MRI‐Based Breast Cancer Classification and Localization by Multiparametric Feature Extraction and Combination Using Deep Learning

Background Deep learning (DL) have been reported feasible in breast MRI. However, the effectiveness of DL method in mpMRI combinations for breast cancer detection has not been well investigated. Purpose To implement a DL method for breast cancer classification and detection using feature extraction...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of magnetic resonance imaging Ročník 59; číslo 1; s. 148 - 161
Hlavní autori: Cong, Chao, Li, Xiaoguang, Zhang, Chunlai, Zhang, Jing, Sun, Kaixiang, Liu, Lianluyi, Ambale‐Venkatesh, Bharath, Chen, Xiao, Wang, Yi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken, USA John Wiley & Sons, Inc 01.01.2024
Wiley Subscription Services, Inc
Predmet:
ISSN:1053-1807, 1522-2586, 1522-2586
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background Deep learning (DL) have been reported feasible in breast MRI. However, the effectiveness of DL method in mpMRI combinations for breast cancer detection has not been well investigated. Purpose To implement a DL method for breast cancer classification and detection using feature extraction and combination from multiple sequences. Study Type Retrospective. Population A total of 569 local cases as internal cohort (50.2 ± 11.2 years; 100% female), divided among training (218), validation (73) and testing (278); 125 cases from a public dataset as the external cohort (53.6 ± 11.5 years; 100% female). Field Strength/Sequence T1‐weighted imaging and dynamic contrast‐enhanced MRI (DCE‐MRI) with gradient echo sequences, T2‐weighted imaging (T2WI) with spin‐echo sequences, diffusion‐weighted imaging with single‐shot echo‐planar sequence and at 1.5‐T. Assessment A convolutional neural network and long short‐term memory cascaded network was implemented for lesion classification with histopathology as the ground truth for malignant and benign categories and contralateral breasts as healthy category in internal/external cohorts. BI‐RADS categories were assessed by three independent radiologists as comparison, and class activation map was employed for lesion localization in internal cohort. The classification and localization performances were assessed with DCE‐MRI and non‐DCE sequences, respectively. Statistical Tests Sensitivity, specificity, area under the curve (AUC), DeLong test, and Cohen's kappa for lesion classification. Sensitivity and mean squared error for localization. A P‐value <0.05 was considered statistically significant. Results With the optimized mpMRI combinations, the lesion classification achieved an AUC = 0.98/0.91, sensitivity = 0.96/0.83 in the internal/external cohorts, respectively. Without DCE‐MRI, the DL‐based method was superior to radiologists' readings (AUC 0.96 vs. 0.90). The lesion localization achieved sensitivities of 0.97/0.93 with DCE‐MRI/T2WI alone, respectively. Data Conclusion The DL method achieved high accuracy for lesion detection in the internal/external cohorts. The classification performance with a contrast agent‐free combination is comparable to DCE‐MRI alone and the radiologists' reading in AUC and sensitivity. Evidence Level 3. Technical Efficacy Stage 2.
AbstractList BackgroundDeep learning (DL) have been reported feasible in breast MRI. However, the effectiveness of DL method in mpMRI combinations for breast cancer detection has not been well investigated.PurposeTo implement a DL method for breast cancer classification and detection using feature extraction and combination from multiple sequences.Study TypeRetrospective.PopulationA total of 569 local cases as internal cohort (50.2 ± 11.2 years; 100% female), divided among training (218), validation (73) and testing (278); 125 cases from a public dataset as the external cohort (53.6 ± 11.5 years; 100% female).Field Strength/SequenceT1‐weighted imaging and dynamic contrast‐enhanced MRI (DCE‐MRI) with gradient echo sequences, T2‐weighted imaging (T2WI) with spin‐echo sequences, diffusion‐weighted imaging with single‐shot echo‐planar sequence and at 1.5‐T.AssessmentA convolutional neural network and long short‐term memory cascaded network was implemented for lesion classification with histopathology as the ground truth for malignant and benign categories and contralateral breasts as healthy category in internal/external cohorts. BI‐RADS categories were assessed by three independent radiologists as comparison, and class activation map was employed for lesion localization in internal cohort. The classification and localization performances were assessed with DCE‐MRI and non‐DCE sequences, respectively.Statistical TestsSensitivity, specificity, area under the curve (AUC), DeLong test, and Cohen's kappa for lesion classification. Sensitivity and mean squared error for localization. A P‐value <0.05 was considered statistically significant.ResultsWith the optimized mpMRI combinations, the lesion classification achieved an AUC = 0.98/0.91, sensitivity = 0.96/0.83 in the internal/external cohorts, respectively. Without DCE‐MRI, the DL‐based method was superior to radiologists' readings (AUC 0.96 vs. 0.90). The lesion localization achieved sensitivities of 0.97/0.93 with DCE‐MRI/T2WI alone, respectively.Data ConclusionThe DL method achieved high accuracy for lesion detection in the internal/external cohorts. The classification performance with a contrast agent‐free combination is comparable to DCE‐MRI alone and the radiologists' reading in AUC and sensitivity.Evidence Level3.Technical EfficacyStage 2.
Deep learning (DL) have been reported feasible in breast MRI. However, the effectiveness of DL method in mpMRI combinations for breast cancer detection has not been well investigated.BACKGROUNDDeep learning (DL) have been reported feasible in breast MRI. However, the effectiveness of DL method in mpMRI combinations for breast cancer detection has not been well investigated.To implement a DL method for breast cancer classification and detection using feature extraction and combination from multiple sequences.PURPOSETo implement a DL method for breast cancer classification and detection using feature extraction and combination from multiple sequences.Retrospective.STUDY TYPERetrospective.A total of 569 local cases as internal cohort (50.2 ± 11.2 years; 100% female), divided among training (218), validation (73) and testing (278); 125 cases from a public dataset as the external cohort (53.6 ± 11.5 years; 100% female).POPULATIONA total of 569 local cases as internal cohort (50.2 ± 11.2 years; 100% female), divided among training (218), validation (73) and testing (278); 125 cases from a public dataset as the external cohort (53.6 ± 11.5 years; 100% female).T1-weighted imaging and dynamic contrast-enhanced MRI (DCE-MRI) with gradient echo sequences, T2-weighted imaging (T2WI) with spin-echo sequences, diffusion-weighted imaging with single-shot echo-planar sequence and at 1.5-T.FIELD STRENGTH/SEQUENCET1-weighted imaging and dynamic contrast-enhanced MRI (DCE-MRI) with gradient echo sequences, T2-weighted imaging (T2WI) with spin-echo sequences, diffusion-weighted imaging with single-shot echo-planar sequence and at 1.5-T.A convolutional neural network and long short-term memory cascaded network was implemented for lesion classification with histopathology as the ground truth for malignant and benign categories and contralateral breasts as healthy category in internal/external cohorts. BI-RADS categories were assessed by three independent radiologists as comparison, and class activation map was employed for lesion localization in internal cohort. The classification and localization performances were assessed with DCE-MRI and non-DCE sequences, respectively.ASSESSMENTA convolutional neural network and long short-term memory cascaded network was implemented for lesion classification with histopathology as the ground truth for malignant and benign categories and contralateral breasts as healthy category in internal/external cohorts. BI-RADS categories were assessed by three independent radiologists as comparison, and class activation map was employed for lesion localization in internal cohort. The classification and localization performances were assessed with DCE-MRI and non-DCE sequences, respectively.Sensitivity, specificity, area under the curve (AUC), DeLong test, and Cohen's kappa for lesion classification. Sensitivity and mean squared error for localization. A P-value <0.05 was considered statistically significant.STATISTICAL TESTSSensitivity, specificity, area under the curve (AUC), DeLong test, and Cohen's kappa for lesion classification. Sensitivity and mean squared error for localization. A P-value <0.05 was considered statistically significant.With the optimized mpMRI combinations, the lesion classification achieved an AUC = 0.98/0.91, sensitivity = 0.96/0.83 in the internal/external cohorts, respectively. Without DCE-MRI, the DL-based method was superior to radiologists' readings (AUC 0.96 vs. 0.90). The lesion localization achieved sensitivities of 0.97/0.93 with DCE-MRI/T2WI alone, respectively.RESULTSWith the optimized mpMRI combinations, the lesion classification achieved an AUC = 0.98/0.91, sensitivity = 0.96/0.83 in the internal/external cohorts, respectively. Without DCE-MRI, the DL-based method was superior to radiologists' readings (AUC 0.96 vs. 0.90). The lesion localization achieved sensitivities of 0.97/0.93 with DCE-MRI/T2WI alone, respectively.The DL method achieved high accuracy for lesion detection in the internal/external cohorts. The classification performance with a contrast agent-free combination is comparable to DCE-MRI alone and the radiologists' reading in AUC and sensitivity.DATA CONCLUSIONThe DL method achieved high accuracy for lesion detection in the internal/external cohorts. The classification performance with a contrast agent-free combination is comparable to DCE-MRI alone and the radiologists' reading in AUC and sensitivity.3.EVIDENCE LEVEL3.Stage 2.TECHNICAL EFFICACYStage 2.
Deep learning (DL) have been reported feasible in breast MRI. However, the effectiveness of DL method in mpMRI combinations for breast cancer detection has not been well investigated. To implement a DL method for breast cancer classification and detection using feature extraction and combination from multiple sequences. Retrospective. A total of 569 local cases as internal cohort (50.2 ± 11.2 years; 100% female), divided among training (218), validation (73) and testing (278); 125 cases from a public dataset as the external cohort (53.6 ± 11.5 years; 100% female). T1-weighted imaging and dynamic contrast-enhanced MRI (DCE-MRI) with gradient echo sequences, T2-weighted imaging (T2WI) with spin-echo sequences, diffusion-weighted imaging with single-shot echo-planar sequence and at 1.5-T. A convolutional neural network and long short-term memory cascaded network was implemented for lesion classification with histopathology as the ground truth for malignant and benign categories and contralateral breasts as healthy category in internal/external cohorts. BI-RADS categories were assessed by three independent radiologists as comparison, and class activation map was employed for lesion localization in internal cohort. The classification and localization performances were assessed with DCE-MRI and non-DCE sequences, respectively. Sensitivity, specificity, area under the curve (AUC), DeLong test, and Cohen's kappa for lesion classification. Sensitivity and mean squared error for localization. A P-value <0.05 was considered statistically significant. With the optimized mpMRI combinations, the lesion classification achieved an AUC = 0.98/0.91, sensitivity = 0.96/0.83 in the internal/external cohorts, respectively. Without DCE-MRI, the DL-based method was superior to radiologists' readings (AUC 0.96 vs. 0.90). The lesion localization achieved sensitivities of 0.97/0.93 with DCE-MRI/T2WI alone, respectively. The DL method achieved high accuracy for lesion detection in the internal/external cohorts. The classification performance with a contrast agent-free combination is comparable to DCE-MRI alone and the radiologists' reading in AUC and sensitivity. 3. Stage 2.
Background Deep learning (DL) have been reported feasible in breast MRI. However, the effectiveness of DL method in mpMRI combinations for breast cancer detection has not been well investigated. Purpose To implement a DL method for breast cancer classification and detection using feature extraction and combination from multiple sequences. Study Type Retrospective. Population A total of 569 local cases as internal cohort (50.2 ± 11.2 years; 100% female), divided among training (218), validation (73) and testing (278); 125 cases from a public dataset as the external cohort (53.6 ± 11.5 years; 100% female). Field Strength/Sequence T1‐weighted imaging and dynamic contrast‐enhanced MRI (DCE‐MRI) with gradient echo sequences, T2‐weighted imaging (T2WI) with spin‐echo sequences, diffusion‐weighted imaging with single‐shot echo‐planar sequence and at 1.5‐T. Assessment A convolutional neural network and long short‐term memory cascaded network was implemented for lesion classification with histopathology as the ground truth for malignant and benign categories and contralateral breasts as healthy category in internal/external cohorts. BI‐RADS categories were assessed by three independent radiologists as comparison, and class activation map was employed for lesion localization in internal cohort. The classification and localization performances were assessed with DCE‐MRI and non‐DCE sequences, respectively. Statistical Tests Sensitivity, specificity, area under the curve (AUC), DeLong test, and Cohen's kappa for lesion classification. Sensitivity and mean squared error for localization. A P‐value <0.05 was considered statistically significant. Results With the optimized mpMRI combinations, the lesion classification achieved an AUC = 0.98/0.91, sensitivity = 0.96/0.83 in the internal/external cohorts, respectively. Without DCE‐MRI, the DL‐based method was superior to radiologists' readings (AUC 0.96 vs. 0.90). The lesion localization achieved sensitivities of 0.97/0.93 with DCE‐MRI/T2WI alone, respectively. Data Conclusion The DL method achieved high accuracy for lesion detection in the internal/external cohorts. The classification performance with a contrast agent‐free combination is comparable to DCE‐MRI alone and the radiologists' reading in AUC and sensitivity. Evidence Level 3. Technical Efficacy Stage 2.
Author Wang, Yi
Zhang, Jing
Li, Xiaoguang
Chen, Xiao
Liu, Lianluyi
Cong, Chao
Ambale‐Venkatesh, Bharath
Zhang, Chunlai
Sun, Kaixiang
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0002-1714-1892
  surname: Cong
  fullname: Cong, Chao
  organization: Daping Hospital, Army Medical University
– sequence: 2
  givenname: Xiaoguang
  surname: Li
  fullname: Li, Xiaoguang
  organization: Daping Hospital, Army Medical University
– sequence: 3
  givenname: Chunlai
  surname: Zhang
  fullname: Zhang, Chunlai
  organization: Daping Hospital, Army Medical University
– sequence: 4
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  organization: Daping Hospital, Army Medical University
– sequence: 5
  givenname: Kaixiang
  surname: Sun
  fullname: Sun, Kaixiang
  organization: Chongqing University of Technology
– sequence: 6
  givenname: Lianluyi
  surname: Liu
  fullname: Liu, Lianluyi
  organization: Chongqing University of Technology
– sequence: 7
  givenname: Bharath
  orcidid: 0000-0002-2330-2373
  surname: Ambale‐Venkatesh
  fullname: Ambale‐Venkatesh, Bharath
  organization: Johns Hopkins University School of Medicine
– sequence: 8
  givenname: Xiao
  surname: Chen
  fullname: Chen, Xiao
  email: xiaochen229@foxmail.com
  organization: Daping Hospital, Army Medical University
– sequence: 9
  givenname: Yi
  surname: Wang
  fullname: Wang, Yi
  email: ywhxl@qq.com
  organization: Daping Hospital, Army Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37013422$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAUhi1URC-w4QGQJTYIKa0v4zhe0rSFVlMhIbq2TpwzyKPEGexEdLqqxAvwjDwJblO6qBArX_R9R0f_v092whCQkNecHXLGxNG6j_5QVJrLZ2SPKyEKoapyJ9-ZkgWvmN4l-ymtGWPGLNQLsis143IhxB75efnl_Pftr2NI2NLjiJBGWkNwGGndQUp-5R2MfggUQkuXg4PO38wfzZZeTt3oNxChxzF6R88QxikiPb0eI7hHrR76xofZuko-fKMniBu6RIghv16S5yvoEr56OA_I1dnp1_pTsfz88bz-sCycVFoWTWsQTFO50jDdIkOmHGtRVZqpViBgI7AUhmvVOgXIWYYXla4qRA1GNvKAvJvnbuLwfcI02t4nh10HAYcpWaGNkiXnymT07RN0PUwx5O2sqIwpF6UsdabePFBT02NrN9H3ELf2b7wZeD8DLg4pRVw9IpzZu-7sXXf2vrsMsyew8-N9aDlM3_1b4bPyw3e4_c9we5F7np0_PSet6A
CitedBy_id crossref_primary_10_1016_j_asjsur_2024_11_224
crossref_primary_10_1007_s00330_025_11406_6
crossref_primary_10_1016_j_bspc_2025_108085
crossref_primary_10_3390_biomedinformatics5030046
crossref_primary_10_1002_jmri_29358
crossref_primary_10_1016_j_mri_2025_110457
crossref_primary_10_1002_jmri_28733
crossref_primary_10_1016_j_clbc_2023_10_010
crossref_primary_10_1053_j_semnuclmed_2025_01_008
crossref_primary_10_1016_j_engappai_2025_111089
crossref_primary_10_1109_TAI_2025_3543822
crossref_primary_10_3389_fmed_2025_1659422
crossref_primary_10_1007_s40846_024_00912_5
crossref_primary_10_1088_1741_2552_ad788b
crossref_primary_10_1148_ryai_240206
Cites_doi 10.2214/AJR.15.15957
10.1002/jmri.27332
10.1007/978-3-319-66179-7_68
10.1109/LSP.2014.2337313
10.1007/s10549-020-05533-5
10.1148/radiol.2018181352
10.1016/j.acra.2022.12.038
10.1609/aaai.v31i1.11231
10.1109/ICIP.2009.5414044
10.1007/BF02295996
10.1002/mp.13849
10.1007/s10278-013-9622-7
10.1002/jmri.25790
10.1111/1759-7714.13309
10.1097/RLI.0000000000000544
10.1007/978-3-642-24797-2_4
10.1002/jmri.26852
10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M
10.1007/s11517-020-02232-7
10.1097/RLI.0000000000000465
10.1016/j.media.2018.10.011
10.1002/jmri.26721
10.1259/bjr.20160715
10.1200/JCO.2013.52.5386
10.3322/caac.21754
10.1148/radiol.2019182947
10.1038/s41598-020-70940-z
10.1148/ryai.2021200159
10.1007/978-3-319-10602-1_48
10.1016/j.artmed.2019.101781
10.1038/s41598-020-67441-4
ContentType Journal Article
Copyright 2023 International Society for Magnetic Resonance in Medicine.
2024 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2023 International Society for Magnetic Resonance in Medicine.
– notice: 2024 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/jmri.28713
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 161
ExternalDocumentID 37013422
10_1002_jmri_28713
JMRI28713
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61901068
– fundername: Chongqing Clinical Research Centre of Imaging and Nuclear Medicine
  funderid: CSTC2015YFPT
– fundername: Science and Technology Research Program of Chongqing Municipal Education
  funderid: KJQN202001131
– fundername: National Natural Science Foundation of China
  grantid: 61901068
– fundername: Science and Technology Research Program of Chongqing Municipal Education
  grantid: KJQN202001131
– fundername: Chongqing Clinical Research Centre of Imaging and Nuclear Medicine
  grantid: CSTC2015YFPT
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3573-bd9ea9b8c6907de0e05c0de58705d2eaeb2e629175dc5ae10a9b48788ee7a93b3
IEDL.DBID DRFUL
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000963752800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-1807
1522-2586
IngestDate Fri Jul 11 15:08:36 EDT 2025
Sat Nov 29 14:47:27 EST 2025
Mon Jul 21 05:38:14 EDT 2025
Tue Nov 18 22:00:44 EST 2025
Sat Nov 29 06:08:47 EST 2025
Thu Sep 25 07:34:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords multiparametric MRI
breast MRI
deep learning
breast cancer
computer-aided detection
Language English
License 2023 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3573-bd9ea9b8c6907de0e05c0de58705d2eaeb2e629175dc5ae10a9b48788ee7a93b3
Notes Chao Cong and Xiaoguang Li contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1714-1892
0000-0002-2330-2373
PMID 37013422
PQID 2899646367
PQPubID 1006400
PageCount 14
ParticipantIDs proquest_miscellaneous_2795361159
proquest_journals_2899646367
pubmed_primary_37013422
crossref_primary_10_1002_jmri_28713
crossref_citationtrail_10_1002_jmri_28713
wiley_primary_10_1002_jmri_28713_JMRI28713
PublicationCentury 2000
PublicationDate January 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2023; 10
2019; 290
2013; 26
2019; 51
2021; 3
2019; 50
2012
2022; 72
2016; 207
2019; 54
2020; 180
2016; 10
2009
2020; 58
1999; 42
2020; 11
2020; 103
2020; 10
2018; 47
2014; 21
2021; 54
2017; 90
2023
2022
2020; 52
1947; 12
2020; 47
2017
2016
2014
2019; 292
2018; 53
2014; 32
Magny SJ (e_1_2_6_24_1) 2022
e_1_2_6_32_1
e_1_2_6_10_1
Lingle W (e_1_2_6_22_1) 2016; 10
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
He K (e_1_2_6_28_1) 2016
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
Graves A (e_1_2_6_25_1) 2012
Huang G (e_1_2_6_30_1) 2017
e_1_2_6_9_1
Hagiwara A (e_1_2_6_8_1) 2023; 10
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
Adachi M (e_1_2_6_19_1) 2020; 10
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
Selvaraju RR (e_1_2_6_31_1) 2017
e_1_2_6_29_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 54
  start-page: 686
  issue: 3
  year: 2021
  end-page: 702
  article-title: AI‐enhanced diagnosis of challenging lesions in breast MRI: A methodology and application primer
  publication-title: J Magn Reson Imaging
– volume: 292
  start-page: 520
  issue: 3
  year: 2019
  end-page: 536
  article-title: Breast MRI: State of the art
  publication-title: Radiology
– volume: 90
  issue: 1069
  year: 2017
  article-title: The potential of multiparametric MRI of the breast
  publication-title: Br J Radiol
– year: 2022
  article-title: Breast Imaging Reporting and Data System
  publication-title: StatPearls. Treasure Island (FL): StatPearls Publishing; 
– volume: 10
  issue: 1097
  year: 2023
  article-title: Multiparametric MRI: From simultaneous rapid acquisition methods and analysis techniques using scoring, machine learning, radiomics, and deep learning to the generation of novel metrics
  publication-title: Invest Radiol
– volume: 52
  start-page: 998
  issue: 4
  year: 2020
  end-page: 1018
  article-title: Machine learning in breast MRI
  publication-title: J Magn Reson Imaging
– volume: 53
  start-page: 587
  issue: 10
  year: 2018
  end-page: 595
  article-title: Diffusion‐weighted imaging with apparent diffusion coefficient mapping for breast cancer detection as a stand‐alone parameter: Comparison with dynamic contrast‐enhanced and multiparametric magnetic resonance imaging
  publication-title: Invest Radiol
– volume: 72
  start-page: 524
  issue: 6
  year: 2022
  end-page: 541
  article-title: Breast cancer statistics, 2022
  publication-title: CA Cancer J Clin
– volume: 103
  year: 2020
  article-title: Multi‐planar 3D breast segmentation in MRI via deep convolutional neural networks
  publication-title: Artif Intell Med
– start-page: 770
  year: 2016
  end-page: 778
  article-title: Deep residual learning for image recognition
  publication-title: Proc IEEE Conf Comput Vis Pattern Recogn. Las Vegas, NV
– volume: 11
  start-page: 651
  issue: 3
  year: 2020
  end-page: 658
  article-title: Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method
  publication-title: Thoracic Cancer
– volume: 26
  start-page: 1045
  issue: 6
  year: 2013
  end-page: 1057
  article-title: The cancer imaging archive (TCIA): Maintaining and operating a public information repository
  publication-title: J Digit Imaging
– volume: 32
  start-page: 2304
  issue: 22
  year: 2014
  end-page: 2310
  article-title: Abbreviated breast magnetic resonance imaging (MRI): First postcontrast subtracted images and maximum‐intensity projection—A novel approach to breast cancer screening with MRI
  publication-title: J Clin Oncol
– volume: 50
  start-page: 1144
  issue: 4
  year: 2019
  end-page: 1151
  article-title: Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images
  publication-title: J Magn Reson Imaging
– year: 2016
– start-page: 618
  year: 2017
  end-page: 626
  article-title: Grad‐cam: Visual explanations from deep networks via gradient‐based localization
  publication-title: Proc IEEE Int Conf Comput Vis. Venice, Italy,
– volume: 10
  start-page: 10536
  issue: 1
  year: 2020
  article-title: A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI
  publication-title: Sci Rep
– volume: 207
  start-page: 1159
  issue: 5
  year: 2016
  end-page: 1166
  article-title: Kinetic analysis of benign and malignant breast lesions with ultrafast dynamic contrast‐enhanced MRI: Comparison with standard kinetic assessment
  publication-title: AJR Am J Roentgenol
– start-page: 3873
  year: 2009
  end-page: 3876
– volume: 42
  start-page: 1072
  issue: 6
  year: 1999
  end-page: 1081
  article-title: On standardizing the MR image intensity scale
  publication-title: Magn Reson Med
– volume: 51
  start-page: 116
  year: 2019
  end-page: 124
  article-title: A graph‐based lesion characterization and deep embedding approach for improved computer‐aided diagnosis of nonmass breast MRI lesions
  publication-title: Med Image Anal
– volume: 290
  start-page: 290
  issue: 2
  year: 2019
  end-page: 297
  article-title: Radiomic versus convolutional neural networks analysis for classification of contrast‐enhancing lesions at multiparametric breast MRI
  publication-title: Radiology
– volume: 180
  start-page: 407
  issue: 2
  year: 2020
  end-page: 421
  article-title: Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging
  publication-title: Breast Cancer Res Treat
– volume: 12
  start-page: 153
  issue: 2
  year: 1947
  end-page: 157
  article-title: Note on the sampling error of the difference between correlated proportions or percentages
  publication-title: Psychometrika
– year: 2023
  article-title: Deep learning‐based automatic diagnosis of breast cancer on MRI using mask R‐CNN for detection followed by ResNet50 for classification
  publication-title: Acad Radiol
– volume: 3
  issue: 3
  year: 2021
  article-title: Improved classification of benign and malignant breast lesions using deep feature maximum intensity projection MRI in breast cancer diagnosis using dynamic contrast‐enhanced MRI
  publication-title: Radiol Artif Intell
– start-page: 37
  year: 2012
  end-page: 45
– volume: 10
  issue: 5
  year: 2020
  article-title: Detection and diagnosis of breast cancer using artificial intelligence based assessment of maximum intensity projection dynamic contrast‐enhanced magnetic resonance images
  publication-title: Diagnostics (Basel)
– volume: 58
  start-page: 2413
  issue: 10
  year: 2020
  end-page: 2425
  article-title: A comprehensive hierarchical classification based on multi‐features of breast DCE‐MRI for cancer diagnosis
  publication-title: Med Biol Eng Comput
– start-page: 594
  year: 2017
  end-page: 602
– volume: 10
  year: 2016
  article-title: Radiology data from the cancer genome atlas breast invasive carcinoma [TCGA‐BRCA] collection
  publication-title: Cancer Imag Archiv
– start-page: 740
  year: 2014
  end-page: 755
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 11
  article-title: MRI‐based radiomics in breast cancer: Feature robustness with respect to inter‐observer segmentation variability
  publication-title: Sci Rep
– volume: 54
  start-page: 325
  issue: 6
  year: 2019
  end-page: 332
  article-title: Artificial intelligence‐based classification of breast lesions imaged with a multiparametric breast MRI protocol with ultrafast DCE‐MRI, T2, and DWI
  publication-title: Invest Radiol
– year: 2017
– volume: 47
  start-page: 75
  issue: 1
  year: 2020
  end-page: 88
  article-title: Multiparametric deep learning tissue signatures for a radiological biomarker of breast cancer: Preliminary results
  publication-title: Med Phys
– volume: 21
  start-page: 1389
  issue: 11
  year: 2014
  end-page: 1393
  article-title: Fast implementation of DeLong's algorithm for comparing the areas under correlated receiver operating characteristic curves
  publication-title: IEEE Signal Process Lett
– volume: 2022
  article-title: Cancer Facts & Figures 2022
  publication-title: American Cancer Society
– volume: 47
  start-page: 301
  issue: 2
  year: 2018
  end-page: 315
  article-title: Multiparametric MRI of the breast: A review
  publication-title: J Magn Reson Imaging
– start-page: 4700
  year: 2017
  end-page: 4708
  article-title: Densely connected convolutional networks
  publication-title: Proc IEEE Conf Comput Vis Pattern Recogn. Honolulu, HI,
– ident: e_1_2_6_40_1
  doi: 10.2214/AJR.15.15957
– ident: e_1_2_6_7_1
  doi: 10.1002/jmri.27332
– ident: e_1_2_6_37_1
  doi: 10.1007/978-3-319-66179-7_68
– ident: e_1_2_6_33_1
  doi: 10.1109/LSP.2014.2337313
– volume: 10
  year: 2016
  ident: e_1_2_6_22_1
  article-title: Radiology data from the cancer genome atlas breast invasive carcinoma [TCGA‐BRCA] collection
  publication-title: Cancer Imag Archiv
– ident: e_1_2_6_20_1
  doi: 10.1007/s10549-020-05533-5
– ident: e_1_2_6_13_1
  doi: 10.1148/radiol.2018181352
– ident: e_1_2_6_38_1
  doi: 10.1016/j.acra.2022.12.038
– start-page: 770
  year: 2016
  ident: e_1_2_6_28_1
  article-title: Deep residual learning for image recognition
  publication-title: Proc IEEE Conf Comput Vis Pattern Recogn. Las Vegas, NV
– ident: e_1_2_6_29_1
  doi: 10.1609/aaai.v31i1.11231
– start-page: 4700
  year: 2017
  ident: e_1_2_6_30_1
  article-title: Densely connected convolutional networks
  publication-title: Proc IEEE Conf Comput Vis Pattern Recogn. Honolulu, HI,
– ident: e_1_2_6_26_1
  doi: 10.1109/ICIP.2009.5414044
– ident: e_1_2_6_34_1
  doi: 10.1007/BF02295996
– ident: e_1_2_6_15_1
  doi: 10.1002/mp.13849
– ident: e_1_2_6_23_1
  doi: 10.1007/s10278-013-9622-7
– ident: e_1_2_6_6_1
  doi: 10.1002/jmri.25790
– ident: e_1_2_6_14_1
  doi: 10.1111/1759-7714.13309
– ident: e_1_2_6_17_1
  doi: 10.1097/RLI.0000000000000544
– start-page: 37
  volume-title: Long short‐term memory. Supervised sequence labelling with recurrent neural networks
  year: 2012
  ident: e_1_2_6_25_1
  doi: 10.1007/978-3-642-24797-2_4
– ident: e_1_2_6_10_1
  doi: 10.1002/jmri.26852
– ident: e_1_2_6_2_1
– volume: 10
  issue: 1097
  year: 2023
  ident: e_1_2_6_8_1
  article-title: Multiparametric MRI: From simultaneous rapid acquisition methods and analysis techniques using scoring, machine learning, radiomics, and deep learning to the generation of novel metrics
  publication-title: Invest Radiol
– ident: e_1_2_6_27_1
  doi: 10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M
– ident: e_1_2_6_36_1
  doi: 10.1007/s11517-020-02232-7
– ident: e_1_2_6_16_1
  doi: 10.1097/RLI.0000000000000465
– ident: e_1_2_6_12_1
  doi: 10.1016/j.media.2018.10.011
– ident: e_1_2_6_9_1
  doi: 10.1002/jmri.26721
– ident: e_1_2_6_32_1
– ident: e_1_2_6_4_1
  doi: 10.1259/bjr.20160715
– ident: e_1_2_6_41_1
  doi: 10.1200/JCO.2013.52.5386
– volume: 10
  issue: 5
  year: 2020
  ident: e_1_2_6_19_1
  article-title: Detection and diagnosis of breast cancer using artificial intelligence based assessment of maximum intensity projection dynamic contrast‐enhanced magnetic resonance images
  publication-title: Diagnostics (Basel)
– ident: e_1_2_6_3_1
  doi: 10.3322/caac.21754
– ident: e_1_2_6_5_1
  doi: 10.1148/radiol.2019182947
– ident: e_1_2_6_21_1
  doi: 10.1038/s41598-020-70940-z
– ident: e_1_2_6_39_1
  doi: 10.1148/ryai.2021200159
– ident: e_1_2_6_35_1
  doi: 10.1007/978-3-319-10602-1_48
– year: 2022
  ident: e_1_2_6_24_1
  article-title: Breast Imaging Reporting and Data System
  publication-title: StatPearls. Treasure Island (FL): StatPearls Publishing; 
– start-page: 618
  year: 2017
  ident: e_1_2_6_31_1
  article-title: Grad‐cam: Visual explanations from deep networks via gradient‐based localization
  publication-title: Proc IEEE Int Conf Comput Vis. Venice, Italy,
– ident: e_1_2_6_11_1
  doi: 10.1016/j.artmed.2019.101781
– ident: e_1_2_6_18_1
  doi: 10.1038/s41598-020-67441-4
SSID ssj0009945
Score 2.4981833
Snippet Background Deep learning (DL) have been reported feasible in breast MRI. However, the effectiveness of DL method in mpMRI combinations for breast cancer...
Deep learning (DL) have been reported feasible in breast MRI. However, the effectiveness of DL method in mpMRI combinations for breast cancer detection has not...
BackgroundDeep learning (DL) have been reported feasible in breast MRI. However, the effectiveness of DL method in mpMRI combinations for breast cancer...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 148
SubjectTerms Artificial neural networks
Breast cancer
breast MRI
Classification
computer‐aided detection
Contrast agents
Contrast media
Deep learning
Feature extraction
Females
Field strength
Histopathology
Lesions
Localization
Machine learning
Magnetic resonance imaging
Medical imaging
multiparametric MRI
Neural networks
Population studies
Sensitivity
Statistical analysis
Statistical tests
Title MRI‐Based Breast Cancer Classification and Localization by Multiparametric Feature Extraction and Combination Using Deep Learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.28713
https://www.ncbi.nlm.nih.gov/pubmed/37013422
https://www.proquest.com/docview/2899646367
https://www.proquest.com/docview/2795361159
Volume 59
WOSCitedRecordID wos000963752800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1522-2586
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009945
  issn: 1053-1807
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1faxQxEB_aq0hfqlXbrtYS0ReFbfeSzWUDvtg_h5W2SLFwb8smmS0t7bbs3Ym-CX4BP6OfxEx2b4-iCOLbwk7IsjOT-U2S-Q3AKzUoOXc-O8mco90qVcbGZDJO-6WwItUGXRqaTaiTk2w00h8X4O2sFqbhh-g23MgzwnpNDl6Y8c6cNPTyur7YJrwvFmGJe8NNe7C0fzo8O5qT7urQpNhDCBH3s0R19KR8Zz76bkD6DWXeBa0h6gwf_N_3PoSVFm2yd415rMICVo_g_nF7nv4Yvh-fHv789mPXhzLHdul--oTtkR3ULHTLpHtEQXWsqBw7orjX1m0y85WF4l3iDr-mtlyWEZyc1sgOvkzqpl4iDPNLjk-_m1HhhgLbR7xlLbPr-RM4Gx582nsft20ZYiukErFxGgttMkuJtcMEE2kTh9J7vnQcC5-r44D7NFA6KwvsJ17YG0GWIapCCyPWoFfdVLgBLHUFYRQhtCzTUibGIKcVwRmhben6Ebye6Sa3LWc5tc64yhu2ZZ7TX83DX43gZSd72zB1_FFqc6bivPXWcU5J54CY01QEL7rX3s_o8KSo8GbqZRQddHv8rCNYb0yjm0YoD6RTziN4EyzgL_PnH7xiw9PTfxF-Bsvco6lm72cTepN6is_hnv08uRjXW7CoRtlWa_2_AJ1ACeQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFgEX3o9AASO4UCk0a8fr-EgfqxZ2V6hqpd6i2J6gIppW6S6CGxJ_gN_IL8HjuFlVICTELVLGchTPeL4Zj78BeKlGNefORyeFc5StUnVqTCHTfFgLK3Jt0OWh2YSazYrDQ_0-1ubQXZiOH6JPuJFlhP2aDJwS0utL1tCPx-3RawL84jKs5F6P5ABWtvbGB5Ml664OXYo9hhDpsMhUz0_K15ejL3qk32DmRdQa3M745n9-8C24EfEme9MpyG24hM0duDqNJ-p34ft0b_fntx8b3pk5tkEV6nO2SZrQstAvkyqJwuKxqnFsQp4v3txk5isL13eJPfyYGnNZRoBy0SLb_jJvuxsTYZjfdHwA3o0KNQpsC_GURW7XD_fgYLy9v7mTxsYMqRVSidQ4jZU2haXQ2mGGmbSZQ-ltXzqOlY_WccR9ICidlRUOMy_s1aAoEFWlhRH3YdCcNPgQWO4qQilCaFnntcyMQU57gjNC29oNE3h1vjiljazl1DzjU9nxLfOS_moZ_moCL3rZ046r449Sq-drXEZ7PSsp7BwRd5pK4Hn_2lsaHZ9UDZ4svIyio26PoHUCDzrd6KcRykPpnPME1oIK_GX-8q1f2PD06F-En8G1nf3ppJzszt49huvcY6suE7QKg3m7wCdwxX6eH521T6MR_AI2Ngzs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5Bi6pe-P8JFDCCC0ihWTtex0fa7YrCdlVVVOotiu0JakXTVbqL4IbEC_CMPAkex82qAiEhbpEylqPMjP2NPfMNwAs1rDl3PjopnKPTKlWnxhQyzQe1sCLXBl0emk2o6bQ4OtL7MTeHamE6foj-wI08I6zX5OA4c_XmkjX05LQ9fk2AX1yF1VzqoffL1dHB-HCyZN3VoUuxxxAiHRSZ6vlJ-eZy9OUd6TeYeRm1hm1nfOM_P_gmXI94k73pDOQWXMHmNqztxRv1O_B972D357cfW34zc2yLMtTnbJssoWWhXyZlEgXlsapxbEI7X6zcZOYrC-W7xB5-So25LCNAuWiR7XyZt13FRBjmFx0fgHejQo4CGyHOWOR2_XgXDsc7H7bfprExQ2qFVCI1TmOlTWEptHaYYSZt5lB635eOY-WjdRxyHwhKZ2WFg8wLezMoCkRVaWHEPVhpzhp8ACx3FaEUIbSs81pmxiCnNcEZoW3tBgm8vFBOaSNrOTXP-FR2fMu8pL9ahr-awPNedtZxdfxRauNCx2X01_OSws4hcaepBJ71r72n0fVJ1eDZwssouur2CFoncL-zjX4aoTyUzjlP4FUwgb_MX77zig1PD_9F-Cms7Y_G5WR3-v4RrHMPrbqDoA1YmbcLfAzX7Of58Xn7JPrAL6_4DGc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI-Based+Breast+Cancer+Classification+and+Localization+by+Multiparametric+Feature+Extraction+and+Combination+Using+Deep+Learning&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Cong%2C+Chao&rft.au=Li%2C+Xiaoguang&rft.au=Zhang%2C+Chunlai&rft.au=Zhang%2C+Jing&rft.date=2024-01-01&rft.issn=1522-2586&rft.eissn=1522-2586&rft.volume=59&rft.issue=1&rft.spage=148&rft_id=info:doi/10.1002%2Fjmri.28713&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon