Fluorescent Switchable Surfaces Based on Quantum Dots Modified With Redox‐Active Molecules

By combining the switching ability of redox molecules with the unique fluorescence properties of quantum dots (QDs), a robust electrochemical fluorescence switch is developed here. This is realized by grafting CdSe/ZnS QDs on transparent indium tin oxide (ITO) substrates and, subsequently, modifying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials Jg. 12; H. 5
Hauptverfasser: Campos‐Lendinez, Ángel, Muñoz, Jose, Crivillers, Núria, Mas‐Torrent, Marta
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.02.2024
Schlagworte:
ISSN:2195-1071, 2195-1071
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract By combining the switching ability of redox molecules with the unique fluorescence properties of quantum dots (QDs), a robust electrochemical fluorescence switch is developed here. This is realized by grafting CdSe/ZnS QDs on transparent indium tin oxide (ITO) substrates and, subsequently, modifying them with a Ferrocene (Fc) molecular monolayer. The application of oxidation/reduction voltage pulses to tune the Fc redox state leads to the tuning of the surface fluorescence output. Interestingly, the ON/OF ratio can be enhanced by reducing the distance between the redox active unit and the QD due to a more efficient electronic coupling. Remarkably, by defining a mixed‐valence state, a ternary switch has also been achieved. It is highlighted that the QD surface immobilization is key to realize this switch to avoid aggregation and fluorescence quenching in suspension. Hence, an efficient and versatile novel route to fabricate robust fluorescent redox switches is demonstrated, opening a wide avenue of possibilities to be explored in the field of sensing and information storage. A robust electrochemical fluorescence switch is realized by grafting CdSe/ZnS Quantum Dots on transparent indium tin oxide (ITO) substrates and, subsequently, modifying them with a Ferrocene (Fc) molecular monolayer. The application of oxidation/reduction voltage pulses to tune the Fc redox state leads to the tuning of the surface fluorescence output.
AbstractList By combining the switching ability of redox molecules with the unique fluorescence properties of quantum dots (QDs), a robust electrochemical fluorescence switch is developed here. This is realized by grafting CdSe/ZnS QDs on transparent indium tin oxide (ITO) substrates and, subsequently, modifying them with a Ferrocene (Fc) molecular monolayer. The application of oxidation/reduction voltage pulses to tune the Fc redox state leads to the tuning of the surface fluorescence output. Interestingly, the ON/OF ratio can be enhanced by reducing the distance between the redox active unit and the QD due to a more efficient electronic coupling. Remarkably, by defining a mixed‐valence state, a ternary switch has also been achieved. It is highlighted that the QD surface immobilization is key to realize this switch to avoid aggregation and fluorescence quenching in suspension. Hence, an efficient and versatile novel route to fabricate robust fluorescent redox switches is demonstrated, opening a wide avenue of possibilities to be explored in the field of sensing and information storage. A robust electrochemical fluorescence switch is realized by grafting CdSe/ZnS Quantum Dots on transparent indium tin oxide (ITO) substrates and, subsequently, modifying them with a Ferrocene (Fc) molecular monolayer. The application of oxidation/reduction voltage pulses to tune the Fc redox state leads to the tuning of the surface fluorescence output.
Author Muñoz, Jose
Campos‐Lendinez, Ángel
Crivillers, Núria
Mas‐Torrent, Marta
Author_xml – sequence: 1
  givenname: Ángel
  surname: Campos‐Lendinez
  fullname: Campos‐Lendinez, Ángel
  organization: ICMAB‐CSIC Campus UAB
– sequence: 2
  givenname: Jose
  surname: Muñoz
  fullname: Muñoz, Jose
  organization: ICMAB‐CSIC Campus UAB
– sequence: 3
  givenname: Núria
  surname: Crivillers
  fullname: Crivillers, Núria
  email: ncrivillers@icmab.es
  organization: ICMAB‐CSIC Campus UAB
– sequence: 4
  givenname: Marta
  orcidid: 0000-0002-1586-005X
  surname: Mas‐Torrent
  fullname: Mas‐Torrent, Marta
  email: mmas@icmab.es
  organization: ICMAB‐CSIC Campus UAB
BookMark eNpNkMFKw0AURQepYK3dup4fSJ0303SSZW2tCi1Fq7gRwuTNCx1JM5JJrN35CX6jX2KLIq7uvRy4i3PKOpWviLFzEAMQQl4Y6zcDKaQSoEEcsa6ENI5AaOj86yesH8KLEGI_VDrUXfY8K1tfU0CqGr7augbXJi-Jr9q6MEiBX5pAlvuK37WmatoNn_om8IW3rnB78OSaNb8n69-_Pj7H2Lg32sOSsC0pnLHjwpSB-r_ZY4-zq4fJTTRfXt9OxvMIVaxFlAzRWKsxNrlVJhYUa4CRHYHUicwVoI2HaaFzUPkIDSZSa4lJYQ1qSAlR9Vj687t1Je2y19ptTL3LQGQHN9nBTfbnJhtPl4u_pb4BiV1eWw
CitedBy_id crossref_primary_10_1016_j_watres_2024_122297
ContentType Journal Article
Copyright 2023 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH
Copyright_xml – notice: 2023 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH
DBID 24P
DOI 10.1002/adom.202301710
DatabaseName Wiley Online Library Open Access
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2195-1071
EndPage n/a
ExternalDocumentID ADOM202301710
Genre article
GrantInformation_xml – fundername: Ministerio de Ciencia e Innovación
  funderid: FUNFUTURE CEX2019‐000917‐S; PID2019‐111682RB‐I00; PID2022‐141393OB‐I00
– fundername: Generalitat de Catalunya
  funderid: 2021‐SGR‐00443
GroupedDBID 0R~
1OC
24P
33P
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
D-B
DCZOG
DPXWK
EBS
G-S
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
ID FETCH-LOGICAL-c3570-84cadd7c5abd3a50e57116d612782b31cd549f7b13b6cac82772c8fdac719ecc3
IEDL.DBID 24P
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001104709500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2195-1071
IngestDate Wed Jan 22 16:15:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3570-84cadd7c5abd3a50e57116d612782b31cd549f7b13b6cac82772c8fdac719ecc3
ORCID 0000-0002-1586-005X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202301710
PageCount 6
ParticipantIDs wiley_primary_10_1002_adom_202301710_ADOM202301710
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Advanced optical materials
PublicationYear 2024
References 2021; 25
2010; 55
2017; 7
2021; 21
2004; 126
2013; 25
2019; 94
2021; 125
2008; 37
2020; 203
2016; 222
2011; 11
2009; 113
1994; 68
2020; 11
2023; 108
2020; 55
2022; 22
2020; 10
2020; 8
2020; 7
2010; 21
2018; 8
2021; 33
2015; 137
2010; 114
2018; 258
2005; 109
2014; 14
2010; 3
2022; 126
2017; 20
2019; 9
2007; 129
2019; 5
2010; 35
2019; 2
2021; 427
2007
2016; 363
2020; 386
2011; 3
2007; 605
2011; 7
2011; 133
2021; 13
2016; 7
2021; 11
2022; 9
2005; 127
2021; 373
2022; 348
2005; 17
2018; 10
2018; 14
2018; 13
References_xml – volume: 7
  start-page: 5636
  year: 2017
  publication-title: RSC Adv.
– volume: 9
  start-page: 1304
  year: 2022
  publication-title: ACS Photonics
– volume: 427
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 22
  start-page: 768
  year: 2022
  publication-title: Nano Lett.
– volume: 127
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 373
  year: 2021
  publication-title: Science (80‐.).
– volume: 68
  start-page: 321
  year: 1994
  publication-title: J. Electron Spectros. Relat. Phenom.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 11
  start-page: 5471
  year: 2020
  publication-title: Nat. Commun.
– volume: 17
  start-page: 1390
  year: 2005
  publication-title: Adv. Mater.
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 33
  start-page: 892
  year: 2021
  publication-title: Chem. Mater.
– volume: 3
  start-page: 2260
  year: 2010
  publication-title: Materials (Basel)
– volume: 10
  start-page: 1
  year: 2020
  publication-title: Sci. Rep.
– volume: 125
  start-page: 1069
  year: 2021
  publication-title: J. Phys. Chem. C
– volume: 55
  start-page: 6637
  year: 2020
  publication-title: J. Mater. Sci.
– volume: 13
  start-page: 146
  year: 2018
  publication-title: Nano‐Struct. Nano‐Objects
– volume: 109
  start-page: 7012
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 2
  start-page: 5504
  year: 2019
  publication-title: ACS Appl. Nano Mater
– volume: 2
  start-page: 479
  year: 2019
  publication-title: ACS Appl. Nano Mater
– volume: 21
  year: 2010
  publication-title: Nanotechnology
– volume: 108
  start-page: 292
  year: 2023
  publication-title: J. Sol‐Gel Sci. Technol.
– volume: 14
  start-page: 1263
  year: 2014
  publication-title: Nano Lett.
– volume: 21
  start-page: 2193
  year: 2021
  publication-title: Chem. Rec.
– volume: 8
  start-page: 5063
  year: 2018
  publication-title: RSC Adv.
– volume: 7
  year: 2020
  publication-title: Appl. Phys. Rev.
– volume: 10
  start-page: 1
  year: 2020
  publication-title: Nanomaterials
– volume: 37
  start-page: 2512
  year: 2008
  publication-title: Chem. Soc. Rev.
– volume: 126
  year: 2022
  publication-title: J. Phys. Chem. C
– volume: 363
  start-page: 406
  year: 2016
  publication-title: Appl. Surf. Sci.
– volume: 109
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 11
  year: 2021
  publication-title: Appl. Sci.
– volume: 11
  start-page: 4382
  year: 2011
  publication-title: Nano Lett.
– volume: 386
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 258
  start-page: 1191
  year: 2018
  publication-title: Sensors Actuators B: Chem
– volume: 7
  start-page: 9804
  year: 2011
  publication-title: Soft Matter
– volume: 222
  start-page: 871
  year: 2016
  publication-title: Sensors Actuators B: Chem
– volume: 203
  start-page: 210
  year: 2020
  publication-title: Sol. Energy
– volume: 55
  start-page: 61
  year: 2010
  publication-title: J. Chil. Chem. Soc.
– volume: 348
  year: 2022
  publication-title: J. Mol. Liq.
– volume: 20
  start-page: 360
  year: 2017
  publication-title: Biochem. Pharmacol.
– volume: 13
  start-page: 2305
  year: 2021
  publication-title: Anal. Methods
– volume: 10
  start-page: 245
  year: 2018
  publication-title: Anal. Methods
– start-page: 3918
  year: 2007
  publication-title: Chem. Commun.
– volume: 114
  start-page: 962
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 94
  start-page: 44
  year: 2019
  publication-title: Acta Biomater.
– volume: 605
  start-page: 145
  year: 2007
  publication-title: J. Electroanal. Chem.
– volume: 9
  start-page: 1
  year: 2019
  publication-title: Nanomaterials
– volume: 126
  start-page: 1324
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 1
  year: 2021
  publication-title: Microfluid. Nanofluidics
– volume: 113
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 25
  start-page: 462
  year: 2013
  publication-title: Adv. Mater.
– volume: 137
  start-page: 4050
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 2021
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 129
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 359
  year: 2011
  publication-title: Nat. Chem.
– volume: 35
  year: 2010
  publication-title: Int. J. Hydrogen Energy
– volume: 7
  start-page: 4940
  year: 2016
  publication-title: Chem. Sci.
SSID ssj0001073947
Score 2.3453915
Snippet By combining the switching ability of redox molecules with the unique fluorescence properties of quantum dots (QDs), a robust electrochemical fluorescence...
SourceID wiley
SourceType Publisher
SubjectTerms electrochemistry
ferrocene
molecular switch
quantum dots
self‐assembled monolayer
Title Fluorescent Switchable Surfaces Based on Quantum Dots Modified With Redox‐Active Molecules
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202301710
Volume 12
WOSCitedRecordID wos001104709500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUQMLBQnuItD6xRYzupk7FQKpaWQkF0QIr8FJUgQXkAI5_AN_Il2E5o6QpbrChWdHMfJ7bvOQCcGkgrtEbSU5gTLwh95pmyEHgdRlDITFbGlDuxCTocRpNJPPrVxV_zQ8wW3GxkuHxtA5zxoj0nDWUys53kBkIjanusVhAikRVvwMFovspiN6Kcyhi2ooRmiH6YG33cXpxiEZ66-tJv_f_NNsB6gy1ht3aGTbCk0i3QanAmbKK42AYP_acqy2seJzh-m5oPZxuo4LjKtT2hBc9MaZMwS-F1ZQxfPcNeVhZwkMmptjPdT8tHeKNk9v718dl1CdPcdDK7qtgBd_2L2_NLr1FZ8AQJqe9FgTA5joqQcUlY6KuQItSRBvkY8MAJEtL8QmrKEeEdwUSEDR4XkZZMUBQbByC7YDnNUrUHoNK-jilDWtgWKRlzwnwa45AFscA0RPsAO7slLzWTRlJzJuPEWiyZWSzp9q4Gs9HBXx46BGvmOqiPVx-B5TKv1DFYFa_ltMhPnI98A6UKvjI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELVQQYILZRU7PnCNGjtJnRwLpSqiLYUW0QNS5NixiAQNygIc-QS-kS9hnIRWvSKOThQrmszyMp55g9AZQFqhFJFGSAPLsB2TGxAWbKPJLeJw8MqUBcWwCTYYuJOJN6yqCXUvTMkPMUu4acso_LU2cJ2QbsxZQ7mMdSs5YGjCdJPVsg2hRqs6tYfzNIs-iSrGjFE9lRCW5Je60aSNxS0W8WkRYDr1f3i1DbReoUvcKtVhEy2F0y1Ur5Amruw43UaPnec8TkomJzx6j-DT6RYqPMoTpWu08DkEN4njKb7NQfT5C27HWYr7sYyU3ukhyp7wXSjjj-_Pr1bhMuFmMWg3THfQfedyfNE1qjkLhrAcZhquLcDLMeHwQFrcMUOHEdKUgH0APgQWERJ-IhULiBU0BRcuBUQuXCW5YMQDFbB2UW0aT8M9hENlKo9xooRukpJeYHGTedThticoc8g-ooXg_NeSS8MvWZOpryXmzyTmt9o3_dnq4C8PnaLV7rjf83tXg-tDtAbX7bLY-gjVsiQPj9GKeMuiNDkpFOYHFo7CHQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELVQQYgLZRU7PnCNGjtx3RwLpQJBS6EgekCKHC-iEjRVkwBHPoFv5EsYJ6FVr4ijE8WKXmbGL_bMG4ROgNJKY4hyNI08x2eucGBZ8J268AgTEJUpj_JmE7zbbQwGQa_MJrS1MIU-xHTDzXpGHq-tg-uxMrWZaqhQsS0lBw5NuC2yWvQZJ9awqd-bbbPYk6i8zRi1XQlhSH6lG11am59inp_mC0y7-g-vtoZWS3aJm4U5rKMFPdpA1ZJp4tKPk0301H7J4kmh5IT770P4dLaECvezibE5WvgUFjeF4xG-zQD67BW34jTBnVgNjZ3pcZg-4zut4o_vz69mHjLhZt5oVydb6KF9fn924ZR9FhzpMe46DV9ClOOSiUh5grkacCR1BdwH6EPkEangJ9LwiHhRXQrZoMDIZcMoIQFvMAFvG1VG8UjvIKyNawIuiJG2SEoFkSdcHlAm_EBSzsguojlw4bjQ0ggL1WQaWsTCKWJhs3XTmY72_vLQMVrutdrh9WX3ah-twGW_yLU-QJV0kulDtCTf0mEyOcrt5QcO68Gh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluorescent+Switchable+Surfaces+Based+on+Quantum+Dots+Modified+With+Redox%E2%80%90Active+Molecules&rft.jtitle=Advanced+optical+materials&rft.au=Campos%E2%80%90Lendinez%2C+%C3%81ngel&rft.au=Mu%C3%B1oz%2C+Jose&rft.au=Crivillers%2C+N%C3%BAria&rft.au=Mas%E2%80%90Torrent%2C+Marta&rft.date=2024-02-01&rft.issn=2195-1071&rft.eissn=2195-1071&rft.volume=12&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadom.202301710&rft.externalDBID=10.1002%252Fadom.202301710&rft.externalDocID=ADOM202301710
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon