Optimizing aerial imagery collection and processing parameters for drone‐based individual tree mapping in structurally complex conifer forests

Recent advances in remotely piloted aerial systems (‘drones’) and imagery processing enable individual tree mapping in forests across broad areas with low‐cost equipment and minimal ground‐based data collection. One such method involves collecting many partially overlapping aerial photos, processing...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Methods in ecology and evolution Ročník 13; číslo 7; s. 1447 - 1463
Hlavní autoři: Young, Derek J. N., Koontz, Michael J., Weeks, JonahMaria
Médium: Journal Article
Jazyk:angličtina
Vydáno: London John Wiley & Sons, Inc 01.07.2022
Témata:
ISSN:2041-210X, 2041-210X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recent advances in remotely piloted aerial systems (‘drones’) and imagery processing enable individual tree mapping in forests across broad areas with low‐cost equipment and minimal ground‐based data collection. One such method involves collecting many partially overlapping aerial photos, processing them using ‘structure from motion’ (SfM) photogrammetry to create a digital 3D representation and using the 3D model to detect individual trees. SfM‐based forest mapping involves myriad decisions surrounding methods and parameters for imagery acquisition and processing, but it is unclear how these individual decisions or their combinations impact the quality of the resulting forest inventories. We collected and processed drone imagery of a moderate‐density, structurally complex mixed‐conifer stand. We tested 22 imagery collection methods (altering flight altitude, camera pitch and image overlap), 12 imagery processing parameterizations (image resolutions and depth map filtering intensities) and 286 tree detection methods (algorithms and their parameterizations) to create 7,568 tree maps. We compared these maps to a 3.23‐ha ground reference map of 1,775 trees >5 m tall that we created using traditional field survey methods. The accuracy of individual tree detection (ITD) and the resulting tree maps was generally maximized by collecting imagery at high altitude (120 m) with at least 90% image‐to‐image overlap, photogrammetrically processing images into a canopy height model (CHM) with a twofold upscaling (coarsening) step and detecting trees from the CHM using a variable window filter after applying a moving window mean smooth to the CHM. Using this combination of methods, we mapped trees with an accuracy exceeding expectations for structurally complex forests (for canopy‐dominant trees >10 m tall, sensitivity = 0.69 and precision = 0.90). Remotely measured tree heights corresponded to ground‐measured heights with R2 = 0.95. Accuracy was higher for taller trees and lower for understorey trees and would likely be higher in less dense and less structurally complex stands. Our results may guide others wishing to efficiently produce broad‐extent individual tree maps of conifer forests without investing substantial time tailoring imagery acquisition and processing parameters. The resulting tree maps create opportunities for addressing previously intractable ecological questions and informing forest management.
AbstractList Recent advances in remotely piloted aerial systems (‘drones’) and imagery processing enable individual tree mapping in forests across broad areas with low‐cost equipment and minimal ground‐based data collection. One such method involves collecting many partially overlapping aerial photos, processing them using ‘structure from motion’ (SfM) photogrammetry to create a digital 3D representation and using the 3D model to detect individual trees. SfM‐based forest mapping involves myriad decisions surrounding methods and parameters for imagery acquisition and processing, but it is unclear how these individual decisions or their combinations impact the quality of the resulting forest inventories.We collected and processed drone imagery of a moderate‐density, structurally complex mixed‐conifer stand. We tested 22 imagery collection methods (altering flight altitude, camera pitch and image overlap), 12 imagery processing parameterizations (image resolutions and depth map filtering intensities) and 286 tree detection methods (algorithms and their parameterizations) to create 7,568 tree maps. We compared these maps to a 3.23‐ha ground reference map of 1,775 trees >5 m tall that we created using traditional field survey methods.The accuracy of individual tree detection (ITD) and the resulting tree maps was generally maximized by collecting imagery at high altitude (120 m) with at least 90% image‐to‐image overlap, photogrammetrically processing images into a canopy height model (CHM) with a twofold upscaling (coarsening) step and detecting trees from the CHM using a variable window filter after applying a moving window mean smooth to the CHM. Using this combination of methods, we mapped trees with an accuracy exceeding expectations for structurally complex forests (for canopy‐dominant trees >10 m tall, sensitivity = 0.69 and precision = 0.90). Remotely measured tree heights corresponded to ground‐measured heights with R2 = 0.95. Accuracy was higher for taller trees and lower for understorey trees and would likely be higher in less dense and less structurally complex stands.Our results may guide others wishing to efficiently produce broad‐extent individual tree maps of conifer forests without investing substantial time tailoring imagery acquisition and processing parameters. The resulting tree maps create opportunities for addressing previously intractable ecological questions and informing forest management.
Recent advances in remotely piloted aerial systems (‘drones’) and imagery processing enable individual tree mapping in forests across broad areas with low‐cost equipment and minimal ground‐based data collection. One such method involves collecting many partially overlapping aerial photos, processing them using ‘structure from motion’ (SfM) photogrammetry to create a digital 3D representation and using the 3D model to detect individual trees. SfM‐based forest mapping involves myriad decisions surrounding methods and parameters for imagery acquisition and processing, but it is unclear how these individual decisions or their combinations impact the quality of the resulting forest inventories. We collected and processed drone imagery of a moderate‐density, structurally complex mixed‐conifer stand. We tested 22 imagery collection methods (altering flight altitude, camera pitch and image overlap), 12 imagery processing parameterizations (image resolutions and depth map filtering intensities) and 286 tree detection methods (algorithms and their parameterizations) to create 7,568 tree maps. We compared these maps to a 3.23‐ha ground reference map of 1,775 trees >5 m tall that we created using traditional field survey methods. The accuracy of individual tree detection (ITD) and the resulting tree maps was generally maximized by collecting imagery at high altitude (120 m) with at least 90% image‐to‐image overlap, photogrammetrically processing images into a canopy height model (CHM) with a twofold upscaling (coarsening) step and detecting trees from the CHM using a variable window filter after applying a moving window mean smooth to the CHM. Using this combination of methods, we mapped trees with an accuracy exceeding expectations for structurally complex forests (for canopy‐dominant trees >10 m tall, sensitivity = 0.69 and precision = 0.90). Remotely measured tree heights corresponded to ground‐measured heights with R2 = 0.95. Accuracy was higher for taller trees and lower for understorey trees and would likely be higher in less dense and less structurally complex stands. Our results may guide others wishing to efficiently produce broad‐extent individual tree maps of conifer forests without investing substantial time tailoring imagery acquisition and processing parameters. The resulting tree maps create opportunities for addressing previously intractable ecological questions and informing forest management.
Recent advances in remotely piloted aerial systems (‘drones’) and imagery processing enable individual tree mapping in forests across broad areas with low‐cost equipment and minimal ground‐based data collection. One such method involves collecting many partially overlapping aerial photos, processing them using ‘structure from motion’ (SfM) photogrammetry to create a digital 3D representation and using the 3D model to detect individual trees. SfM‐based forest mapping involves myriad decisions surrounding methods and parameters for imagery acquisition and processing, but it is unclear how these individual decisions or their combinations impact the quality of the resulting forest inventories. We collected and processed drone imagery of a moderate‐density, structurally complex mixed‐conifer stand. We tested 22 imagery collection methods (altering flight altitude, camera pitch and image overlap), 12 imagery processing parameterizations (image resolutions and depth map filtering intensities) and 286 tree detection methods (algorithms and their parameterizations) to create 7,568 tree maps. We compared these maps to a 3.23‐ha ground reference map of 1,775 trees >5 m tall that we created using traditional field survey methods. The accuracy of individual tree detection (ITD) and the resulting tree maps was generally maximized by collecting imagery at high altitude (120 m) with at least 90% image‐to‐image overlap, photogrammetrically processing images into a canopy height model (CHM) with a twofold upscaling (coarsening) step and detecting trees from the CHM using a variable window filter after applying a moving window mean smooth to the CHM. Using this combination of methods, we mapped trees with an accuracy exceeding expectations for structurally complex forests (for canopy‐dominant trees >10 m tall, sensitivity = 0.69 and precision = 0.90). Remotely measured tree heights corresponded to ground‐measured heights with R 2  = 0.95. Accuracy was higher for taller trees and lower for understorey trees and would likely be higher in less dense and less structurally complex stands. Our results may guide others wishing to efficiently produce broad‐extent individual tree maps of conifer forests without investing substantial time tailoring imagery acquisition and processing parameters. The resulting tree maps create opportunities for addressing previously intractable ecological questions and informing forest management.
Author Weeks, JonahMaria
Koontz, Michael J.
Young, Derek J. N.
Author_xml – sequence: 1
  givenname: Derek J. N.
  orcidid: 0000-0003-2465-0254
  surname: Young
  fullname: Young, Derek J. N.
  email: djyoung@ucdavis.edu
  organization: University of California
– sequence: 2
  givenname: Michael J.
  orcidid: 0000-0002-8276-210X
  surname: Koontz
  fullname: Koontz, Michael J.
  organization: University of Colorado
– sequence: 3
  givenname: JonahMaria
  surname: Weeks
  fullname: Weeks, JonahMaria
  organization: University of California
BookMark eNqFkM9O3DAQxq0KpFLYM1dLnBfsOH-cI0JLW4mKCwdulmNPVkaOk46dlu2JR-AZ-yR1uhVCHMpcZmR9v2883ydyEMYAhJxyds5zXRSs5OuCs_tzLmTNPpCjl5eDV_NHsorxgeUSsmVFeUSeb6fkBvfLhS3VgE576ga9BdxRM3oPJrkxUB0snXA0EOMinDTqARJgpP2I1GL-zO-n505HsNQF6344O2enhAB00NO0QC7QmHA2aUbt_WI_TB4ecw-uB1ycIKZ4Qg577SOs_vVjcne9ubv6sr65_fz16vJmbUTVsLUQhnWmbnvOjNRV10porATWMNuwstQdM9waXUnGtCiFbKC1suu6gpctr1txTM72tvms73NerB7GGUPeqIpaCikbUcmsqvYqg2OMCL0yLuklkoTaecWZWuJXS8BqCVj9jT9zF2-4CXOsuPsPUe-Jn87D7j25-rbZiD34B5EqnIw
CitedBy_id crossref_primary_10_3390_rs15092269
crossref_primary_10_1007_s10342_025_01772_7
crossref_primary_10_1016_j_jenvman_2024_123654
crossref_primary_10_1139_dsa_2023_0021
crossref_primary_10_3390_f14081601
crossref_primary_10_1088_2752_664X_add5fd
crossref_primary_10_3390_rs16203844
crossref_primary_10_3390_rs17111877
crossref_primary_10_1371_journal_pone_0322662
crossref_primary_10_3390_s24030798
crossref_primary_10_1111_rec_14106
crossref_primary_10_1145_3705863
crossref_primary_10_3390_f15081462
crossref_primary_10_3390_s23249907
crossref_primary_10_3390_rs15184366
crossref_primary_10_3390_drones6080197
crossref_primary_10_3390_rs16081365
crossref_primary_10_1002_ecs2_4877
crossref_primary_10_1111_2041_210X_14421
crossref_primary_10_3390_rs16213974
crossref_primary_10_3390_rs15051181
crossref_primary_10_3390_rs15061619
Cites_doi 10.1080/01431161.2019.1706200
10.1007/s10712‐019‐09529‐9
10.3390/f12020250
10.2737/PSW-GTR-256
10.1016/j.jag.2018.08.017
10.1016/j.rse.2018.06.023
10.1007/s40725‐019‐00094‐3
10.7809/b‐e.00079
10.1109/LGRS.2010.2079913
10.1002/eap.2002
10.5194/isprs‐archives‐XLII‐2‐W13‐657‐2019
10.1016/j.rse.2013.04.005
10.1080/01431161.2017.1338839
10.3390/drones4020010
10.1111/ele.12322
10.3390/rs11101238
10.3390/rs11030233
10.1016/j.rse.2021.112540
10.1016/j.foreco.2017.09.019
10.1126/science.283.5401.554
10.1109/JSTARS.2018.2867945
10.7554/eLife.62922
10.1093/jofore/fvy023
10.14358/PERS.78.1.75
10.3390/f4040922
10.1139/cjfr‐2020‐0433
10.3390/rs71013895
10.1016/j.rse.2017.04.007
10.1016/j.ecoinf.2020.101061
10.1029/2005RG000183
10.32942/OSF.IO/P7YGU
10.3133/ofr20211039
10.1080/07038992.2016.1196582
10.3390/rs11030239
10.1016/j.geomorph.2012.08.021
10.3390/f8090340
10.1038/s41467‐020‐20455‐y
10.2307/1943577
10.1093/jofore/fvab026
10.3390/f8030068
10.14358/PERS.70.5.589
10.1016/j.rse.2012.01.020
10.1007/s11056‐019‐09754‐5
10.1002/rse2.137
10.1002/ecs2.2594
10.3390/rs13214292
10.1007/s11119‐017‐9502‐0
10.3390/rs10081266
10.1109/JSTARS.2019.2942811
10.3390/rs10060912
10.1038/s41586‐020‐2824‐5
10.3390/rs11111263
10.1890/09‐2335.1
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QG
7SN
8FD
C1K
FR3
P64
RC3
DOI 10.1111/2041-210X.13860
DatabaseName Wiley Online Library Open Access
CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Genetics Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 2041-210X
EndPage 1463
ExternalDocumentID 10_1111_2041_210X_13860
MEE313860
Genre article
GrantInformation_xml – fundername: Earth Lab through CU Boulder's Grand Challenge Initiative and the Cooperative Institute for Research in Environmental Sciences (CIRES) at CU Boulder
– fundername: California Department of Forestry and Fire Protection Forest Health Research Program
  funderid: 18‐CCI‐FH‐0063‐LNU
– fundername: USDA Forest Service, Pacific Southwest Region
GroupedDBID 05W
0R~
1OC
24P
31~
33P
4.4
4P2
50Y
5DZ
702
8-1
A00
AAESR
AAFWJ
AAHBH
AAHHS
AAZKR
ABCUV
ABLJU
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
AEEZP
AENEX
AEQDE
AEUYN
AFBPY
AFKRA
AFPKN
AFRAH
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ATCPS
AVUZU
AZVAB
BBNVY
BENPR
BFHJK
BHPHI
BMXJE
BRXPI
CAG
CCPQU
COF
DCZOG
DPXWK
EBD
EBS
EDH
EJD
F1Z
G-S
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
M7P
MY.
MY~
M~E
O9-
P2P
P2W
P4E
PATMY
PYCSY
R.K
ROL
RX1
SUPJJ
V8K
WBKPD
WOHZO
WYJ
ZZTAW
~S-
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
BANNL
CITATION
PHGZM
PHGZT
PQGLB
WIN
7QG
7SN
8FD
C1K
FR3
P64
RC3
ID FETCH-LOGICAL-c3570-33c0bc69f10c8a5b98e7d8e070d7044ab0c1dca5800a34387e9d8bbb21491693
IEDL.DBID 24P
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000785570800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-210X
IngestDate Wed Aug 13 09:24:26 EDT 2025
Tue Nov 18 22:28:51 EST 2025
Sat Nov 29 05:20:39 EST 2025
Wed Jan 22 16:24:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3570-33c0bc69f10c8a5b98e7d8e070d7044ab0c1dca5800a34387e9d8bbb21491693
Notes Handling Editor
Carlos Alberto Alberto Silva
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8276-210X
0000-0003-2465-0254
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2F2041-210X.13860
PQID 2683887358
PQPubID 1016379
PageCount 17
ParticipantIDs proquest_journals_2683887358
crossref_citationtrail_10_1111_2041_210X_13860
crossref_primary_10_1111_2041_210X_13860
wiley_primary_10_1111_2041_210X_13860_MEE313860
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Methods in ecology and evolution
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 8
2012; 121
2013; 4
2019; 11
2019; 10
2019; 12
1999; 283
2017; 195
2020; 56
2017; 405
2020; 6
2020; 4
2004; 70
2019; XLII‐2/W13
2012; 179
2018; 215
2020; 51
2017; 38
2021; 119
2016; 42
2018; 73
2014; 17
2019; 5
2020; 41
2021b
2021a
2021; 263
2020; 1–5
2012; 78
2021; 51
2015; 7
2011; 8
2021; 13
2018; 19
2021; 10
2019; 40
2021; 12
2018; 116
2020; 30
2021
2020
2013; 136
2018
2017
1956; 26
2016
2018; 11
2010; 91
2018; 10
2012; 4
2007; 45
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
USGS (e_1_2_9_50_1) 2017
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 11
  start-page: 1238
  issue: 10
  year: 2019
  article-title: Object‐based land cover classification of Cork oak woodlands using UAV imagery and Orfeo ToolBox
  publication-title: Remote Sensing
– volume: 10
  year: 2021
  article-title: A remote sensing derived data set of 100 million individual tree crowns for the National Ecological Observatory Network
  publication-title: eLife
– volume: XLII‐2/W13
  start-page: 657
  year: 2019
  end-page: 663
  article-title: Individual tree detection from UAV LiDAR data in a mixed species woodland
  publication-title: ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
– volume: 13
  start-page: 4292
  issue: 21
  year: 2021
  article-title: Comparison of low‐cost commercial unpiloted digital aerial photogrammetry to airborne laser scanning across multiple Forest types in California, USA
  publication-title: Remote Sensing
– volume: 5
  start-page: 155
  issue: 3
  year: 2019
  end-page: 168
  article-title: Structure from motion photogrammetry in forestry: A review
  publication-title: Current Forestry Reports
– volume: 11
  start-page: 3578
  issue: 10
  year: 2018
  end-page: 3589
  article-title: Mapping three‐dimensional structures of Forest canopy using UAV stereo imagery: Evaluating impacts of forward overlaps and image resolutions with LiDAR data as reference
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– year: 2021
– volume: 19
  start-page: 115
  issue: 1
  year: 2018
  end-page: 133
  article-title: Assessing UAV‐collected image overlap influence on computation time and digital surface model accuracy in olive orchards
  publication-title: Precision Agriculture
– volume: 12
  start-page: 4131
  issue: 10
  year: 2019
  end-page: 4148
  article-title: Fine‐scale spatial and spectral clustering of UAV‐Acquired Digital Aerial Photogrammetric (DAP) point clouds for individual tree crown detection and segmentation
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 215
  start-page: 330
  year: 2018
  end-page: 342
  article-title: Quantifying understory vegetation density using small‐footprint airborne lidar
  publication-title: Remote Sensing of Environment
– volume: 7
  start-page: 13895
  issue: 10
  year: 2015
  end-page: 13920
  article-title: Optimal altitude, overlap, and weather conditions for computer vision UAV estimates of forest structure
  publication-title: Remote Sensing
– year: 2018
– volume: 4
  start-page: 10
  issue: 2
  year: 2020
  article-title: Individual tree crown segmentation in two‐layered dense mixed forests from UAV LiDAR data
  publication-title: Drones
– volume: 51
  start-page: 573
  issue: 4
  year: 2020
  end-page: 596
  article-title: Monitoring forest structure to guide adaptive management of forest restoration: A review of remote sensing approaches
  publication-title: New Forests
– volume: 40
  start-page: 959
  issue: 4
  year: 2019
  end-page: 977
  article-title: New opportunities for forest remote sensing through ultra‐high‐density drone lidar
  publication-title: Surveys in Geophysics
– volume: 4
  start-page: 225
  year: 2012
  end-page: 231
  article-title: Forest inventory and analysis database of the United States of America (FIA)
  publication-title: Biodiversity and Ecology
– volume: 17
  start-page: 1158
  issue: 9
  year: 2014
  end-page: 1167
  article-title: The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession
  publication-title: Ecology Letters
– volume: 51
  start-page: 1093
  year: 2021
  end-page: 1105
  article-title: Potential for individual tree monitoring in ponderosa pine‐dominated forests using unmanned aerial system structure from motion point clouds
  publication-title: Canadian Journal of Forest Research
– volume: 116
  start-page: 336
  issue: 4
  year: 2018
  end-page: 346
  article-title: Applying LiDAR individual tree detection to management of structurally diverse forest landscapes
  publication-title: Journal of Forestry
– volume: 11
  start-page: 239
  issue: 3
  year: 2019
  article-title: Enhancing UAV–SfM 3D model accuracy in high‐relief landscapes by incorporating oblique images
  publication-title: Remote Sensing
– volume: 10
  issue: 2
  year: 2019
  article-title: Wildfire activity and land use drove 20th‐century changes in forest cover in the Colorado front range
  publication-title: Ecosphere
– volume: 38
  start-page: 5310
  issue: 19
  year: 2017
  end-page: 5337
  article-title: Comparison of UAS photogrammetric products for tree detection and characterization of coniferous stands
  publication-title: International Journal of Remote Sensing
– volume: 8
  start-page: 340
  issue: 9
  year: 2017
  article-title: Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest
  publication-title: Forests
– volume: 8
  start-page: 426
  issue: 3
  year: 2011
  end-page: 430
  article-title: Mini‐UAV‐borne LIDAR for fine‐scale mapping
  publication-title: IEEE Geoscience and Remote Sensing Letters
– year: 2021a
– volume: 91
  start-page: 3664
  issue: 12
  year: 2010
  end-page: 3674
  article-title: Functional traits and the growth–mortality trade‐off in tropical trees
  publication-title: Ecology
– volume: 10
  start-page: 912
  issue: 6
  year: 2018
  article-title: UAV photogrammetry of forests as a vulnerable process. A sensitivity analysis for a structure from motion RGB‐image pipeline
  publication-title: Remote Sensing
– volume: 12
  start-page: 250
  issue: 2
  year: 2021
  article-title: Influence of Agisoft Metashape parameters on UAS structure from motion individual tree detection from canopy height models
  publication-title: Forests
– volume: 136
  start-page: 259
  year: 2013
  end-page: 276
  article-title: High spatial resolution three‐dimensional mapping of vegetation spectral dynamics using computer vision
  publication-title: Remote Sensing of Environment
– volume: 263
  year: 2021
  article-title: Influence of flight parameters on UAS‐based monitoring of tree height, diameter, and density
  publication-title: Remote Sensing of Environment
– volume: 11
  start-page: 1263
  issue: 11
  year: 2019
  article-title: Mean shift segmentation assessment for individual Forest tree delineation from airborne LiDAR data
  publication-title: Remote Sensing
– volume: 70
  start-page: 589
  issue: 5
  year: 2004
  end-page: 604
  article-title: Seeing the trees in the Forest
  publication-title: Photogrammetric Engineering & Remote Sensing
– volume: 119
  start-page: 520
  issue: 5
  year: 2021
  end-page: 544
  article-title: Pyrosilviculture needed for landscape resilience of dry Western United States forests
  publication-title: Journal of Forestry
– volume: 8
  start-page: 68
  issue: 3
  year: 2017
  article-title: Structure from motion (SfM) photogrammetry with drone data: A low cost method for monitoring greenhouse gas emissions from forests in developing countries
  publication-title: Forests
– volume: 56
  year: 2020
  article-title: Cross‐site learning in deep learning RGB tree crown detection
  publication-title: Ecological Informatics
– volume: 41
  start-page: 3480
  issue: 9
  year: 2020
  end-page: 3510
  article-title: Customizing unmanned aircraft systems to reduce forest inventory costs: Can oblique images substantially improve the 3D reconstruction of the canopy?
  publication-title: International Journal of Remote Sensing
– volume: 30
  issue: 1
  year: 2020
  article-title: Forest recovery following extreme drought in California, USA: Natural patterns and effects of pre‐drought management
  publication-title: Ecological Applications
– year: 2016
– volume: 121
  start-page: 210
  year: 2012
  end-page: 223
  article-title: 3‐D mapping of a multi‐layered Mediterranean forest using ALS data
  publication-title: Remote Sensing of Environment
– volume: 11
  start-page: 233
  issue: 3
  year: 2019
  article-title: Use of UAV photogrammetric data for estimation of biophysical properties in forest stands under regeneration
  publication-title: Remote Sensing
– volume: 12
  start-page: 129
  issue: 1
  year: 2021
  article-title: Cross‐scale interaction of host tree size and climatic water deficit governs bark beetle‐induced tree mortality
  publication-title: Nature Communications
– volume: 195
  start-page: 30
  year: 2017
  end-page: 43
  article-title: UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA
  publication-title: Remote Sensing of Environment
– year: 2021b
– volume: 283
  start-page: 554
  issue: 5401
  year: 1999
  end-page: 557
  article-title: Light‐gap disturbances, recruitment limitation, and tree diversity in a neotropical Forest
  publication-title: Science
– year: 2020
– volume: 4
  start-page: 922
  issue: 4
  year: 2013
  end-page: 944
  article-title: A photogrammetric workflow for the creation of a Forest canopy height model from Small unmanned aerial system imagery
  publication-title: Forests
– volume: 73
  start-page: 767
  year: 2018
  end-page: 777
  article-title: The use of fixed–wing UAV photogrammetry with LiDAR DTM to estimate merchantable volume and carbon stock in living biomass over a mixed conifer–broadleaf forest
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 45
  start-page: 1
  issue: 2
  year: 2007
  end-page: 33
  article-title: The shuttle radar topography Mission
  publication-title: Reviews of Geophysics
– volume: 405
  start-page: 166
  year: 2017
  end-page: 178
  article-title: Cover of tall trees best predicts California spotted owl habitat
  publication-title: Forest Ecology and Management
– volume: 6
  start-page: 181
  issue: 2
  year: 2020
  end-page: 197
  article-title: UAV‐derived estimates of forest structure to inform ponderosa pine forest restoration
  publication-title: Remote Sensing in Ecology and Conservation
– volume: 10
  start-page: 1266
  issue: 8
  year: 2018
  article-title: Evaluating unmanned aerial vehicle images for estimating Forest canopy fuels in a ponderosa pine stand
  publication-title: Remote Sensing
– year: 2017
– volume: 26
  start-page: 1
  issue: 1
  year: 1956
  end-page: 80
  article-title: Vegetation of the Great Smoky Mountains
  publication-title: Ecological Monographs
– volume: 179
  start-page: 300
  year: 2012
  end-page: 314
  article-title: ‘Structure‐from‐motion’ photogrammetry: A low‐cost, effective tool for geoscience applications
  publication-title: Geomorphology
– volume: 42
  start-page: 554
  issue: 5
  year: 2016
  end-page: 573
  article-title: Imputation of individual longleaf pine ( Mill.) tree attributes from field and LiDAR data
  publication-title: Canadian Journal of Remote Sensing
– volume: 1–5
  start-page: 78
  year: 2020
  end-page: 82
  article-title: An unexpectedly large count of trees in the West African Sahara and Sahel
  publication-title: Nature
– volume: 78
  start-page: 75
  issue: 1
  year: 2012
  end-page: 84
  article-title: A new method for segmenting individual trees from the lidar point cloud
  publication-title: Photogrammetric Engineering & Remote Sensing
– ident: e_1_2_9_12_1
  doi: 10.1080/01431161.2019.1706200
– ident: e_1_2_9_21_1
  doi: 10.1007/s10712‐019‐09529‐9
– ident: e_1_2_9_46_1
  doi: 10.3390/f12020250
– ident: e_1_2_9_41_1
  doi: 10.2737/PSW-GTR-256
– ident: e_1_2_9_19_1
  doi: 10.1016/j.jag.2018.08.017
– ident: e_1_2_9_7_1
  doi: 10.1016/j.rse.2018.06.023
– ident: e_1_2_9_18_1
  doi: 10.1007/s40725‐019‐00094‐3
– ident: e_1_2_9_16_1
  doi: 10.7809/b‐e.00079
– ident: e_1_2_9_26_1
  doi: 10.1109/LGRS.2010.2079913
– ident: e_1_2_9_39_1
– ident: e_1_2_9_51_1
– ident: e_1_2_9_60_1
  doi: 10.1002/eap.2002
– ident: e_1_2_9_62_1
  doi: 10.5194/isprs‐archives‐XLII‐2‐W13‐657‐2019
– ident: e_1_2_9_9_1
  doi: 10.1016/j.rse.2013.04.005
– ident: e_1_2_9_2_1
– ident: e_1_2_9_4_1
  doi: 10.1080/01431161.2017.1338839
– ident: e_1_2_9_47_1
  doi: 10.3390/drones4020010
– ident: e_1_2_9_24_1
  doi: 10.1111/ele.12322
– ident: e_1_2_9_35_1
– ident: e_1_2_9_11_1
  doi: 10.3390/rs11101238
– ident: e_1_2_9_37_1
  doi: 10.3390/rs11030233
– ident: e_1_2_9_45_1
  doi: 10.1016/j.rse.2021.112540
– ident: e_1_2_9_32_1
  doi: 10.1016/j.foreco.2017.09.019
– ident: e_1_2_9_49_1
– ident: e_1_2_9_17_1
  doi: 10.1126/science.283.5401.554
– ident: e_1_2_9_31_1
  doi: 10.1109/JSTARS.2018.2867945
– ident: e_1_2_9_52_1
  doi: 10.7554/eLife.62922
– ident: e_1_2_9_20_1
  doi: 10.1093/jofore/fvy023
– ident: e_1_2_9_25_1
  doi: 10.14358/PERS.78.1.75
– ident: e_1_2_9_59_1
– ident: e_1_2_9_27_1
  doi: 10.3390/f4040922
– ident: e_1_2_9_8_1
  doi: 10.1139/cjfr‐2020‐0433
– ident: e_1_2_9_10_1
  doi: 10.3390/rs71013895
– ident: e_1_2_9_42_1
  doi: 10.1016/j.rse.2017.04.007
– ident: e_1_2_9_53_1
  doi: 10.1016/j.ecoinf.2020.101061
– ident: e_1_2_9_13_1
  doi: 10.1029/2005RG000183
– ident: e_1_2_9_61_1
  doi: 10.32942/OSF.IO/P7YGU
– ident: e_1_2_9_34_1
  doi: 10.3133/ofr20211039
– ident: e_1_2_9_44_1
  doi: 10.1080/07038992.2016.1196582
– ident: e_1_2_9_30_1
  doi: 10.3390/rs11030239
– ident: e_1_2_9_40_1
– ident: e_1_2_9_54_1
  doi: 10.1016/j.geomorph.2012.08.021
– ident: e_1_2_9_29_1
  doi: 10.3390/f8090340
– ident: e_1_2_9_22_1
  doi: 10.1038/s41467‐020‐20455‐y
– ident: e_1_2_9_55_1
  doi: 10.2307/1943577
– ident: e_1_2_9_33_1
  doi: 10.1093/jofore/fvab026
– ident: e_1_2_9_28_1
  doi: 10.3390/f8030068
– volume-title: Unmanned aircraft systems data post‐processing: Structure‐from‐motion photogrammetry
  year: 2017
  ident: e_1_2_9_50_1
– ident: e_1_2_9_36_1
  doi: 10.14358/PERS.70.5.589
– ident: e_1_2_9_14_1
  doi: 10.1016/j.rse.2012.01.020
– ident: e_1_2_9_6_1
  doi: 10.1007/s11056‐019‐09754‐5
– ident: e_1_2_9_3_1
  doi: 10.1002/rse2.137
– ident: e_1_2_9_38_1
  doi: 10.1002/ecs2.2594
– ident: e_1_2_9_23_1
  doi: 10.3390/rs13214292
– ident: e_1_2_9_48_1
  doi: 10.1007/s11119‐017‐9502‐0
– ident: e_1_2_9_43_1
  doi: 10.3390/rs10081266
– ident: e_1_2_9_58_1
  doi: 10.1109/JSTARS.2019.2942811
– ident: e_1_2_9_15_1
  doi: 10.3390/rs10060912
– ident: e_1_2_9_5_1
  doi: 10.1038/s41586‐020‐2824‐5
– ident: e_1_2_9_57_1
  doi: 10.3390/rs11111263
– ident: e_1_2_9_56_1
  doi: 10.1890/09‐2335.1
SSID ssj0000389024
Score 2.4489791
Snippet Recent advances in remotely piloted aerial systems (‘drones’) and imagery processing enable individual tree mapping in forests across broad areas with low‐cost...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1447
SubjectTerms Accuracy
Algorithms
Altitude
Canopies
Coniferous forests
Coniferous trees
Conifers
Data collection
Decisions
drone
Drone aircraft
Ecological effects
Equipment costs
Flight altitude
Forest management
Forests
High altitude
Image acquisition
inventory
Mapping
Photogrammetry
Process parameters
remote sensing
Stand structure
structure from motion
Three dimensional models
tree
Trees
UAV
Title Optimizing aerial imagery collection and processing parameters for drone‐based individual tree mapping in structurally complex conifer forests
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F2041-210X.13860
https://www.proquest.com/docview/2683887358
Volume 13
WOSCitedRecordID wos000785570800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-210X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000389024
  issn: 2041-210X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2041-210X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000389024
  issn: 2041-210X
  databaseCode: WIN
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iA7z4FtcXOXjwUm2adJscRSp6cPUguLeSpKksuHWxIupB_An-Rn-JM2m3PkBE8JKWkoQwybzSmW8I2RFC6UgZYCSrw0AwZgKDwlDHHJQZL-KQF77YRNLryX5fnTfRhJgLU-NDtBduyBleXiODa1N9YvIoFCwAh6W_x7jsgtc-xeAFqzdE4ry9ZkH8uNCXtm37NwA_GM_zbY6vuunD4Pxstnq9czT_DyteIHON0UkP6lOySCZcuURmUg9Y_bhMXs9AbgwHT6DFqPYnkg6GiG3xSPGY-GCtkuoyp6M6rQA7Imb4EGNpKgp2L81vb0r39vKKWjGngzbNi-JfbzrUCANxBd9pDViLYB_XOD2CEz_A04fY4ExAimqFXBylF4fHQVOpIbA8TkCQcxsa21UFC63UsVHSJbl0IE7yJBRCm9Cy3OoYrFPNBZeJU7k0xkTgnyEazCqZLGGVa4RGzFkhle4W6LRrI40Dk9KKghcFU8p1yN54izLboJhjMY3rbOzNIJUzpHLmqdwhu-2AUQ3g8XPXzfGeZw0nV1nUlRwEMY9lh-z73f1tmuw0Tbl_W__ziA0yG2F-hY8H3iSTsCVui0zb-7tBdbvtjza0p88ptJcnvXffy_qO
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yFb34Lc7PHDx4qbZNuiZHkYlDnZeBu5UkTWWw1bGJqCf_BP9G_xLfS7s6BRHBU0tJHuEl7yt97_cIOeRcqlBqECSjfI8HgfY0KkMVMTBmLIt8lrlmE3G7LbpdOV0LU-BDVBduKBlOX6OA44X0lJSHPg88iFi6xwETDQjbZzm4G9i-4bbVru5ZEEDOd71tq_Elwg8m9Hyj8dU4fXqc036rMzzny_-x5BWyVLqd9LQ4J6tkxuZrZL7pIKuf18nbDWiOQe8F7BhV7kzS3gDRLZ4pHhSXrpVTlad0WBQW4EBEDR9gNs2YgudL09F9bt9f39AuprRXFXpR_O9NBwqBIO7gOy0gaxHuo4_kEZ74CZ4uyQYpAS_GG6Rz3uycXXhlrwbPsCgGVc6Mr01DZoFvhIq0FDZOhQWFksY-50r7JkiNisA_VYwzEVuZCq11CBEa4sFskloOq9wiNAys4UKqRoZhu9JCW3AqDc9YlgVS2jo5nuxRYkocc2yn0U8m8QxyOUEuJ47LdXJUTRgWEB4_D92dbHpSyvI4CRuCgSpmkaiTE7e9v5FJrptN5t62_zzjgCxcdK6vkqtW-3KHLIZYbeGyg3dJDbbH7pE58_jQG4_23Tn_AKZX_KY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PT9swFLdQ-SMuY4whOsrmww67pItjp7GPCFqBthUOHHqLbMdBkdpQUYSAEx-hn5FPwntOGjqkCU3ilCiyn6zn99d572dCvguhdKQMKJLVYSAYM4FBY6hjDs6M53HIc3_ZRDIcytFILffCVPgQzYEbaoa316jgbprlS1oehYIFkLGMuozLHqTtqyJOGEp2JM6bcxYEkAv93bbN-BrhBwt6XtH42zm9RJzLcat3PIOt91jyR_KhDjvpYSUn22TFlZ_Iet9DVt_vkPkZWI5J8QB-jGovk7SYILrFPUVB8eVaJdVlRqdVYwEORNTwCVbTzChEvjS7vird0-Mc_WJGi6bRi-J_bzrRCARxCd9pBVmLcB9jJI_wxHfw9EU2SAl4MftMLgb9i6OToL6rIbA8TsCUcxsa21M5C63UsVHSJZl0YFCyJBRCm9CyzOoY4lPNBZeJU5k0xkSQoSEezC5plbDKPUIj5qyQSvdyTNu1kcZBUGlFzvOcKeXapLvYo9TWOOZ4ncY4XeQzyOUUuZx6LrfJj2bCtILw-PfQzmLT01qXZ2nUkxxMMY9lm_z02_sWmfRPv8_925f_nvGNbJwfD9Lfp8Nf-2QzwmYLXxzcIS3YHXdA1uztTTG7_urF_Bm0P_u9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+aerial+imagery+collection+and+processing+parameters+for+drone%E2%80%90based+individual+tree+mapping+in+structurally+complex+conifer+forests&rft.jtitle=Methods+in+ecology+and+evolution&rft.au=Young%2C+Derek+J+N&rft.au=Koontz%2C+Michael+J&rft.au=Weeks%2C+JonahMaria&rft.date=2022-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2041-210X&rft.volume=13&rft.issue=7&rft.spage=1447&rft.epage=1463&rft_id=info:doi/10.1111%2F2041-210X.13860&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-210X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-210X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-210X&client=summon