Enhancing Long‐Term Device Stability Using Thin Film Blends of Small Molecule Semiconductors and Insulating Polymers to Trap Surface‐Induced Polymorphs
The lack of long‐term stability in thin films of organic semiconductors can often be caused by the low structural stability of metastable phases that are frequently formed upon deposition on a substrate surface. Here, thin films of 2,7‐dioctyloxy[1]benzothieno[3,2‐b]benzothiophene (C8O‐BTBT‐OC8) and...
Uložené v:
| Vydané v: | Advanced functional materials Ročník 30; číslo 52 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken
Wiley Subscription Services, Inc
01.12.2020
|
| Predmet: | |
| ISSN: | 1616-301X, 1616-3028 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The lack of long‐term stability in thin films of organic semiconductors can often be caused by the low structural stability of metastable phases that are frequently formed upon deposition on a substrate surface. Here, thin films of 2,7‐dioctyloxy[1]benzothieno[3,2‐b]benzothiophene (C8O‐BTBT‐OC8) and blends of this material with polystyrene by solution shearing are fabricated. Both types of films exhibit the metastable surface‐induced herringbone phase (SIP) in all the tested coating conditions. The blended films reveal a higher device performance with a field‐effect mobility close to 1 cm2 V−1 s−1, a threshold voltage close to 0 V, and an on/off current ratio above 107. In situ lattice phonon Raman microscopy is used to study the stability of the SIP polymorph. It is found that films based on only C8O‐BTBT‐OC8 slowly evolve to the Bulk cofacial phase, significantly impacting device electrical performance. In contrast, the blended films stabilize the SIP phase, leading to devices that maintain a high performance over 1.5 years. This work demonstrates that blending small‐molecule organic semiconductors with insulating binding polymers can trap metastable polymorphs, which can lead to devices with both improved performance and long‐term stability.
Organic field‐effect transistors based on thin films of a benzothieno[3,2‐b][1]benzothiophene derivative and blends of it with polystyrene are fabricated. In the films based on only the organic semiconductor a phase transformation from the metastable surface‐induced polymorph (SIP) to the bulk polymorph is found. In contrast, the blended films show an improved performance and, remarkably, stabilize the SIP polymorph. |
|---|---|
| AbstractList | The lack of long‐term stability in thin films of organic semiconductors can often be caused by the low structural stability of metastable phases that are frequently formed upon deposition on a substrate surface. Here, thin films of 2,7‐dioctyloxy[1]benzothieno[3,2‐b]benzothiophene (C8O‐BTBT‐OC8) and blends of this material with polystyrene by solution shearing are fabricated. Both types of films exhibit the metastable surface‐induced herringbone phase (SIP) in all the tested coating conditions. The blended films reveal a higher device performance with a field‐effect mobility close to 1 cm2 V−1 s−1, a threshold voltage close to 0 V, and an on/off current ratio above 107. In situ lattice phonon Raman microscopy is used to study the stability of the SIP polymorph. It is found that films based on only C8O‐BTBT‐OC8 slowly evolve to the Bulk cofacial phase, significantly impacting device electrical performance. In contrast, the blended films stabilize the SIP phase, leading to devices that maintain a high performance over 1.5 years. This work demonstrates that blending small‐molecule organic semiconductors with insulating binding polymers can trap metastable polymorphs, which can lead to devices with both improved performance and long‐term stability.
Organic field‐effect transistors based on thin films of a benzothieno[3,2‐b][1]benzothiophene derivative and blends of it with polystyrene are fabricated. In the films based on only the organic semiconductor a phase transformation from the metastable surface‐induced polymorph (SIP) to the bulk polymorph is found. In contrast, the blended films show an improved performance and, remarkably, stabilize the SIP polymorph. The lack of long‐term stability in thin films of organic semiconductors can often be caused by the low structural stability of metastable phases that are frequently formed upon deposition on a substrate surface. Here, thin films of 2,7‐dioctyloxy[1]benzothieno[3,2‐ b ]benzothiophene (C 8 O‐BTBT‐OC 8 ) and blends of this material with polystyrene by solution shearing are fabricated. Both types of films exhibit the metastable surface‐induced herringbone phase (SIP) in all the tested coating conditions. The blended films reveal a higher device performance with a field‐effect mobility close to 1 cm 2 V −1 s −1 , a threshold voltage close to 0 V, and an on/off current ratio above 10 7 . In situ lattice phonon Raman microscopy is used to study the stability of the SIP polymorph. It is found that films based on only C 8 O‐BTBT‐OC 8 slowly evolve to the Bulk cofacial phase, significantly impacting device electrical performance. In contrast, the blended films stabilize the SIP phase, leading to devices that maintain a high performance over 1.5 years. This work demonstrates that blending small‐molecule organic semiconductors with insulating binding polymers can trap metastable polymorphs, which can lead to devices with both improved performance and long‐term stability. The lack of long‐term stability in thin films of organic semiconductors can often be caused by the low structural stability of metastable phases that are frequently formed upon deposition on a substrate surface. Here, thin films of 2,7‐dioctyloxy[1]benzothieno[3,2‐b]benzothiophene (C8O‐BTBT‐OC8) and blends of this material with polystyrene by solution shearing are fabricated. Both types of films exhibit the metastable surface‐induced herringbone phase (SIP) in all the tested coating conditions. The blended films reveal a higher device performance with a field‐effect mobility close to 1 cm2 V−1 s−1, a threshold voltage close to 0 V, and an on/off current ratio above 107. In situ lattice phonon Raman microscopy is used to study the stability of the SIP polymorph. It is found that films based on only C8O‐BTBT‐OC8 slowly evolve to the Bulk cofacial phase, significantly impacting device electrical performance. In contrast, the blended films stabilize the SIP phase, leading to devices that maintain a high performance over 1.5 years. This work demonstrates that blending small‐molecule organic semiconductors with insulating binding polymers can trap metastable polymorphs, which can lead to devices with both improved performance and long‐term stability. |
| Author | Salzillo, Tommaso Santiago, Raul Jouclas, Rémy Barrena, Esther Ruzie, Christian Mas‐Torrent, Marta Ocal, Carmen Schweicher, Guillaume Geerts, Yves H. Campos, Antonio Babuji, Adara Bromley, Stefan T. |
| Author_xml | – sequence: 1 givenname: Tommaso surname: Salzillo fullname: Salzillo, Tommaso organization: Universidad Autònoma de Barcelona – sequence: 2 givenname: Antonio surname: Campos fullname: Campos, Antonio organization: Campus UAB – sequence: 3 givenname: Adara surname: Babuji fullname: Babuji, Adara organization: Campus UAB – sequence: 4 givenname: Raul surname: Santiago fullname: Santiago, Raul organization: Universitat de Barcelona – sequence: 5 givenname: Stefan T. surname: Bromley fullname: Bromley, Stefan T. organization: Institució Catalana de Recerca i Estudis Avançats (ICREA) – sequence: 6 givenname: Carmen surname: Ocal fullname: Ocal, Carmen organization: Campus UAB – sequence: 7 givenname: Esther surname: Barrena fullname: Barrena, Esther organization: Campus UAB – sequence: 8 givenname: Rémy surname: Jouclas fullname: Jouclas, Rémy organization: Université Libre de Bruxelles (ULB) – sequence: 9 givenname: Christian surname: Ruzie fullname: Ruzie, Christian organization: Université Libre de Bruxelles (ULB) – sequence: 10 givenname: Guillaume surname: Schweicher fullname: Schweicher, Guillaume organization: Université Libre de Bruxelles (ULB) – sequence: 11 givenname: Yves H. surname: Geerts fullname: Geerts, Yves H. organization: Université Libre de Bruxelles (ULB) – sequence: 12 givenname: Marta orcidid: 0000-0002-1586-005X surname: Mas‐Torrent fullname: Mas‐Torrent, Marta email: mmas@icmab.es organization: Campus UAB |
| BookMark | eNqFkctKAzEUhoNUsFa3rgOuW5PMrbOsvWihotAK7oZM5sSmZJKazCjd-QjufTufxBkqCoK4Ohf-7_xw_mPUMdYAQmeUDCgh7IIXshwwwgiJKY0OUJfGNO4HhA073z19OELH3m8IoUkShF30PjVrboQyj3hhzePH69sKXIkn8KwE4GXFc6VVtcP3vpWs1srgmdIlvtRgCo-txMuSa41vrAZR6waBUglrilpU1nnMTYHnxteaV-2BO6t3JTT7yuKV41u8rJ3kAhrfectAsZdYt137E3QoufZw-lV76H42XY2v-4vbq_l4tOiLIEqifh6EMk0jCPOIF5zkIgiFTAkTaSjiPAkoo3kMCWOCQsTCHArJadxMERnKlMZBD53v726dfarBV9nG1s40lhkLE5pEaZCwRjXYq4Sz3juQ2dapkrtdRknWBpC1AWTfATRA-AsQqmreYE3luNJ_Y-kee1Eadv-YZKPJ7OaH_QTCC6E8 |
| CitedBy_id | crossref_primary_10_1002_adfm_202514912 crossref_primary_10_1007_s11172_024_4438_9 crossref_primary_10_1002_admi_202200815 crossref_primary_10_1002_adfm_202202071 crossref_primary_10_1016_j_surfin_2023_103752 crossref_primary_10_1039_D2QO01002J crossref_primary_10_1039_D5TC01928A crossref_primary_10_1002_pssr_202100602 crossref_primary_10_1039_D4TC05403B crossref_primary_10_1002_adfm_202105456 crossref_primary_10_1002_smll_202406522 crossref_primary_10_1039_D2NR05625A crossref_primary_10_1039_D2TC05066H crossref_primary_10_1021_acs_cgd_5c00046 crossref_primary_10_1002_adfm_202200843 crossref_primary_10_1002_aelm_202400887 crossref_primary_10_1039_D1FD00100K crossref_primary_10_1002_smll_202300151 crossref_primary_10_1002_admi_202500599 crossref_primary_10_1002_ijch_202100067 crossref_primary_10_1002_aelm_202200293 crossref_primary_10_1039_D2CP01408D crossref_primary_10_1016_j_coelec_2022_101072 |
| Cites_doi | 10.1039/C6CE01200K 10.1039/C4EE00688G 10.1021/acsami.0c06418 10.1063/1.2432410 10.1002/adfm.201502446 10.1039/C8CS00283E 10.1002/adma.201905909 10.1021/acs.jpcc.5b11115 10.1002/adfm.201502274 10.1073/pnas.092143399 10.1002/admi.201900950 10.3390/cryst9020085 10.1039/b810993a 10.1021/acsomega.8b00043 10.1021/acs.jpcc.8b03635 10.1039/C5TC04390E 10.1002/adma.201302439 10.1021/ja063290d 10.1021/acs.macromol.9b01284 10.1021/am5075908 10.1002/adfm.201700526 10.1039/C6TC01409G 10.1002/cphc.201701378 10.1021/acsami.8b02851 10.1038/ncomms10908 10.1021/cr100142w 10.1002/admt.201600090 10.1016/S0304-3991(03)00040-8 10.1002/adfm.201803907 10.1038/ncomms4573 10.1038/nmat5035 10.1002/adma.201001446 10.1002/adma.201002682 10.1021/acs.jpclett.7b01634 10.1021/ja074841i 10.1002/adma.201703864 10.1021/acsami.7b19279 10.1039/b804317e |
| ContentType | Journal Article |
| Copyright | 2020 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2020 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.202006115 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adfm_202006115 ADFM202006115 |
| Genre | article |
| GrantInformation_xml | – fundername: María de Maeztu funderid: MDM‐2017‐0767 – fundername: Spanish Ministry projects funderid: FANCY CTQ2016‐80030‐R; GENESIS PID2019‐111682RB‐I00; PID2019‐110907GB‐I00; MICIUN/FEDER RTI2018‐095460‐B‐I00; MAT2016‐77852‐C2‐1‐R – fundername: Spanish Government funderid: BES‐2016‐077519 – fundername: Generalitat de Catalunya funderid: 2017‐SGR13; 2017‐SGR‐918; 2017‐SGR668 – fundername: European Union's Horizon 2020 research and innovation programme funderid: 811284 – fundername: P‐SPHERE funderid: 665919 – fundername: French Community of Belgian funderid: 20061 – fundername: FNRS funderid: 2.4565.11 – fundername: Ministry of Economy and Competitiveness funderid: SEV‐2015‐0496 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMMB AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 O8X 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3575-b34f995e4b5ada0bc34cf902c94c6b73121b6e722c1e524bedfa162c1508f9163 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000571763100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Sun Nov 09 08:52:38 EST 2025 Sat Nov 29 07:18:45 EST 2025 Tue Nov 18 21:59:31 EST 2025 Wed Jan 22 16:31:36 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 52 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3575-b34f995e4b5ada0bc34cf902c94c6b73121b6e722c1e524bedfa162c1508f9163 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1586-005X |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adfm.202006115 |
| PQID | 2471759372 |
| PQPubID | 2045204 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2471759372 crossref_primary_10_1002_adfm_202006115 crossref_citationtrail_10_1002_adfm_202006115 wiley_primary_10_1002_adfm_202006115_ADFM202006115 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018; 122 2017; 8 2018; 28 2019; 9 2007; 107 2007; 129 2019; 6 2019; 52 2017; 27 2002; 99 2014; 26 2008; 10 2017; 29 2020; 12 2020; 32 2002 1937; 22 2016; 18 2015; 7 2007; 78 2016; 120 2003; 97 2011; 111 2016; 4 2010; 22 2018; 19 2016; 7 2018; 17 2018; 3 2014; 5 2016; 1 2019; 48 1866 2011; 23 1907; 30 2018; 10 2014; 7 2016; 26 2006; 128 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 Bernstein J. (e_1_2_7_6_1) 2002 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_11_1 Donnay J. D. H. (e_1_2_7_41_1) 1937; 22 e_1_2_7_26_1 Coropceanu V. (e_1_2_7_10_1) 2007; 107 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Friedel M. G. (e_1_2_7_40_1) 1907; 30 Bravais A. (e_1_2_7_42_1) 1866 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
| References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 2329 year: 2018 publication-title: ACS Omega – volume: 8 start-page: 3690 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 120 start-page: 1831 year: 2016 publication-title: J. Phys. Chem. C – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 2145 year: 2014 publication-title: Energy Environ. Sci. – volume: 99 start-page: 5804 year: 2002 publication-title: Proc. Natl. Acad. Sci. USA – volume: 97 start-page: 151 year: 2003 publication-title: Ultramicroscopy – volume: 111 start-page: 4833 year: 2011 publication-title: Chem. Rev. – volume: 9 start-page: 85 year: 2019 publication-title: Crystals – volume: 18 start-page: 6149 year: 2016 publication-title: CrystEngComm – volume: 5 start-page: 3573 year: 2014 publication-title: Nat. Commun. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 17 start-page: 2 year: 2018 publication-title: Nat. Mater. – volume: 52 start-page: 7524 year: 2019 publication-title: Macromolecules – volume: 6 year: 2019 publication-title: Adv. Mater. Interfaces – volume: 22 start-page: 4198 year: 2010 publication-title: Adv. Mater. – year: 1866 – volume: 30 start-page: 326 year: 1907 publication-title: Bull. Minéralogie – volume: 48 start-page: 2502 year: 2019 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 3915 year: 2016 publication-title: J. Mater. Chem. C – volume: 19 start-page: 993 year: 2018 publication-title: ChemPhysChem – volume: 10 start-page: 7296 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 937 year: 2008 publication-title: CrystEngComm – volume: 10 start-page: 1899 year: 2008 publication-title: CrystEngComm – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – year: 2002 – volume: 26 start-page: 2256 year: 2016 publication-title: Adv. Funct. Mater. – volume: 128 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 463 year: 1937 publication-title: Am. Mineral. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 26 start-page: 487 year: 2014 publication-title: Adv. Mater. – volume: 1 year: 2016 publication-title: Adv. Mater. Technol. – volume: 4 start-page: 4863 year: 2016 publication-title: J. Mater. Chem. C – volume: 107 start-page: 926 year: 2007 publication-title: Top. Curr. Chem. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 129 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1868 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 23 start-page: 523 year: 2011 publication-title: Adv. Mater. – volume: 26 start-page: 2379 year: 2016 publication-title: Adv. Funct. Mater. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 78 year: 2007 publication-title: Rev. Sci. Instrum. – ident: e_1_2_7_22_1 doi: 10.1039/C6CE01200K – ident: e_1_2_7_33_1 doi: 10.1039/C4EE00688G – ident: e_1_2_7_35_1 doi: 10.1021/acsami.0c06418 – ident: e_1_2_7_43_1 doi: 10.1063/1.2432410 – ident: e_1_2_7_3_1 doi: 10.1002/adfm.201502446 – volume: 30 start-page: 326 year: 1907 ident: e_1_2_7_40_1 publication-title: Bull. Minéralogie – ident: e_1_2_7_7_1 doi: 10.1039/C8CS00283E – ident: e_1_2_7_1_1 doi: 10.1002/adma.201905909 – ident: e_1_2_7_9_1 doi: 10.1021/acs.jpcc.5b11115 – ident: e_1_2_7_23_1 doi: 10.1002/adfm.201502274 – ident: e_1_2_7_2_1 doi: 10.1073/pnas.092143399 – ident: e_1_2_7_15_1 doi: 10.1002/admi.201900950 – ident: e_1_2_7_28_1 doi: 10.3390/cryst9020085 – ident: e_1_2_7_5_1 doi: 10.1039/b810993a – ident: e_1_2_7_4_1 doi: 10.1021/acsomega.8b00043 – ident: e_1_2_7_37_1 doi: 10.1021/acs.jpcc.8b03635 – ident: e_1_2_7_12_1 doi: 10.1039/C5TC04390E – ident: e_1_2_7_14_1 doi: 10.1002/adma.201302439 – ident: e_1_2_7_30_1 doi: 10.1021/ja063290d – ident: e_1_2_7_39_1 doi: 10.1021/acs.macromol.9b01284 – ident: e_1_2_7_21_1 doi: 10.1021/am5075908 – ident: e_1_2_7_32_1 doi: 10.1002/adfm.201700526 – ident: e_1_2_7_20_1 doi: 10.1039/C6TC01409G – ident: e_1_2_7_31_1 doi: 10.1002/cphc.201701378 – ident: e_1_2_7_29_1 doi: 10.1021/acsami.8b02851 – ident: e_1_2_7_25_1 doi: 10.1038/ncomms10908 – volume-title: Polymorphism in Molecular Crystals year: 2002 ident: e_1_2_7_6_1 – ident: e_1_2_7_11_1 doi: 10.1021/cr100142w – ident: e_1_2_7_24_1 doi: 10.1002/admt.201600090 – ident: e_1_2_7_38_1 doi: 10.1016/S0304-3991(03)00040-8 – volume-title: Etudes Cristallographiques year: 1866 ident: e_1_2_7_42_1 – ident: e_1_2_7_27_1 doi: 10.1002/adfm.201803907 – volume: 107 start-page: 926 year: 2007 ident: e_1_2_7_10_1 publication-title: Top. Curr. Chem. – ident: e_1_2_7_13_1 doi: 10.1038/ncomms4573 – ident: e_1_2_7_26_1 doi: 10.1038/nmat5035 – ident: e_1_2_7_8_1 doi: 10.1002/adma.201001446 – ident: e_1_2_7_18_1 doi: 10.1002/adma.201002682 – ident: e_1_2_7_19_1 doi: 10.1021/acs.jpclett.7b01634 – ident: e_1_2_7_16_1 doi: 10.1021/ja074841i – volume: 22 start-page: 463 year: 1937 ident: e_1_2_7_41_1 publication-title: Am. Mineral. – ident: e_1_2_7_17_1 doi: 10.1002/adma.201703864 – ident: e_1_2_7_34_1 doi: 10.1021/acsami.7b19279 – ident: e_1_2_7_36_1 doi: 10.1039/b804317e |
| SSID | ssj0017734 |
| Score | 2.4992025 |
| Snippet | The lack of long‐term stability in thin films of organic semiconductors can often be caused by the low structural stability of metastable phases that are... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Benzothiophene Materials science Metastable phases organic field‐effect transistors Organic semiconductors Polymer blends polymorphism Polystyrene resins Semiconductors Shearing Structural stability Substrates Thin films Threshold voltage |
| Title | Enhancing Long‐Term Device Stability Using Thin Film Blends of Small Molecule Semiconductors and Insulating Polymers to Trap Surface‐Induced Polymorphs |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202006115 https://www.proquest.com/docview/2471759372 |
| Volume | 30 |
| WOSCitedRecordID | wos000571763100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbQwqE9tKUPsZSiOSD1FJE4ToKPwBKBBAjxkPYW-RWKFBK0WSpx4ydw59_xS5hJsmE5VJXgFku2E9kzni_2528Y29BSahKkRhdPQk8Y6Tzl2y1PaIWzzUWsrWiSTSTHx1vjsTyZu8Xf6kP0G27kGc16TQ6udL35IhqqbE43yemXOKBb5oscjTcasMXRaXpx2J8kJEl7shwHxPEKxjPhRp9vvu7hdWB6QZvzmLUJOunn93_uF_apA5yw3VrIMltw5Vf2cU6G8Bt73Cv_kOxGeQmHVXn5dP9wjus1jBytIoBwtCHQ3kFDLwDK9AnpVXENOwXxaaHK4exaFQUctal2sQkx7quSpGSrSQ2qtHBAnHdFHGs4qYo72i2HaQUYKm_g7HaSK-PwvZRIxDjbVqnQBOrv7CLdO9_d97qkDZ4JEfp5OhS5lJETOlJW-dqEwuTS50YKE-skDHigY5dwbgIXcaGdzVUQYwmRYo5YNfzBBmVVuhUGIvJForm2sQyERqgU5RG32jlfavzLMkPmzWYsM52iOSXWKLJWi5lnNOhZP-hD9ruvf9Nqefyz5trMALLOp-uMYxxPIoRzfMh4M9X_6SXbHqVHfWn1LY1-sg_03PJn1thgOrl1v9iS-Tu9qifrna0_A08BAi8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqqFR66AcFdQu0c6jUU0TiOAk-QpcI1N0VKou0t8hfAaSQoN0FiRs_off-u_6SziTZAAeEhDg6sp3InvG82M9vGPuupdQkSI0unoSeMNJ5yrc7ntAKZ5uLWFtRJ5tIRqOdyUQetWxCugvT6EN0G27kGfV6TQ5OG9Lbd6qhyuZ0lZz-iQO6Zr4ssHc08uX-7_Rk0B0lJElztBwHRPIKJgvlRp9vP-zhYWS6g5v3QWsdddL3L_C9H9i7FnLCbmMjH9krV66yt_eECD-xv_vlGQlvlKcwqMrTf7d_xrhiQ9_ROgIISGsK7Q3UBAOgXJ-QnhcXsFcQoxaqHI4vVFHAsEm2i02Ic1-VJCZbTWegSguHxHpXxLKGo6q4of1ymFeAwfISjq-muTIO30upRIyzTZUKjWC2xk7S_fHPA69N2-CZEMGfp0ORSxk5oSNlla9NKEwufW6kMLFOwoAHOnYJ5yZwERfa2VwFMZYQK-aIVsN1tlRWpfvMQES-SDTXNpaB0AiWojziVjvnS43_WabHvMWUZabVNKfUGkXWqDHzjAY96wa9x3509S8bNY9Ha24uLCBrvXqWcYzkSYSAjvcYr-f6iV6y3X467EpfntPoG3tzMB4OssHh6NcGW6HnDZtmky3Np1dui7021_Pz2fRra_j_AcIwBh8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hLUJwoHyKhRbmgMQpauI4SX1s2UZUbFcr2kp7i_zZVkqT1e4WqTd-Anf-Hb-kniSbtgeEhDg6sp3InvG82M9vAD4qIRQJUnsXz-KAa2EDGZrdgCvpZ5vxVBneJJvIJpPd2UxMOzYh3YVp9SH6DTfyjGa9Jge3c-N2blVDpXF0lZz-iSO6Zr7BKZPMADZG3_LTcX-UkGXt0XIaEckrmq2VG0O2c7-H-5HpFm7eBa1N1Mk3_8P3PoOnHeTEvdZGnsMDW72AJ3eECF_Cr4PqnIQ3qjMc19XZ7x8_T_yKjSNL6wh6QNpQaK-xIRgg5frE_KK8xP2SGLVYOzy-lGWJR22yXd-EOPd1RWKy9WKJsjJ4SKx3SSxrnNblNe2X46pGHyzneHy1cFJb_15KJaKtaavU3giWr-A0Pzj5_CXo0jYEOvbgL1Axd0IklqtEGhkqHXPtRMi04DpVWRyxSKU2Y0xHNmFcWeNklPqSx4rOo9X4NQyqurJvAHkS8kwxZVIRceXBUuISZpS1oVD-P0sPIVhPWaE7TXNKrVEWrRozK2jQi37Qh_Cprz9v1Tz-WHNrbQFF59XLgvlIniUe0LEhsGau_9JLsTfKj_rS239p9AEeTUd5MT6cfH0Hj-lxS6bZgsFqcWW34aH-vrpYLt53dn8DRAQFmg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Long%E2%80%90Term+Device+Stability+Using+Thin+Film+Blends+of+Small+Molecule+Semiconductors+and+Insulating+Polymers+to+Trap+Surface%E2%80%90Induced+Polymorphs&rft.jtitle=Advanced+functional+materials&rft.au=Salzillo%2C+Tommaso&rft.au=Campos%2C+Antonio&rft.au=Babuji%2C+Adara&rft.au=Santiago%2C+Raul&rft.date=2020-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=52&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202006115&rft.externalDBID=10.1002%252Fadfm.202006115&rft.externalDocID=ADFM202006115 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |