Structural design and testing of material optimized ribbed RC slabs with 3D printed formwork
Most of the concrete volume in multistorey buildings is cast in solid slabs, which are frequently flat slabs supported on columns. By using two‐way spanning ribbed slabs, concrete consumption could be significantly reduced. However, due to the high costs associated with formwork, such a complex rib...
Uloženo v:
| Vydáno v: | Structural concrete : journal of the FIB Ročník 24; číslo 2; s. 1932 - 1955 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Weinheim
WILEY‐VCH Verlag GmbH & Co. KGaA
01.04.2023
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 1464-4177, 1751-7648 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Most of the concrete volume in multistorey buildings is cast in solid slabs, which are frequently flat slabs supported on columns. By using two‐way spanning ribbed slabs, concrete consumption could be significantly reduced. However, due to the high costs associated with formwork, such a complex rib configuration is rarely used nowadays. With the advent of technologies for automated formwork fabrication, the material‐saving potential inherent in this structural system could again be exploited. This paper investigates the feasibility of material‐efficient ribbed concrete slabs on a building scale using conventional concrete and steel reinforcing bars cast inside a three‐dimensional‐printed plastic‐based formwork. To that end, the code‐compliant design of ribbed slabs is first discussed, followed by the introduction of a concept for an automated design‐to‐production workflow. The sustainability of this slab system is compared to a solution using conventional formwork in a case study consisting of a multibay office building with slabs spanning 8 m in both directions, revealing that ribbed slabs use 40% less concrete than solid slabs. Several representative structural elements of the case study (ribs, slab‐column transition) were produced at full‐scale and tested until failure to investigate the feasibility of production and structural performance. Three T‐beams with various rib shapes (straight, kinked with diaphragms, curved) were tested in a three‐point bending configuration, showing a ductile behavior with longitudinal reinforcement yielding and indicating the relevance of torsional effects in curved ribs. Punching tests on two slab‐column connections (ribbed, solid) revealed that the optimized ribbed slab could prevent brittle punching failures and achieve an ultimate load 105% higher than the solid reference slab. All specimens' load‐bearing behavior could be predicted using established design formulas, showing the feasibility of producing code‐compliant ribbed slabs with the applied technology. |
|---|---|
| AbstractList | Most of the concrete volume in multistorey buildings is cast in solid slabs, which are frequently flat slabs supported on columns. By using two‐way spanning ribbed slabs, concrete consumption could be significantly reduced. However, due to the high costs associated with formwork, such a complex rib configuration is rarely used nowadays. With the advent of technologies for automated formwork fabrication, the material‐saving potential inherent in this structural system could again be exploited. This paper investigates the feasibility of material‐efficient ribbed concrete slabs on a building scale using conventional concrete and steel reinforcing bars cast inside a three‐dimensional‐printed plastic‐based formwork. To that end, the code‐compliant design of ribbed slabs is first discussed, followed by the introduction of a concept for an automated design‐to‐production workflow. The sustainability of this slab system is compared to a solution using conventional formwork in a case study consisting of a multibay office building with slabs spanning 8 m in both directions, revealing that ribbed slabs use 40% less concrete than solid slabs. Several representative structural elements of the case study (ribs, slab‐column transition) were produced at full‐scale and tested until failure to investigate the feasibility of production and structural performance. Three T‐beams with various rib shapes (straight, kinked with diaphragms, curved) were tested in a three‐point bending configuration, showing a ductile behavior with longitudinal reinforcement yielding and indicating the relevance of torsional effects in curved ribs. Punching tests on two slab‐column connections (ribbed, solid) revealed that the optimized ribbed slab could prevent brittle punching failures and achieve an ultimate load 105% higher than the solid reference slab. All specimens' load‐bearing behavior could be predicted using established design formulas, showing the feasibility of producing code‐compliant ribbed slabs with the applied technology. Most of the concrete volume in multistorey buildings is cast in solid slabs, which are frequently flat slabs supported on columns. By using two‐way spanning ribbed slabs, concrete consumption could be significantly reduced. However, due to the high costs associated with formwork, such a complex rib configuration is rarely used nowadays. With the advent of technologies for automated formwork fabrication, the material‐saving potential inherent in this structural system could again be exploited. This paper investigates the feasibility of material‐efficient ribbed concrete slabs on a building scale using conventional concrete and steel reinforcing bars cast inside a three‐dimensional‐printed plastic‐based formwork. To that end, the code‐compliant design of ribbed slabs is first discussed, followed by the introduction of a concept for an automated design‐to‐production workflow. The sustainability of this slab system is compared to a solution using conventional formwork in a case study consisting of a multibay office building with slabs spanning 8 m in both directions, revealing that ribbed slabs use 40% less concrete than solid slabs. Several representative structural elements of the case study (ribs, slab‐column transition) were produced at full‐scale and tested until failure to investigate the feasibility of production and structural performance. Three T‐beams with various rib shapes (straight, kinked with diaphragms, curved) were tested in a three‐point bending configuration, showing a ductile behavior with longitudinal reinforcement yielding and indicating the relevance of torsional effects in curved ribs. Punching tests on two slab‐column connections (ribbed, solid) revealed that the optimized ribbed slab could prevent brittle punching failures and achieve an ultimate load 105% higher than the solid reference slab. All specimens' load‐bearing behavior could be predicted using established design formulas, showing the feasibility of producing code‐compliant ribbed slabs with the applied technology. |
| Author | Burger, Joris Kaufmann, Walter Huber, Tobias Mata‐Falcón, Jaime |
| Author_xml | – sequence: 1 givenname: Tobias orcidid: 0000-0001-9248-1662 surname: Huber fullname: Huber, Tobias email: tobias.huber@ibk.baug.ethz.ch organization: TU Wien – sequence: 2 givenname: Joris orcidid: 0000-0001-6116-8091 surname: Burger fullname: Burger, Joris organization: ETH Zurich – sequence: 3 givenname: Jaime orcidid: 0000-0001-8701-4410 surname: Mata‐Falcón fullname: Mata‐Falcón, Jaime organization: ETH Zurich – sequence: 4 givenname: Walter orcidid: 0000-0002-8415-4896 surname: Kaufmann fullname: Kaufmann, Walter organization: ETH Zurich |
| BookMark | eNqFkN1LwzAUxYMouE1ffQ743Jk0SdM-Sv2EwcC5N6GkaTIz22YmKWP-9WZMFATx6V4453fP5YzBcW97BcAFRlOMUHrlB2mnKUpThDJCjsAIc4YTntH8OO40ownFnJ-Csffr6I87G4GXRXCDDIMTLWyUN6seir6BQflg-hW0GnYiKGeibDfBdOZDNdCZuo7jqYS-FbWHWxNeIbmBG2f6EAVtXbe17u0MnGjRenX-NSdgeXf7XD4ks_n9Y3k9SyRhnCQ004piiUSmc13ItGgUx0pzJYkstEKC5aypdU0IVZTXGGPKhaCKMJ1KgRiZgMvD3Y2z70N8vVrbwfUxskpzRHmBWYGja3pwSWe9d0pX8d9OuF2FUbVvsNo3WH03GAH6C5AmiGBsH5ww7d9YccC2plW7f0KqxbKc_7CfqGaJiQ |
| CitedBy_id | crossref_primary_10_1016_j_cemconres_2024_107644 crossref_primary_10_1016_j_cscm_2025_e05139 crossref_primary_10_1002_best_202300071 crossref_primary_10_1007_s41693_023_00090_x crossref_primary_10_1016_j_cemconres_2024_107645 crossref_primary_10_3390_civileng5020026 crossref_primary_10_3390_civileng4040060 crossref_primary_10_1016_j_compstruc_2024_107582 crossref_primary_10_1051_matecconf_202540906002 crossref_primary_10_1080_17452759_2024_2367735 crossref_primary_10_1007_s44150_025_00126_6 crossref_primary_10_1016_j_engstruct_2024_119535 crossref_primary_10_3390_buildings13122928 crossref_primary_10_1016_j_jobe_2025_113813 crossref_primary_10_1016_j_autcon_2022_104599 crossref_primary_10_1016_j_engstruct_2023_116847 crossref_primary_10_3390_buildings15101631 crossref_primary_10_1007_s00158_024_03824_9 crossref_primary_10_1002_suco_70105 crossref_primary_10_1016_j_engstruct_2023_115994 crossref_primary_10_1016_j_autcon_2023_104969 crossref_primary_10_1080_21650373_2025_2553168 |
| Cites_doi | 10.1016/j.istruc.2018.03.001 10.21809/rilemtechlett.2016.16 10.1016/j.engstruct.2021.113486 10.52842/conf.acadia.2018.434 10.1016/j.cemconres.2018.05.020 10.14359/19731 10.1089/3dp.2019.0197 10.21809/rilemtechlett.2022.161 10.1016/j.conbuildmat.2020.119383 10.14359/51688758 10.1088/1748-3182/9/1/016013 10.52842/conf.caadria.2022.2.061 10.1061/(ASCE)0733-9445(2002)128:10(1243) 10.1007/978-3-030-49916-7_102 10.3390/su12208532 10.1002/ad.1564 10.1061/(ASCE)AE.1943-5568.0000397 10.1016/j.engstruct.2017.01.075 10.1002/cend.202000022 10.2307/j.ctt1n7qkg7.33 10.1016/j.engstruct.2021.112380 10.14359/56614 10.1016/j.autcon.2022.104599 10.1007/s00158-021-03019-6 10.1061/(ASCE)0733-9445(1997)123:8(1102) 10.2307/j.ctv13xpsvw.20 10.1016/j.cemconres.2022.106948 10.1002/suco.201100032 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. published by John Wiley & Sons Ltd on behalf of International Federation for Structural Concrete. 2023. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of International Federation for Structural Concrete. – notice: 2023. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7QQ 7SR 8BQ 8FD F28 FR3 JG9 KR7 |
| DOI | 10.1002/suco.202200633 |
| DatabaseName | Wiley Online Library Open Access CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Ceramic Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-7648 |
| EndPage | 1955 |
| ExternalDocumentID | 10_1002_suco_202200633 SUCO202200633 |
| Genre | article |
| GrantInformation_xml | – fundername: Siemens – fundername: ETH Zürich Foundation – fundername: Geberit – fundername: Swiss National Science Foundation's NCCR Digital Fabrication funderid: 51NF40‐141853 |
| GroupedDBID | ..I .GA .Y3 05W 0R~ 123 1OC 24P 31~ 33P 3SF 4.4 50Z 52M 52U 8-0 8-1 8-3 8-4 8-5 930 A03 AABWP AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAUCF AAXRX AAYCA AAZKR ABCUV ABDBF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADXNT ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BRXPI CS3 D-E D-F DCZOG DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 FEDTE G-S GODZA H.T H.X HF~ HGLYW HVGLF HZ~ ITG ITH LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ N04 N05 NF~ O66 O9- P2W P2X Q.N QB0 ROL RTT SUPJJ UB1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WXSBR WYISQ XG2 ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION GEI O8X 7QQ 7SR 8BQ 8FD F28 FR3 JG9 KR7 |
| ID | FETCH-LOGICAL-c3573-46fe41c0a6f8f9c29de71ef7ec3c9fe0a585dbfb334e47b11147aa4e35f2ca053 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000942429600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1464-4177 |
| IngestDate | Sun Oct 26 04:17:19 EDT 2025 Sat Nov 29 06:52:12 EST 2025 Tue Nov 18 22:04:26 EST 2025 Wed Jan 22 16:20:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3573-46fe41c0a6f8f9c29de71ef7ec3c9fe0a585dbfb334e47b11147aa4e35f2ca053 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9248-1662 0000-0001-6116-8091 0000-0001-8701-4410 0000-0002-8415-4896 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsuco.202200633 |
| PQID | 2804791591 |
| PQPubID | 136230 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_2804791591 crossref_primary_10_1002_suco_202200633 crossref_citationtrail_10_1002_suco_202200633 wiley_primary_10_1002_suco_202200633_SUCO202200633 |
| PublicationCentury | 2000 |
| PublicationDate | April 2023 2023-04-00 20230401 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: London |
| PublicationTitle | Structural concrete : journal of the FIB |
| PublicationYear | 2023 |
| Publisher | WILEY‐VCH Verlag GmbH & Co. KGaA Wiley Subscription Services, Inc |
| Publisher_xml | – name: WILEY‐VCH Verlag GmbH & Co. KGaA – name: Wiley Subscription Services, Inc |
| References | 2021; 9 2019; 2019 2021; 64 2022; 251 2017; 3 2012 1993; 83 Austin: Texas Society of Architects; 2016 2013; 83 2008; 105 2020; 12 2021; 240 2004 2002 2012; 13 1972; 7 2017; 137 2022; 144 2020; 7 2012; 2 2016; 1 2020; 2 2022; 161 2021 2020 2022; 7 2018; 112 1997; 123 2002; 128 2016; 113 2019 2020; 26 2018 1903; AT12365B 1931; 3 2016 1960 2014 7 2022; 2 2020; 256 2014; 9 2022; 148 2018; 14 2009; 106 e_1_2_13_24_1 e_1_2_13_26_1 e_1_2_13_45_1 e_1_2_13_22_1 Chen W‐F (e_1_2_13_51_1) 1972; 7 e_1_2_13_41_1 e_1_2_13_6_1 Mitropoulou I (e_1_2_13_49_1) 2020 Jipa A (e_1_2_13_23_1) 2016 Ranaudo F (e_1_2_13_21_1) e_1_2_13_17_1 e_1_2_13_19_1 Hennebique F (e_1_2_13_2_1) 1903; 12365 (e_1_2_13_14_1) 2016 e_1_2_13_13_1 e_1_2_13_15_1 e_1_2_13_57_1 Jipa A (e_1_2_13_20_1) 2019 e_1_2_13_55_1 e_1_2_13_11_1 e_1_2_13_53_1 e_1_2_13_30_1 Marti P (e_1_2_13_35_1) 2022; 148 e_1_2_13_4_1 (e_1_2_13_8_1) 2019 e_1_2_13_29_1 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_27_1 EN1990 (e_1_2_13_40_1) 2002 e_1_2_13_46_1 McNeel R. (e_1_2_13_43_1) 2014 e_1_2_13_42_1 2020 Global Status Report for Buildings and Construction (e_1_2_13_7_1) 2020 e_1_2_13_9_1 Rutten D (e_1_2_13_47_1) 2013; 83 EN 1992‐1‐1 (e_1_2_13_34_1) 2004 International Federation for Structural Concrete (e_1_2_13_36_1) 2012 Johansen KW (e_1_2_13_33_1) 1931; 3 e_1_2_13_18_1 e_1_2_13_39_1 e_1_2_13_16_1 e_1_2_13_58_1 e_1_2_13_31_1 e_1_2_13_56_1 e_1_2_13_12_1 e_1_2_13_54_1 EN 1992‐1‐2 (e_1_2_13_38_1) 2004 e_1_2_13_52_1 Dlubal Software DE (e_1_2_13_44_1) 2020 e_1_2_13_50_1 e_1_2_13_5_1 e_1_2_13_3_1 Iori T (e_1_2_13_37_1) 2012 Jipa A (e_1_2_13_10_1) 2021 e_1_2_13_28_1 Hillerborg A (e_1_2_13_32_1) 1960 |
| References_xml | – volume: 7 start-page: 148‐54 issue: 2 year: 1972 article-title: Double‐punch test and tensile strength of concrete publication-title: J Mater – volume: 105 start-page: 105 year: 2008 article-title: Shear strength of members without transverse reinforcement as function of critical shear crack width publication-title: ACI Struct J – volume: 14 start-page: 322 year: 2018 end-page: 32 article-title: Building in concrete with an ultra‐lightweight knitted stay‐in‐place formwork: prototype of a concrete shell bridge publication-title: Structure – volume: 7 start-page: 68 year: 2022 end-page: 78 article-title: Digitally fabricated ribbed concrete floor slabs: a sustainable solution for construction publication-title: RILEM Tech Lett – volume: 64 start-page: 1725 year: 2021 end-page: 49 article-title: Topology optimization in concrete construction: a systematic review on numerical and experimental investigations publication-title: Struct Multidiscip Optim – year: 2021 – volume: 113 start-page: 113 year: 2016 article-title: Punching shear capacity of continuous slabs publication-title: ACI Struct J – volume: 148 year: 2022 article-title: Kirchhoff–love plate deformations reinterpreted publication-title: J Eng Mech – year: 2018 – year: 2014 – volume: 26 year: 2020 article-title: Technical analysis and comparison of formwork‐making methods for customized prefabricated buildings: 3D printing and conventional methods publication-title: J Archit Eng – volume: 128 start-page: 128 year: 2002 end-page: 1252 article-title: Contributions of C.A.P. TURNER to development of reinforced conrete flat slabs1905–1909 publication-title: J Struct Eng – volume: 9 year: 2014 article-title: Sustainability assessment of a lightweight biomimetic ceiling structure publication-title: Bioinspir Biomim – volume: 83 start-page: 132 year: 2013 end-page: 5 article-title: Galapagos: on the logic and limitations of generic solvers publication-title: Archit Des – volume: 3 start-page: 1 year: 1931 end-page: 18 article-title: Beregning af krydsarmerede jernbetonpladers brudmoment publication-title: Bygningsstatiske Meddelelser – volume: 7 start-page: 48 year: 2020 end-page: 59 article-title: Eggshell: ultra‐thin three‐dimensional printed formwork for concrete structures publication-title: 3D Print Addit Manuf – volume: 2 start-page: 131 year: 2020 end-page: 9 article-title: Reinforcement strategies for 3D‐concrete‐printing publication-title: Civ Eng Des – volume: 7 – year: 2019 – start-page: 124 year: 2020 end-page: 9 – year: 2004 article-title: Eurocode 2: design of concrete structures—part 1–1: general rules and rules for buildings publication-title: Brussels: Eur Comm Stand (CEN) – volume: 137 start-page: 323 year: 2017 end-page: 35 article-title: Design, fabrication and testing of a prototype, thin‐vaulted, unreinforced concrete floor publication-title: Eng Struct – volume: 240 year: 2021 article-title: Structural behaviour of 3D printed concrete beams with various reinforcement strategies publication-title: Eng Struct – volume: 2 year: 2012 – year: 2002 article-title: Eurocode: basis of structural design publication-title: Brussels: Eur Comm Stand – start-page: 1067 year: 2020 end-page: 77 – volume: 256 year: 2020 article-title: Automated crack detection and measurement based on digital image correlation publication-title: Construct Build Mater – volume: 161 start-page: 106948 year: 2022 article-title: Fostering innovative and sustainable mass‐market construction using digital fabrication with concrete publication-title: Cem Concr Res – year: 2016 – volume: 1 start-page: 67 year: 2016 end-page: 75 article-title: Digital concrete: opportunities and challenges publication-title: RILEM Tech Lett – volume: 144 start-page: 104599 year: 2022 article-title: Design and fabrication of optimised ribbed concrete floor slabs using large scale 3D printed formwork publication-title: Autom Constr – volume: 3 start-page: 210 year: 2017 end-page: 8 – year: 2012 – year: 2004 article-title: Eurocode 2: design of concrete structures—part 1–2: general rules‐structural fire design publication-title: Brussels: Eur Comm Stand (CEN) – volume: 9 start-page: 84 issue: 2 year: 2021 end-page: 107 – volume: 13 start-page: 32 year: 2012 end-page: 41 article-title: The levels‐of‐approximation approach in MC 2010: application to punching shear provisions publication-title: Struct Concr – volume: AT12365B start-page: 6 year: 1903 article-title: Verfahren zur Herstellung von Decken bezw publication-title: Fußböden aus armiertem Beton – year: 2002 – start-page: 177 year: 1960 end-page: 186 – year: 2020 – start-page: 97 year: Austin: Texas Society of Architects; 2016 end-page: 107 – volume: 83 start-page: 110 year: 1993 end-page: 3 article-title: Linking structure and parametric geometry publication-title: Archit Des – volume: 123 start-page: 1102 year: 1997 end-page: 10 article-title: Robert Maillart's design approach for flat slabs publication-title: J Struct Eng – volume: 251 year: 2022 article-title: Refined extraction of crack characteristics in large‐scale concrete experiments based on digital image correlation publication-title: Eng Struct – volume: 2019 start-page: 1 year: 2019 end-page: 8 – volume: 2 start-page: 61 year: 2022 end-page: 70 – volume: 112 start-page: 111 year: 2018 end-page: 21 article-title: Rethinking reinforcement for digital fabrication with concrete publication-title: Cem Concr Res – volume: 12 year: 2020 article-title: Optimization of RC structures in terms of cost and environmental impact—case study publication-title: Sustainability – volume: 106 start-page: 485 year: 2009 end-page: 494 article-title: Applications of critical shear crack theory to punching of reinforced concrete slabs with transverse reinforcement publication-title: ACI Struct J – volume: 2021 start-page: 2016 end-page: 24 – ident: e_1_2_13_12_1 doi: 10.1016/j.istruc.2018.03.001 – ident: e_1_2_13_11_1 doi: 10.21809/rilemtechlett.2016.16 – start-page: 97 volume-title: In: Bieg K, editor. Proc. 2016 TxA Emerg. Des. Technol. Conf., San Antonio year: 2016 ident: e_1_2_13_23_1 – ident: e_1_2_13_53_1 doi: 10.1016/j.engstruct.2021.113486 – ident: e_1_2_13_18_1 doi: 10.52842/conf.acadia.2018.434 – ident: e_1_2_13_26_1 doi: 10.1016/j.cemconres.2018.05.020 – volume: 3 start-page: 1 year: 1931 ident: e_1_2_13_33_1 article-title: Beregning af krydsarmerede jernbetonpladers brudmoment publication-title: Bygningsstatiske Meddelelser – volume: 148 year: 2022 ident: e_1_2_13_35_1 article-title: Kirchhoff–love plate deformations reinterpreted publication-title: J Eng Mech – ident: e_1_2_13_57_1 doi: 10.14359/19731 – volume-title: Model Code 2010: final draft year: 2012 ident: e_1_2_13_36_1 – volume: 7 start-page: 148‐54 issue: 2 year: 1972 ident: e_1_2_13_51_1 article-title: Double‐punch test and tensile strength of concrete publication-title: J Mater – start-page: 84 volume-title: 3D printed formwork for concrete: state‐of‐the‐art, opportunities, challenges, and applications year: 2021 ident: e_1_2_13_10_1 – start-page: 2016 volume-title: Snijder B, De Pauw B, van Alphen S, Mengeot, P, editors. Proc. IABSE Congr. Ghent 2021 ident: e_1_2_13_21_1 – ident: e_1_2_13_29_1 doi: 10.1089/3dp.2019.0197 – ident: e_1_2_13_46_1 – ident: e_1_2_13_54_1 – ident: e_1_2_13_50_1 – ident: e_1_2_13_5_1 – ident: e_1_2_13_13_1 doi: 10.21809/rilemtechlett.2022.161 – ident: e_1_2_13_31_1 – volume-title: RFEM 5—spatial models calculated according to finite element method year: 2020 ident: e_1_2_13_44_1 – ident: e_1_2_13_52_1 doi: 10.1016/j.conbuildmat.2020.119383 – ident: e_1_2_13_55_1 doi: 10.14359/51688758 – volume-title: Le plancher a nervures isostatiques de Nervi year: 2012 ident: e_1_2_13_37_1 – volume-title: Towards a zero‐emission, efficient and resilient buildings and construction sector year: 2020 ident: e_1_2_13_7_1 – ident: e_1_2_13_6_1 doi: 10.1088/1748-3182/9/1/016013 – ident: e_1_2_13_39_1 – ident: e_1_2_13_22_1 doi: 10.52842/conf.caadria.2022.2.061 – year: 2002 ident: e_1_2_13_40_1 article-title: Eurocode: basis of structural design publication-title: Brussels: Eur Comm Stand – year: 2004 ident: e_1_2_13_38_1 article-title: Eurocode 2: design of concrete structures—part 1–2: general rules‐structural fire design publication-title: Brussels: Eur Comm Stand (CEN) – ident: e_1_2_13_3_1 doi: 10.1061/(ASCE)0733-9445(2002)128:10(1243) – volume: 12365 start-page: 6 year: 1903 ident: e_1_2_13_2_1 article-title: Verfahren zur Herstellung von Decken bezw publication-title: Fußböden aus armiertem Beton – volume-title: Costas Georgopoulos and Andrew Minson (eds): Sustainable concrete solutions year: 2016 ident: e_1_2_13_14_1 – volume-title: The European green deal year: 2019 ident: e_1_2_13_8_1 – ident: e_1_2_13_17_1 doi: 10.1007/978-3-030-49916-7_102 – ident: e_1_2_13_15_1 doi: 10.3390/su12208532 – ident: e_1_2_13_45_1 doi: 10.1002/ad.1564 – ident: e_1_2_13_9_1 doi: 10.1061/(ASCE)AE.1943-5568.0000397 – volume: 83 start-page: 132 year: 2013 ident: e_1_2_13_47_1 article-title: Galapagos: on the logic and limitations of generic solvers publication-title: Archit Des – ident: e_1_2_13_19_1 doi: 10.1016/j.engstruct.2017.01.075 – ident: e_1_2_13_27_1 doi: 10.1002/cend.202000022 – volume-title: Rhinoceros 5—user's guide year: 2014 ident: e_1_2_13_43_1 – ident: e_1_2_13_42_1 – ident: e_1_2_13_24_1 doi: 10.2307/j.ctt1n7qkg7.33 – ident: e_1_2_13_28_1 doi: 10.1016/j.engstruct.2021.112380 – ident: e_1_2_13_58_1 doi: 10.14359/56614 – ident: e_1_2_13_30_1 doi: 10.1016/j.autcon.2022.104599 – year: 2004 ident: e_1_2_13_34_1 article-title: Eurocode 2: design of concrete structures—part 1–1: general rules and rules for buildings publication-title: Brussels: Eur Comm Stand (CEN) – ident: e_1_2_13_41_1 doi: 10.1007/s00158-021-03019-6 – ident: e_1_2_13_4_1 doi: 10.1061/(ASCE)0733-9445(1997)123:8(1102) – ident: e_1_2_13_48_1 – ident: e_1_2_13_25_1 doi: 10.2307/j.ctv13xpsvw.20 – ident: e_1_2_13_16_1 doi: 10.1016/j.cemconres.2022.106948 – start-page: 177 volume-title: IABSE Congr Rep year: 1960 ident: e_1_2_13_32_1 – start-page: 1 volume-title: In: Lázaro C, Bletzinger KU, Oñate E, editors. Proc. IASS Annu. Symp year: 2019 ident: e_1_2_13_20_1 – volume-title: COMPAS_SLICER: Slicing functionality for Compas v0.5.0 year: 2020 ident: e_1_2_13_49_1 – ident: e_1_2_13_56_1 doi: 10.1002/suco.201100032 |
| SSID | ssj0021775 ssib035781430 |
| Score | 2.376453 |
| Snippet | Most of the concrete volume in multistorey buildings is cast in solid slabs, which are frequently flat slabs supported on columns. By using two‐way spanning... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1932 |
| SubjectTerms | automated formwork Automation Case studies Columns (structural) Concrete Concrete construction Concrete slabs Configurations Curved beams Design optimization Diaphragms digital fabrication eggshell Feasibility Formwork Multistory buildings Office buildings optimization prototype punching Rebar Reinforcing steels ribbed slabs Ribs (structural) Structural design Structural members testing Three dimensional printing Ultimate loads Workflow |
| Title | Structural design and testing of material optimized ribbed RC slabs with 3D printed formwork |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsuco.202200633 https://www.proquest.com/docview/2804791591 |
| Volume | 24 |
| WOSCitedRecordID | wos000942429600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1751-7648 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021775 issn: 1464-4177 databaseCode: DRFUL dateStart: 20110101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HfTgW1xf5CB4KjaPbtqj7Lp4kFXUBQ9CSdJEFrQrW_Xgr3eSdtf1IIKeSiAJZV75Jky-ATjWwvB2kqlIKx1HIsEEJc3iLHKyjeiBIgZuu9BsQvb76f19dj3zir_mh5heuHnPCPHaO7jS1ekXaWj1ZvzjPeZzYs7nYZFSnvrmDUxcTyzKU7nQwC_epGBUBupdDA8iEjiY0DjG7PT7ft-PqS_sOYtgwxHUW_v_z6_DagM_yVltLxswZ8tNWJkhJdyCh9tAKevpOEgR6juIKgvy6uk4ykcycgRBbrBbMsJ48zz8sAUZD7XGz02HoInpivjrXcK7xF8bIqYlHhr7ErBtGPTO7zoXUdODITIoPB6hqqygJlZtl7rMsKywklonreEmczZWmG4U2mnOhRVSY-QUUilheeKYUejhO7BQjkq7C0TbxFGNm9jECKUQixRpwtJCSst1krAWRBOR56YhKPd9Mp7ymlqZ5V5q-VRqLTiZzn-pqTl-nHkw0WDeuGiVs9Sz6yOaoy1gQVe_7JLfDjpX09HeXxbtw7JvV19X_hzAAurTHsKSeX8dVuOjYLpHsNi96Q0uPwEV8e7C |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEB7auNDm0EeSErdpqkOhp8W7ktbaPQanxqWOW5IYfCgsklYKhmQd7LSH_PrMaB9JDqVQeloEu2KZl74ZRt8AfDLSimGa68hoE0cyxQQly-M88mqI6CFBDDz0YdiEms2yxSL_0XQT0l2Ymh-iK7iRZ4R4TQ5OBenBPWvo5pel23uckmIhnkJPoi2hkfeOT8fzaWtUxOaSBIrxJgtLVGDfxQghI4mLlskx5oPHOz4-qe7h50MQG06h8av_8P-v4WUDQdlRbTNv4ImrdmD7ATHhLvw8C7SyRMnBytDjwXRVshui5Kgu2MozBLrBdtkKY87V8taVbL00Bh-nI4ZmZjaMSrxMHDMqHSKuZQSPqQ1sD-bjL-ejSdTMYYgsSk9EqC4nExvroc98bnleOpU4r5wVNvcu1phylMYbIaSTymD0lEpr6UTqudXo5W9hq1pVbh-YcalPDG7iUiu1RjxSZinPSqWcMGnK-xC1Mi9sQ1JOszIui5pemRcktaKTWh8-d-9f1_Qcf3zzoFVh0bjppuAZMewjokv6wIOy_rJLcTYffe9W7_7lo4_wfHJ-Mi2mX2ff3sMLGl9fdwIdwBbq1n2AZ_b3zXKzPmws-Q5QivKo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSyMxFH5oXUQP666u2F11cxA8Dc4kmWbmKO0WRamiFjwIQ5JJpLBOi1UP-9fve5lp1YMI4mkIJGF4v_K98PI9gD0jreikuY6MNnEkU0xQsjzOI686iB4SxMAdH5pNqMEgu77Oz5tqQnoLU_NDzC_cyDNCvCYHd5PSHzyzhk4fLb3e45QUC7EIS5I6ybRgqXfRH57OjIrYXJJAMd5kYYkK7LsYIWQkcTBjcoz5wesdX59Uz_DzJYgNp1B_7RP-_xt8bSAoO6xt5jssuGodVl8QE27AzWWglSVKDlaGGg-mq5I9ECVHdcvGniHQDbbLxhhz7kb_XMnuR8bg56LL0MzMlNEVLxM9RleHiGsZwWMqA_sBw_6fq-5R1PRhiCxKT0SoLicTG-uOz3xueV46lTivnBU29y7WmHKUxhshpJPKYPSUSmvpROq51ejlm9CqxpXbAmZc6hODm7jUSq0Rj5RZyrNSKSdMmvI2RDOZF7YhKadeGX-Lml6ZFyS1Yi61NuzP509qeo43Z27PVFg0bjoteEYM-4jokjbwoKx3dikuh92z-ejnRxb9huXzXr84PR6c_IIV6l5fFwJtQwtV63bgi316GE3vdxtD_g_ugvIj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+design+and+testing+of+material+optimized+ribbed+RC+slabs+with+3D+printed+formwork&rft.jtitle=Structural+concrete+%3A+journal+of+the+FIB&rft.au=Huber%2C+Tobias&rft.au=Burger%2C+Joris&rft.au=Mata%E2%80%90Falc%C3%B3n%2C+Jaime&rft.au=Kaufmann%2C+Walter&rft.date=2023-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1464-4177&rft.eissn=1751-7648&rft.volume=24&rft.issue=2&rft.spage=1932&rft.epage=1955&rft_id=info:doi/10.1002%2Fsuco.202200633&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-4177&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-4177&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-4177&client=summon |