQFF59XLgvlIniUe0LEhsGau_9JLsTfKj_rS239p9AEeTUd5MT6cfH0Hj-lxS6bZgsFqcWW34aH-vrpYLt53dn8DRAQFmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Long%E2%80%90Term+Device+Stability+Using+Thin+Film+Blends+of+Small+Molecule+Semiconductors+and+Insulating+Polymers+to+Trap+Surface%E2%80%90Induced+Polymorphs&rft.jtitle=Advanced+functional+materials&rft.au=Salzillo%2C+Tommaso&rft.au=Campos%2C+Antonio&rft.au=Babuji%2C+Adara&rft.au=Santiago%2C+Raul&rft.date=2020-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=52&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202006115&rft.externalDBID=10.1002%252Fadfm.202006115&rft.externalDocID=ADFM202006115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon