An integrative agent‐based vertical evacuation risk assessment model for near‐field tsunami hazards

This study couples FN‐curves with Agent‐based Modeling and Simulation (ABMS) to assess risk for tsunamis with various recurrence intervals . By considering both expected number of casualties and the likelihood of tsunami events, multiple series of simulations and in‐depth analyses determine (1) how...

Full description

Saved in:
Bibliographic Details
Published in:Risk analysis Vol. 42; no. 12; pp. 2720 - 2734
Main Authors: Chen, Chen, Mostafizi, Alireza, Wang, Haizhong, Cox, Dan, Chand, Cadell
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01.12.2022
Subjects:
ISSN:0272-4332, 1539-6924, 1539-6924
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study couples FN‐curves with Agent‐based Modeling and Simulation (ABMS) to assess risk for tsunamis with various recurrence intervals . By considering both expected number of casualties and the likelihood of tsunami events, multiple series of simulations and in‐depth analyses determine (1) how vertical evacuation structure (VES) placement impacts mortality rate; (2) what the best evacuation strategies VES locations are; and (3) where evacuees are likely to be caught by tsunami waves. The results from utilizing FN‐curves to conduct disaggregative analyses based on six tsunami scenarios indicate that choosing one tsunami scenario or averaging the risk of different scenarios may not fully articulate VES impacts due to the “levee effect,” which potentially leads to false positives. Findings show that placing VESs close to shorelines saves nearby at‐risk populations, but also results in two risk increasing phenomena: “exposure to risk” (i.e., evacuees being attracted to high risk roads by a VES when evacuating) and “blind zones” (i.e., locations near a VES where evacuees increase their risk by evacuating to that VES). When limited to one VES, placement near a population's centroid results in the lowest mortality rate. More than one VES may lower mortality rate further if VESs are spreading out according to community's topography. In addition to the analysis of tsunamis, the approach of coupling FN‐curves with ABMS can be used by local authorities and engineers to determine tailored hard‐adaptive measures and evacuation strategies, which helps to avoid maladaptive actions in different hazardous events.
AbstractList This study couples FN‐curves with Agent‐based Modeling and Simulation (ABMS) to assess risk for tsunamis with various recurrence intervals . By considering both expected number of casualties and the likelihood of tsunami events, multiple series of simulations and in‐depth analyses determine (1) how vertical evacuation structure (VES) placement impacts mortality rate; (2) what the best evacuation strategies VES locations are; and (3) where evacuees are likely to be caught by tsunami waves. The results from utilizing FN‐curves to conduct disaggregative analyses based on six tsunami scenarios indicate that choosing one tsunami scenario or averaging the risk of different scenarios may not fully articulate VES impacts due to the “levee effect,” which potentially leads to false positives. Findings show that placing VESs close to shorelines saves nearby at‐risk populations, but also results in two risk increasing phenomena: “exposure to risk” (i.e., evacuees being attracted to high risk roads by a VES when evacuating) and “blind zones” (i.e., locations near a VES where evacuees increase their risk by evacuating to that VES). When limited to one VES, placement near a population's centroid results in the lowest mortality rate. More than one VES may lower mortality rate further if VESs are spreading out according to community's topography. In addition to the analysis of tsunamis, the approach of coupling FN‐curves with ABMS can be used by local authorities and engineers to determine tailored hard‐adaptive measures and evacuation strategies, which helps to avoid maladaptive actions in different hazardous events.
This study couples FN‐curves with Agent‐based Modeling and Simulation (ABMS) to assess risk for tsunamis with various recurrence intervals . By considering both expected number of casualties and the likelihood of tsunami events, multiple series of simulations and in‐depth analyses determine (1) how vertical evacuation structure (VES) placement impacts mortality rate; (2) what the best evacuation strategies VES locations are; and (3) where evacuees are likely to be caught by tsunami waves. The results from utilizing FN‐curves to conduct disaggregative analyses based on six tsunami scenarios indicate that choosing one tsunami scenario or averaging the risk of different scenarios may not fully articulate VES impacts due to the “levee effect,” which potentially leads to false positives. Findings show that placing VESs close to shorelines saves nearby at‐risk populations, but also results in two risk increasing phenomena: “exposure to risk” (i.e., evacuees being attracted to high risk roads by a VES when evacuating) and “blind zones” (i.e., locations near a VES where evacuees increase their risk by evacuating to that VES). When limited to one VES, placement near a population's centroid results in the lowest mortality rate. More than one VES may lower mortality rate further if VESs are spreading out according to community's topography. In addition to the analysis of tsunamis, the approach of coupling FN‐curves with ABMS can be used by local authorities and engineers to determine tailored hard‐adaptive measures and evacuation strategies, which helps to avoid maladaptive actions in different hazardous events.
This study couples FN-curves with Agent-based Modeling and Simulation (ABMS) to assess risk for tsunamis with various recurrence intervals . By considering both expected number of casualties and the likelihood of tsunami events, multiple series of simulations and in-depth analyses determine (1) how vertical evacuation structure (VES) placement impacts mortality rate; (2) what the best evacuation strategies VES locations are; and (3) where evacuees are likely to be caught by tsunami waves. The results from utilizing FN-curves to conduct disaggregative analyses based on six tsunami scenarios indicate that choosing one tsunami scenario or averaging the risk of different scenarios may not fully articulate VES impacts due to the "levee effect," which potentially leads to false positives. Findings show that placing VESs close to shorelines saves nearby at-risk populations, but also results in two risk increasing phenomena: "exposure to risk" (i.e., evacuees being attracted to high risk roads by a VES when evacuating) and "blind zones" (i.e., locations near a VES where evacuees increase their risk by evacuating to that VES). When limited to one VES, placement near a population's centroid results in the lowest mortality rate. More than one VES may lower mortality rate further if VESs are spreading out according to community's topography. In addition to the analysis of tsunamis, the approach of coupling FN-curves with ABMS can be used by local authorities and engineers to determine tailored hard-adaptive measures and evacuation strategies, which helps to avoid maladaptive actions in different hazardous events.This study couples FN-curves with Agent-based Modeling and Simulation (ABMS) to assess risk for tsunamis with various recurrence intervals . By considering both expected number of casualties and the likelihood of tsunami events, multiple series of simulations and in-depth analyses determine (1) how vertical evacuation structure (VES) placement impacts mortality rate; (2) what the best evacuation strategies VES locations are; and (3) where evacuees are likely to be caught by tsunami waves. The results from utilizing FN-curves to conduct disaggregative analyses based on six tsunami scenarios indicate that choosing one tsunami scenario or averaging the risk of different scenarios may not fully articulate VES impacts due to the "levee effect," which potentially leads to false positives. Findings show that placing VESs close to shorelines saves nearby at-risk populations, but also results in two risk increasing phenomena: "exposure to risk" (i.e., evacuees being attracted to high risk roads by a VES when evacuating) and "blind zones" (i.e., locations near a VES where evacuees increase their risk by evacuating to that VES). When limited to one VES, placement near a population's centroid results in the lowest mortality rate. More than one VES may lower mortality rate further if VESs are spreading out according to community's topography. In addition to the analysis of tsunamis, the approach of coupling FN-curves with ABMS can be used by local authorities and engineers to determine tailored hard-adaptive measures and evacuation strategies, which helps to avoid maladaptive actions in different hazardous events.
Author Wang, Haizhong
Chand, Cadell
Chen, Chen
Cox, Dan
Mostafizi, Alireza
Author_xml – sequence: 1
  givenname: Chen
  orcidid: 0000-0002-0184-4681
  surname: Chen
  fullname: Chen, Chen
  organization: Oregon State University
– sequence: 2
  givenname: Alireza
  surname: Mostafizi
  fullname: Mostafizi, Alireza
  organization: Oregon State University
– sequence: 3
  givenname: Haizhong
  orcidid: 0000-0002-0028-3755
  surname: Wang
  fullname: Wang, Haizhong
  email: Haizhong.Wang@oregonstate.edu
  organization: Oregon State University
– sequence: 4
  givenname: Dan
  surname: Cox
  fullname: Cox, Dan
  organization: Oregon State University
– sequence: 5
  givenname: Cadell
  surname: Chand
  fullname: Chand, Cadell
  organization: Washington County Department of Land Use & Transportation
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35102598$$D View this record in MEDLINE/PubMed
BookMark eNp90ctu1DAUBmALFdFpYcMDIEtsEFKKL3EcL0cVl0qVkLisrRP7ZHBJnGInU5UVj8Az9knq6RQWFcIbb77_2Dr_ETmIU0RCnnN2wst5k0KGEy7blj8iK66kqRoj6gOyYkKLqpZSHJKjnC8Y44wp_YQcSsWZUKZdkc060hBn3CSYwxYpbDDON79-d5DR0y2mOTgYKG7BLUVMkZbXvlPIGXMei6Xj5HGg_ZRoREgl2gccPJ3zEmEM9Bv8hOTzU_K4hyHjs_v7mHx99_bL6Yfq_OP7s9P1eeWk0rwCML43XWNqxxrZ6Np1qBpg3HMlOlb7jhvjZAta9BpE7RQW5kGxumtr1clj8mo_9zJNPxbMsx1DdjgMEHFashWNqBulNdeFvnxAL6YlxfI7K7RmLWOm2akX92rpRvT2MoUR0rX9s8ICXu-BS1POCfu_hDO768fu-rF3_RTMHmAX5ru9zgnC8O8I30euwoDX_xluP519Xu8zt0egpMA
CitedBy_id crossref_primary_10_1016_j_ijdrr_2025_105237
crossref_primary_10_1016_j_ijdrr_2025_105591
crossref_primary_10_5194_hess_27_1607_2023
Cites_doi 10.1177/0361198120920873
10.1038/s41893-018-0137-6
10.1007/s10346-018-1114-x
10.4067/S0718-28132011000100002
10.1109/TSSC.1968.300136
10.1111/j.1539-6924.1997.tb00855.x
10.1177/0013916517709561
10.3133/pp1661F
10.1016/j.ijdrr.2018.12.018
10.1016/j.ress.2019.106568
10.1111/j.1539-6924.1981.tb01350.x
10.1061/(ASCE)NH.1527-6996.0000220
10.1007/s11069-017-2927-y
10.1016/j.trc.2015.11.010
10.1111/j.1539-6924.1996.tb00813.x
10.1073/pnas.1420309112
10.1016/S0379-7112(98)00021-6
10.1111/j.1539-6924.2011.01647.x
10.1111/j.1539-6924.2010.01502.x
10.1007/s11069-015-2011-4
10.1016/j.ijdrr.2019.101076
10.1061/(ASCE)1527-6988(2010)11:2(69)
10.3133/sir20075283
10.1061/(ASCE)0733-9488(2007)133:1(18)
10.20965/jdr.2013.p0285
10.1007/s11069-012-0196-3
10.20965/jdr.2012.p0446
10.1016/S0304-3894(02)00283-2
10.1016/j.ijdrr.2014.04.009
10.1016/j.ijdrr.2021.102244
10.1002/wcc.409
10.1002/2014WR016416
10.1016/j.ijdrr.2015.03.003
10.1109/NatPC.2011.6136262
10.1016/j.ijdrr.2017.06.016
10.1007/s00024-015-1105-y
ContentType Journal Article
Copyright 2022 Society for Risk Analysis.
Copyright_xml – notice: 2022 Society for Risk Analysis.
DBID AAYXX
CITATION
NPM
7ST
7U7
7U9
8BJ
8FD
C1K
FQK
FR3
H94
JBE
JQ2
KR7
M7N
SOI
7X8
DOI 10.1111/risa.13881
DatabaseName CrossRef
PubMed
Environment Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Environmental Sciences and Pollution Management
International Bibliography of the Social Sciences
Engineering Research Database
AIDS and Cancer Research Abstracts
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Civil Engineering Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Civil Engineering Abstracts
Virology and AIDS Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Toxicology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Computer Science Collection
AIDS and Cancer Research Abstracts
Engineering Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

Civil Engineering Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1539-6924
EndPage 2734
ExternalDocumentID 35102598
10_1111_risa_13881
RISA13881
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: 1563618; 1826407; 1902888; 1826455; 1952792; 2044098; 2052930; and 2103713
– fundername: National Science Foundation
  grantid: 1563618
– fundername: National Science Foundation
  grantid: 1826455
– fundername: National Science Foundation
  grantid: 1826407
– fundername: National Science Foundation
  grantid: 1902888
– fundername: National Science Foundation
  grantid: 2052930
– fundername: National Science Foundation
  grantid: 2044098
– fundername: National Science Foundation
  grantid: 1952792
– fundername: National Science Foundation
  grantid: and 2103713
GroupedDBID ---
.3N
.86
.GA
.Y3
05W
0R~
0U7
10A
123
1OB
1OC
29P
31~
33P
36B
4.4
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
53G
5HH
5LA
5VS
66C
6KP
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8V8
8WZ
930
A04
A6W
A8Z
AABNI
AAESR
AAHHS
AAHQN
AAIAL
AAMNL
AANHP
AAONW
AAOUF
AASGY
AAXRX
AAYCA
AAYZH
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIVO
ABJNI
ABPVW
ABSOO
ACAHQ
ACBKW
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHQT
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEMA
ADEOM
ADINQ
ADIZJ
ADKYN
ADMGS
ADNMO
ADQRH
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFKFF
AFPWT
AFRAH
AFWVQ
AFYRF
AFZJQ
AHBTC
AHBYD
AHEFC
AHQJS
AHSBF
AIFKG
AIURR
AIWBW
AJBDE
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMKLP
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BGNMA
BMKGK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BY8
CAG
COF
CS3
D-C
D-D
DC6
DCZOG
DL5
DPXWK
DR2
DRFUL
DRSSH
DU5
DXH
EBA
EBC
EBD
EBE
EBO
EBR
EBS
EBU
EDH
EHE
EJD
EMB
EMK
EMOBN
F00
F01
F5P
FEDTE
FIL
G-S
G.N
G50
GODZA
HG6
HGLYW
HVGLF
HZI
HZ~
I09
IHE
IX1
J0M
K1G
KDC
LAK
LATKE
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M4Y
MEWTI
MK4
MRFUL
MRSSH
MSFUL
MSSSH
MXFUL
MXSSH
N04
N06
N9A
NF~
NU0
O66
O9-
OIG
OVD
P2P
P2W
P2Y
P4C
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
RNI
ROL
RPX
RSV
RX1
RZC
RZD
SAMSI
SDH
SEV
SOJ
SUPJJ
SV3
TEORI
TH9
TN5
TSK
U2A
U5U
UB1
V8K
W8V
W99
WBKPD
WEBCB
WH7
WIH
WII
WOHZO
WQZ
WRC
WSUWO
WXSBR
XG1
XSW
Y6R
YHZ
YNT
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WP
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
BANNL
CITATION
O8X
NPM
7ST
7U7
7U9
8BJ
8FD
C1K
ESTFP
FQK
FR3
H94
JBE
JQ2
KR7
M7N
SOI
7X8
ID FETCH-LOGICAL-c3571-aa9df9b694c063674cbe56a01d152b04db199c38a72f7a24c5e636da504b845b3
IEDL.DBID DRFUL
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000748717700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0272-4332
1539-6924
IngestDate Fri Sep 05 12:18:04 EDT 2025
Fri Nov 14 22:22:13 EST 2025
Wed Feb 19 02:23:55 EST 2025
Sat Nov 29 01:49:56 EST 2025
Tue Nov 18 20:58:25 EST 2025
Wed Jan 22 16:24:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords tsunami evacuation
agent-based modeling and simulation
FN-curve
risk analysis
Language English
License 2022 Society for Risk Analysis.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3571-aa9df9b694c063674cbe56a01d152b04db199c38a72f7a24c5e636da504b845b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0028-3755
0000-0002-0184-4681
PMID 35102598
PQID 2770800967
PQPubID 37984
PageCount 15
ParticipantIDs proquest_miscellaneous_2624657717
proquest_journals_2770800967
pubmed_primary_35102598
crossref_primary_10_1111_risa_13881
crossref_citationtrail_10_1111_risa_13881
wiley_primary_10_1111_risa_13881_RISA13881
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
2022-Dec
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Risk analysis
PublicationTitleAlternate Risk Anal
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2010; 11
2015; 12
2019; 191
2012
2011
2015; 51
2010
1981; 1
2017; 88
2019; 35
1968; 4
2019; 34
2017; 24
2009
2011; 31
2019; 16
1997
2007
2013; 8
2011; 38
1996; 16
2009; 114
2012; 32
2003; 99
1977
1999
2011; 9
2021; 59
2016; 7
2015; 172
2019; 22
2018; 1
2007; 133
2015; 112
2019
2016; 64
1997; 17
2018
2017; 18
2018; 50
2013
2016; 80
2014; 9
2020; 2674
2012; 7
1998; 31
2012; 63
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
Gabel L. L. S. (e_1_2_6_12_1) 2019
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
Federal Emergency Management Agency (e_1_2_6_9_1) 2012
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_5_1
Drabek T. E. (e_1_2_6_7_1) 2010
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_28_1
e_1_2_6_26_1
e_1_2_6_47_1
Lindell M. K. (e_1_2_6_23_1) 2019
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Gonzalez F. I. (e_1_2_6_15_1) 2009; 114
Gilbert N. (e_1_2_6_13_1) 2007
Oregon Seismic Safety Policy Advisory Commission (e_1_2_6_37_1) 2013
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
Health and Safety Executive (e_1_2_6_17_1) 2009
Mori N. (e_1_2_6_33_1) 2011; 38
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
Kendal H. W. (e_1_2_6_22_1) 1977
e_1_2_6_8_1
Titov V. V. (e_1_2_6_45_1) 1997
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 31
  start-page: 313
  issue: 4
  year: 1998
  end-page: 329
  article-title: Risk analysis and fire safety engineering
  publication-title: Fire Safety Journal
– volume: 34
  start-page: 467
  year: 2019
  end-page: 479
  article-title: An agent‐based vertical evacuation model for a near‐field tsunami : Choice behavior, logical shelter locations, and life safety
  publication-title: International Journal of Disaster Risk Reduction
– year: 2009
– volume: 22
  year: 2019
– volume: 88
  start-page: 1347
  issue: 3
  year: 2017
  end-page: 1372
  article-title: Agent‐based tsunami evacuation modeling of unplanned network disruptions for evidence‐driven resource allocation and retrofitting strategies
  publication-title: Natural Hazards
– volume: 17
  start-page: 157
  issue: 2
  year: 1997
  end-page: 168
  article-title: What is wrong with criterion FN‐lines for judging the tolerability of risk?
  publication-title: Risk Analysis
– volume: 8
  start-page: 285
  issue: 2
  year: 2013
  end-page: 295
  article-title: An integrated simulation of tsunami hazard and human evacuation in La Punta, Peru
  publication-title: Journal of Disaster Research
– volume: 32
  start-page: 616
  issue: 4
  year: 2012
  end-page: 632
  article-title: The protective action decision model: Theoretical modifications and additional evidence
  publication-title: Risk Analysis
– volume: 63
  start-page: 891
  year: 2012
  end-page: 908
  article-title: Method to determine the locations of tsunami vertical evacuation shelters
  publication-title: Natural Hazards
– volume: 51
  start-page: 4770
  issue: 6
  year: 2015
  end-page: 4781
  article-title: Debates‐perspectives on socio‐hydrology: Capturing feedbacks between physical and social processes: A socio‐hydrological approach to explore flood risk changes
  publication-title: Water Resources Research
– year: 2007
– volume: 31
  start-page: 282
  issue: 2
  year: 2011
  end-page: 300
  article-title: The use of individual and societal risk criteria within the Dutch flood safety policy—Nationwide estimates of societal risk and policy applications
  publication-title: Risk Analysis
– volume: 12
  start-page: 328
  year: 2015
  end-page: 340
  article-title: Households' immediate responses to the 2009 American Samoa earthquake and tsunami
  publication-title: International Journal of Disaster Risk Reduction
– volume: 114
  start-page: 1
  issue: C11023
  year: 2009
  end-page: 19
  article-title: Probabilistic tsunami hazard assessment at Seaside, Oregon, for near‐ and far‐field seismic sources
  publication-title: Journal of Geophysical Research
– volume: 191
  year: 2019
  article-title: Probabilistic decision‐support framework for community resilience: Incorporating multi‐hazards, infrastructure interdependencies, and resilience goals in a Bayesian network
  publication-title: Reliability Engineering & System Safety
– year: 1977
– year: 2018
– volume: 2674
  start-page: 99
  issue: 7
  year: 2020
  end-page: 114
  article-title: Households' intended evacuation transportation behavior in response to earthquake and tsunami hazard in a Cascadia Subduction Zone city
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
– year: 2010
– volume: 7
  start-page: 446
  issue: sp
  year: 2012
  end-page: 457
  article-title: Tsunami vertical evacuation buildings—Lessons for international preparedness following the 2011 Great East Japan tsunami
  publication-title: Journal of Disaster Research
– year: 2012
– volume: 64
  start-page: 86
  year: 2016
  end-page: 100
  article-title: An agent‐based model of a multimodal near‐field tsunami evacuation: Decision‐making and life safety
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 50
  start-page: 535
  issue: 5
  year: 2018
  end-page: 566
  article-title: Milling and public warnings
  publication-title: Environment and Behavior
– volume: 1
  start-page: 11
  issue: 1
  year: 1981
  end-page: 27
  article-title: On the quantitative definition of risk
  publication-title: Risk Analysis
– volume: 16
  start-page: 635
  issue: 5
  year: 1996
  end-page: 644
  article-title: Three conceptions of quantified societal risk
  publication-title: Risk Analysis
– volume: 16
  start-page: 195
  year: 2019
  end-page: 200
  article-title: Liquefied gravity flow‐induced tsunami: First evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters
  publication-title: Landslides
– year: 1997
– volume: 9
  start-page: 68
  year: 2014
  end-page: 83
  article-title: Tsunami vertical evacuation planning in the U.S. Pacific Northwest as a geospatial, multi‐criteria decision problem
  publication-title: International Journal of Disaster Risk Reduction
– volume: 4
  start-page: 100
  issue: 2
  year: 1968
  end-page: 107
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Transactions on Systems Science and Cybernetics
– volume: 112
  start-page: 5354
  issue: 17
  year: 2015
  end-page: 5359
  article-title: Community clusters of tsunami vulnerability in the US Pacific Northwest
  publication-title: Proceedings of the National Academy of Sciences of the USA
– volume: 59
  year: 2021
  article-title: Tsunami preparedness and resilience in the Cascadia Subduction Zone: A multistage model of expected evacuation decisions and mode choice
  publication-title: International Journal of Disaster Risk Reduction
– volume: 1
  start-page: 526
  issue: 9
  year: 2018
  end-page: 530
  article-title: Hard‐adaptive measures can increase vulnerability to storm surge and tsunami hazards over time
  publication-title: Nature Sustainability
– volume: 9
  start-page: 11
  year: 2011
  end-page: 22
  article-title: An evacuation building project for Cascadia earthquakes and tsunamis
  publication-title: Obras y Proyectos
– start-page: 1
  year: 2011
  end-page: 6
– volume: 133
  start-page: 18
  issue: 1
  year: 2007
  end-page: 29
  article-title: Critical behavioral assumptions in evacuation time estimate analysis for private vehicles: Examples from hurricane research and planning
  publication-title: Journal of Urban Planning and Development
– volume: 18
  start-page: 1
  issue: 1
  year: 2017
  end-page: 9
  article-title: Fifty‐year resilience strategies for coastal communities at risk for tsunamis
  publication-title: Natural Hazards Review
– volume: 99
  start-page: 1
  issue: 1
  year: 2003
  end-page: 30
  article-title: An overview of quantitative risk measures for loss of life and economic damage
  publication-title: Journal of Hazardous Materials
– volume: 38
  start-page: 1
  issue: L00G14
  year: 2011
  end-page: 6
  article-title: Survey of 2011 Tohoku earthquake tsunami inundation and run‐up
  publication-title: Geophysical Research Letters
– year: 2019
– volume: 11
  start-page: 69
  issue: 2
  year: 2010
  end-page: 81
  article-title: Tsunami preparedness on the Oregon and Washington coast: Recommendations for research
  publication-title: Natural Hazards Review
– volume: 35
  year: 2019
  article-title: Probabilistic seismic and tsunami damage analysis (PSTDA) of the Cascadia Subduction Zone applied to Seaside, Oregon
  publication-title: International Journal of Disaster Risk Reduction
– volume: 24
  start-page: 462
  year: 2017
  end-page: 473
  article-title: Trust and distrust of tsunami vertical evacuation buildings: Extending protection motivation theory to examine choices under social influence
  publication-title: International Journal of Disaster Risk Reduction
– volume: 172
  start-page: 3409
  issue: 12
  year: 2015
  end-page: 3424
  article-title: Recent advances in agent‐based tsunami evacuation simulations: Case studies in Indonesia, Thailand, Japan and Peru
  publication-title: Pure and Applied Geophysics
– volume: 7
  start-page: 646
  issue: 5
  year: 2016
  end-page: 665
  article-title: Addressing the risk of maladaptation to climate change
  publication-title: WIREs Climate Change
– year: 1999
– year: 2013
– volume: 80
  start-page: 1031
  issue: 2
  year: 2016
  end-page: 1056
  article-title: Beat‐the‐wave evacuation mapping for tsunami hazards in Seaside, Oregon, USA
  publication-title: Natural Hazards
– ident: e_1_2_6_4_1
  doi: 10.1177/0361198120920873
– volume-title: Tsunami evacuation analysis of communities surrounding the Coos Bay Estuary: Building community resilience on the Oregon coast
  year: 2019
  ident: e_1_2_6_12_1
– ident: e_1_2_6_28_1
  doi: 10.1038/s41893-018-0137-6
– ident: e_1_2_6_43_1
  doi: 10.1007/s10346-018-1114-x
– ident: e_1_2_6_42_1
  doi: 10.4067/S0718-28132011000100002
– volume-title: Societal risk: Initial briefing to societal risk technical advisory group
  year: 2009
  ident: e_1_2_6_17_1
– ident: e_1_2_6_16_1
  doi: 10.1109/TSSC.1968.300136
– ident: e_1_2_6_8_1
  doi: 10.1111/j.1539-6924.1997.tb00855.x
– ident: e_1_2_6_36_1
– ident: e_1_2_6_48_1
  doi: 10.1177/0013916517709561
– ident: e_1_2_6_14_1
  doi: 10.3133/pp1661F
– ident: e_1_2_6_35_1
  doi: 10.1016/j.ijdrr.2018.12.018
– ident: e_1_2_6_20_1
  doi: 10.1016/j.ress.2019.106568
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1539-6924.1981.tb01350.x
– volume-title: Agent‐based models (Quantitative applications in the social sciences)
  year: 2007
  ident: e_1_2_6_13_1
– ident: e_1_2_6_41_1
  doi: 10.1061/(ASCE)NH.1527-6996.0000220
– ident: e_1_2_6_34_1
  doi: 10.1007/s11069-017-2927-y
– ident: e_1_2_6_3_1
– ident: e_1_2_6_47_1
  doi: 10.1016/j.trc.2015.11.010
– ident: e_1_2_6_44_1
  doi: 10.1111/j.1539-6924.1996.tb00813.x
– ident: e_1_2_6_51_1
  doi: 10.1073/pnas.1420309112
– ident: e_1_2_6_10_1
  doi: 10.1016/S0379-7112(98)00021-6
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1539-6924.2011.01647.x
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1539-6924.2010.01502.x
– volume-title: Guidelines for design of structures for vertical evacuation from tsunamis
  year: 2012
  ident: e_1_2_6_9_1
– ident: e_1_2_6_40_1
  doi: 10.1007/s11069-015-2011-4
– ident: e_1_2_6_38_1
  doi: 10.1016/j.ijdrr.2019.101076
– ident: e_1_2_6_26_1
  doi: 10.1061/(ASCE)1527-6988(2010)11:2(69)
– volume: 114
  start-page: 1
  issue: 11023
  year: 2009
  ident: e_1_2_6_15_1
  article-title: Probabilistic tsunami hazard assessment at Seaside, Oregon, for near‐ and far‐field seismic sources
  publication-title: Journal of Geophysical Research
– ident: e_1_2_6_49_1
  doi: 10.3133/sir20075283
– ident: e_1_2_6_25_1
  doi: 10.1061/(ASCE)0733-9488(2007)133:1(18)
– ident: e_1_2_6_30_1
  doi: 10.20965/jdr.2013.p0285
– ident: e_1_2_6_39_1
  doi: 10.1007/s11069-012-0196-3
– ident: e_1_2_6_11_1
  doi: 10.20965/jdr.2012.p0446
– ident: e_1_2_6_18_1
  doi: 10.1016/S0304-3894(02)00283-2
– ident: e_1_2_6_50_1
  doi: 10.1016/j.ijdrr.2014.04.009
– ident: e_1_2_6_5_1
  doi: 10.1016/j.ijdrr.2021.102244
– volume-title: The human side of disaster
  year: 2010
  ident: e_1_2_6_7_1
– ident: e_1_2_6_29_1
  doi: 10.1002/wcc.409
– volume-title: Implementation and testing of the method of splitting tsunami (MOST) model
  year: 1997
  ident: e_1_2_6_45_1
– volume-title: The Oregon resilience plan: Reducing risk and improving recovery for the next Cascadia earthquake and tsunami
  year: 2013
  ident: e_1_2_6_37_1
– volume-title: The risks of nuclear power reactors: A review of the NRC Reactor safety study, WASH‐1400
  year: 1977
  ident: e_1_2_6_22_1
– ident: e_1_2_6_6_1
  doi: 10.1002/2014WR016416
– ident: e_1_2_6_27_1
  doi: 10.1016/j.ijdrr.2015.03.003
– ident: e_1_2_6_2_1
  doi: 10.1109/NatPC.2011.6136262
– volume: 38
  start-page: 1
  issue: 00
  year: 2011
  ident: e_1_2_6_33_1
  article-title: Survey of 2011 Tohoku earthquake tsunami inundation and run‐up
  publication-title: Geophysical Research Letters
– ident: e_1_2_6_32_1
  doi: 10.1016/j.ijdrr.2017.06.016
– ident: e_1_2_6_46_1
– volume-title: Large‐scale evacuation: The analysis, modeling, and management of emergency relocation from hazardous Areas
  year: 2019
  ident: e_1_2_6_23_1
– ident: e_1_2_6_31_1
  doi: 10.1007/s00024-015-1105-y
SSID ssj0010057
Score 2.4007745
Snippet This study couples FN‐curves with Agent‐based Modeling and Simulation (ABMS) to assess risk for tsunamis with various recurrence intervals . By considering...
This study couples FN-curves with Agent-based Modeling and Simulation (ABMS) to assess risk for tsunamis with various recurrence intervals . By considering...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2720
SubjectTerms Agent-based models
agent‐based modeling and simulation
At risk populations
Casualties
Centroids
Evacuation
FN‐curve
Hazard assessment
High risk
Levees
Local authorities
Mortality
Mortality rates
Placement
Recurrence
risk analysis
Risk assessment
Shore lines
Simulation
Topography
tsunami evacuation
Tsunamis
Weather hazards
Title An integrative agent‐based vertical evacuation risk assessment model for near‐field tsunami hazards
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frisa.13881
https://www.ncbi.nlm.nih.gov/pubmed/35102598
https://www.proquest.com/docview/2770800967
https://www.proquest.com/docview/2624657717
Volume 42
WOSCitedRecordID wos000748717700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1539-6924
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010057
  issn: 0272-4332
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7RpYdyaOkfDV2QUXtppaCN7cS21MsKWLVSQRUt0t4i23HoShAqsruHnvoIfUaepGPnpyAqpIpboozlyDPjmbFnvgF4KySTmWNlnEluY57oMpYy4TH15kIqyZiRodmEODqS06n6sgIfulqYBh-iP3DzmhH2a6_g2tTXlNxj0O4mTPq661WKgssHsLp_PDn53N8i-ErLcMYiQmUQbeFJfSbP39E3DdItL_Om0xqszuTJ_f53HR633iYZN-LxFFZc9QzWrmEQ4tthD9xaP4fTcUU6BAncB4n2lVdXv357Y1eQ0LsZmUrcUtsGI5z43HSie3xPElrrEHSFSYVKhENDjhyZ14tKn8_Id_3Tl3m9gJPJwbe9j3HbiyG2LBVJrLUqSmUyxS06NZng1rg006OkQAfAjHhhEqUsk1rQUmjKbeqQrNDpiBvJU8NewqC6qNwrIArVHilNifLDZcF0gUGNRk-qpIa5gkbwrmNIblugct8v4yzvAha_lHlYygje9LQ_GniOf1INO77mrYrWORXCe8sqExHs9J9RufyNia7cxQJpMsqzVGDIG8FGIw_9NAx3M4wdZQTvA9vvmD8__vR1HJ42_4f4NTyivtgiJM8MYTC_XLgteGiX81l9uQ0PxFRutyL_B-ifBbw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9QwDLem2yTgAca_UdggCF5AKromaZM8nthOm7id0NikvVVJmsKk0aHd3R544iPwGfkk2GmvbGJCmnhrVUepYju2E_tngNdKC10EUaeFlj6Vma1TrTOZcjIX2mghnI7NJtR0qo-PzccuN4dqYVp8iP7AjTQj7tek4HQgfUnLCYT2XSY0FV6vSpSjfACr2wfjo0l_jUCllvGQRcXSIN7hk1Iqz5_RVy3SX27mVa81mp3xvf_84XW42_mbbNQKyH1YCc0DuHMJhRDf9nvo1tlD-Dxq2BJDAndCZqn26tePn2TuKha7NyNbWbiwvkUJZ5SdzmyP8Mlicx2GzjBrUI1waMySY_PZorFfT9gX-50KvR7B0Xjn8P1u2nVjSL3IVZZaa6rauMJIj25NoaR3IS_sMKvQBXBDWbnMGC-0VbxWlkufBySrbD6UTsvciccwaM6a8ASYQcVHSlejBEldCVthWGPRl6q5E6HiCbxZcqT0HVQ5dcw4LZchCy1lGZcygVc97bcWoONaqs0lY8tOSWclV4r8ZVOoBF72n1G96M7ENuFsgTQFl0WuMOhNYKMViH4agfsZRo86gbeR7_-YvzzY-zSKT09vQvwCbu0e7k_Kyd70wzO4zan0IqbSbMJgfr4IW7DmL-Yns_PnneT_BlsHCMQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fTxQxEJ8QIEYfFFRwEaVGXzRZctt2--fxIl4k4oWgJLxt-m_1ElwId8eDT34EPqOfxGl3b4VITIxvu9lpuunMdGbamd8AvJKKKRFYnQvFXc4LU-dKFTyn0VworRizKjWbkOOxOjnRh11uTqyFafEh-gO3qBlpv44KHs59fU3LIwjtbsFULLxe4aUWqJcre0ej44P-GiGWWqZDFplKg2iHTxpTeX6PvmmR_nAzb3qtyeyMHvznD6_B_c7fJMNWQNZhKTQP4d41FEJ8-9hDt04fwZdhQxYYErgTEhNrr37-uIrmzpPUvRnZSsKlcS1KOInZ6cT0CJ8kNdch6AyTBtUIh6YsOTKbzhvzbUK-mu-x0OsxHI_efX77Pu-6MeSOlbLIjdG-1lZo7tCtEZI7G0phBoVHF8AOuLeF1o4pI2ktDeWuDEjmTTngVvHSsg1Ybs6a8ASIRsVHSlujBHHlmfEY1hj0pWpqWfA0g9cLjlSugyqPHTNOq0XIEpeySkuZwcue9rwF6LiVanvB2KpT0mlFpYz-shYygxf9Z1SveGdimnA2RxpBuSglBr0ZbLYC0U_DcD_D6FFl8Cbx_S_zV0f7n4bpaetfiHfgzuHeqDrYH394CndprLxImTTbsDy7mIdnsOouZ5PpxfNO8H8B2rQIPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrative+agent%E2%80%90based+vertical+evacuation+risk+assessment+model+for+near%E2%80%90field+tsunami+hazards&rft.jtitle=Risk+analysis&rft.au=Chen%2C+Chen&rft.au=Mostafizi%2C+Alireza&rft.au=Wang%2C+Haizhong&rft.au=Cox%2C+Dan&rft.date=2022-12-01&rft.issn=0272-4332&rft.eissn=1539-6924&rft.volume=42&rft.issue=12&rft.spage=2720&rft.epage=2734&rft_id=info:doi/10.1111%2Frisa.13881&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_risa_13881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4332&client=summon