ABCB5 is activated by MITF and β‐catenin and is associated with melanoma differentiation

Defining markers of different phenotypic states in melanoma is important for understanding disease progression, determining the response to therapy, and defining the molecular mechanisms underpinning phenotype‐switching driven by the changing intratumor microenvironment. The ABCB5 transporter is imp...

Full description

Saved in:
Bibliographic Details
Published in:Pigment cell and melanoma research Vol. 33; no. 1; pp. 112 - 118
Main Authors: Louphrasitthiphol, Pakavarin, Chauhan, Jagat, Goding, Colin R.
Format: Journal Article
Language:English
Published: England Wiley Subscription Services, Inc 01.01.2020
Subjects:
ISSN:1755-1471, 1755-148X, 1755-148X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Defining markers of different phenotypic states in melanoma is important for understanding disease progression, determining the response to therapy, and defining the molecular mechanisms underpinning phenotype‐switching driven by the changing intratumor microenvironment. The ABCB5 transporter is implicated in drug‐resistance and has been identified as a marker of melanoma‐initiating cells. Indeed ongoing studies are using ABCB5 to define stem cell populations. However, we show here that the ABCB5 is a direct target for the microphthalmia‐associated transcription factor MITF and its expression can be induced by β‐catenin, a key activator and co‐factor for MITF. Consequently, ABCB5 mRNA expression is primarily associated with melanoma cells exhibiting differentiation markers. The results suggest first that ABCB5 is unlikely to represent a marker of de‐differentiated melanoma stem cells, and second that ABCB5 may contribute to the non‐genetic drug‐resistance associated with highly differentiated melanoma cells. To reconcile the apparently conflicting observations in the field, we propose a model in which ABCB5 may mark a slow‐cycling differentiated population of melanoma cells.
AbstractList Defining markers of different phenotypic states in melanoma is important for understanding disease progression, determining the response to therapy, and defining the molecular mechanisms underpinning phenotype-switching driven by the changing intratumor microenvironment. The ABCB5 transporter is implicated in drug-resistance and has been identified as a marker of melanoma-initiating cells. Indeed ongoing studies are using ABCB5 to define stem cell populations. However, we show here that the ABCB5 is a direct target for the microphthalmia-associated transcription factor MITF and its expression can be induced by β-catenin, a key activator and co-factor for MITF. Consequently, ABCB5 mRNA expression is primarily associated with melanoma cells exhibiting differentiation markers. The results suggest first that ABCB5 is unlikely to represent a marker of de-differentiated melanoma stem cells, and second that ABCB5 may contribute to the non-genetic drug-resistance associated with highly differentiated melanoma cells. To reconcile the apparently conflicting observations in the field, we propose a model in which ABCB5 may mark a slow-cycling differentiated population of melanoma cells.Defining markers of different phenotypic states in melanoma is important for understanding disease progression, determining the response to therapy, and defining the molecular mechanisms underpinning phenotype-switching driven by the changing intratumor microenvironment. The ABCB5 transporter is implicated in drug-resistance and has been identified as a marker of melanoma-initiating cells. Indeed ongoing studies are using ABCB5 to define stem cell populations. However, we show here that the ABCB5 is a direct target for the microphthalmia-associated transcription factor MITF and its expression can be induced by β-catenin, a key activator and co-factor for MITF. Consequently, ABCB5 mRNA expression is primarily associated with melanoma cells exhibiting differentiation markers. The results suggest first that ABCB5 is unlikely to represent a marker of de-differentiated melanoma stem cells, and second that ABCB5 may contribute to the non-genetic drug-resistance associated with highly differentiated melanoma cells. To reconcile the apparently conflicting observations in the field, we propose a model in which ABCB5 may mark a slow-cycling differentiated population of melanoma cells.
Defining markers of different phenotypic states in melanoma is important for understanding disease progression, determining the response to therapy, and defining the molecular mechanisms underpinning phenotype‐switching driven by the changing intratumor microenvironment. The ABCB5 transporter is implicated in drug‐resistance and has been identified as a marker of melanoma‐initiating cells. Indeed ongoing studies are using ABCB5 to define stem cell populations. However, we show here that the ABCB5 is a direct target for the microphthalmia‐associated transcription factor MITF and its expression can be induced by β‐catenin, a key activator and co‐factor for MITF. Consequently, ABCB5 mRNA expression is primarily associated with melanoma cells exhibiting differentiation markers. The results suggest first that ABCB5 is unlikely to represent a marker of de‐differentiated melanoma stem cells, and second that ABCB5 may contribute to the non‐genetic drug‐resistance associated with highly differentiated melanoma cells. To reconcile the apparently conflicting observations in the field, we propose a model in which ABCB5 may mark a slow‐cycling differentiated population of melanoma cells.
Defining markers of different phenotypic states in melanoma is important for understanding disease progression, determining the response to therapy, and defining the molecular mechanisms underpinning phenotype‐switching driven by the changing intratumor microenvironment. The ABCB5 transporter is implicated in drug‐resistance and has been identified as a marker of melanoma‐initiating cells. Indeed ongoing studies are using ABCB5 to define stem cell populations. However, we show here that the ABCB5 is a direct target for the microphthalmia‐associated transcription factor MITF and its expression can be induced by β‐catenin, a key activator and co‐factor for MITF. Consequently, ABCB5 mRNA expression is primarily associated with melanoma cells exhibiting differentiation markers. The results suggest first that ABCB5 is unlikely to represent a marker of de‐differentiated melanoma stem cells, and second that ABCB5 may contribute to the non‐genetic drug‐resistance associated with highly differentiated melanoma cells. To reconcile the apparently conflicting observations in the field, we propose a model in which ABCB5 may mark a slow‐cycling differentiated population of melanoma cells.
Author Chauhan, Jagat
Louphrasitthiphol, Pakavarin
Goding, Colin R.
Author_xml – sequence: 1
  givenname: Pakavarin
  surname: Louphrasitthiphol
  fullname: Louphrasitthiphol, Pakavarin
  organization: University of Oxford
– sequence: 2
  givenname: Jagat
  surname: Chauhan
  fullname: Chauhan, Jagat
  organization: University of Oxford
– sequence: 3
  givenname: Colin R.
  orcidid: 0000-0002-1614-3909
  surname: Goding
  fullname: Goding, Colin R.
  email: colin.goding@ludwig.ox.ac.uk
  organization: University of Oxford
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31595650$$D View this record in MEDLINE/PubMed
BookMark eNp90c1KAzEQAOAgFfujFx9AFryI0DrZbPbn2BarhRZFKggelmw2iym72ZpsLb35CD6LD-JD-CSmP_ZQxFwSJt8Mw0wT1VSpBEKnGDrYnqsZL3QHuyGBA9TAAaVt7IVPtd07wHXUNGYK4AONyBGqE0wj6lNooOdur9-jjjQO45V8Y5VInWTpjIeTgcNU6nx9fr9_cBtWUq0DK2lMyeWaLmT14hQiZ6osmJPKLBNaqMp-ylIdo8OM5UacbO8WehxcT_q37dHdzbDfHbU5oQG0cQLMx1SwhIVhyInnpyTyMgh9mkUB5QF4oWd7dyOAJLIqwYnrel6W8ZRh5pEWutjUnenydS5MFRfScJHbrkQ5N7FLgLhgz4qe79FpOdfKdmeVG_k-jlyw6myr5kkh0nimZcH0Mv4dmwWXG8B1aYwW2Y5giFc7iVc7idc7sRj2MJfVekCVZjL_OwVvUhYyF8t_isf3_fHDJucHQjSdog
CitedBy_id crossref_primary_10_3390_ijms242115847
crossref_primary_10_1038_s41392_021_00499_2
crossref_primary_10_1101_gad_351985_124
crossref_primary_10_1111_pcmr_13208
crossref_primary_10_1016_j_semcancer_2022_11_009
crossref_primary_10_3390_ijms26157419
crossref_primary_10_1016_j_jtos_2024_11_005
crossref_primary_10_3390_cells14120923
crossref_primary_10_1134_S1022795422070079
crossref_primary_10_1111_pcmr_13053
crossref_primary_10_1111_jebm_12434
crossref_primary_10_2147_OTT_S284262
crossref_primary_10_1016_j_jbc_2021_100478
crossref_primary_10_3389_fimmu_2024_1486680
crossref_primary_10_3390_cancers16162861
Cites_doi 10.1016/j.cell.2010.04.020
10.1034/j.1600-0749.2003.00057.x
10.1158/0008-5472.CAN-04-3327
10.1083/jcb.200202049
10.1046/j.0022-202x.2001.01563.x
10.1016/j.ccr.2004.10.014
10.1038/nature12688
10.1158/1078-0432.CCR-17-0010
10.1016/j.cell.2018.06.025
10.1083/jcb.200410115
10.1111/j.1755-148X.2007.00427.x
10.1111/pcmr.12802
10.1016/j.ccr.2010.10.012
10.1111/j.1755-148X.2009.00653.x
10.1158/0008-5472.CAN-09-2913
10.1101/gad.329771.119
10.1128/MCB.02299-05
10.1016/j.ccr.2013.02.003
10.1016/j.ccr.2012.11.020
10.1016/j.ccell.2016.02.003
10.1038/ncomms7683
10.1111/j.1755-148X.2009.00630.x
10.1038/jid.2013.235
10.1038/nature03269
10.1101/gad.14.2.158
10.1101/gad.324657.119
10.1038/nature06489
10.1158/2159-8290.CD-13-0424
10.1111/j.1755-148X.2010.00726.x
10.1128/MCB.24.7.2915-2922.2004
10.1101/gad.406406
10.1038/ncomms6712
10.1101/gad.290940.116
10.1038/jid.2012.161
10.1016/j.jdermsci.2016.04.005
10.1038/nature07567
10.1074/jbc.C000113200
10.1016/j.cmet.2014.06.014
10.1111/j.1600-0749.2006.00322.x
10.1038/jid.2013.293
10.1038/onc.2017.341
10.1016/j.ccr.2013.05.003
10.18632/oncotarget.1967
10.18632/oncotarget.3007
10.1016/0092-8674(93)90429-T
10.1038/nature10630
10.1038/nature09161
10.1038/nature03664
10.1158/0008-5472.CAN-09-2153
10.1126/science.aad0501
10.1038/onc.2014.262
10.1111/j.1755-148X.2010.00757.x
10.1016/j.bbrc.2013.06.006
10.1038/onc.2010.598
10.1073/pnas.1424576112
10.1038/nature10539
10.1038/onc.2010.612
ContentType Journal Article
Copyright 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Copyright © 2020 John Wiley & Sons A/S
Copyright_xml – notice: 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
– notice: 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
– notice: Copyright © 2020 John Wiley & Sons A/S
DBID AAYXX
CITATION
NPM
7QO
7TO
8FD
FR3
H94
K9.
P64
7X8
DOI 10.1111/pcmr.12830
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1755-148X
EndPage 118
ExternalDocumentID 31595650
10_1111_pcmr_12830
PCMR12830
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ludwig Institute for Cancer Research
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HGLYW
HVGLF
HZ~
IHE
IX1
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
NPM
7QO
7TO
8FD
FR3
H94
K9.
P64
7X8
ID FETCH-LOGICAL-c3570-1b0a615eaba888c346d394f0865f975c704840062900b9abab1b2244ffcda1a43
IEDL.DBID DRFUL
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000492729200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1755-1471
1755-148X
IngestDate Thu Oct 02 09:55:43 EDT 2025
Sat Nov 29 14:39:22 EST 2025
Wed Feb 19 02:30:48 EST 2025
Sat Nov 29 03:24:51 EST 2025
Tue Nov 18 22:22:12 EST 2025
Wed Jan 22 16:35:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords stem cells
β-catenin
melanoma
MITF
ABCB5
Language English
License 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3570-1b0a615eaba888c346d394f0865f975c704840062900b9abab1b2244ffcda1a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1614-3909
PMID 31595650
PQID 2329661920
PQPubID 1036336
PageCount 7
ParticipantIDs proquest_miscellaneous_2303200004
proquest_journals_2329661920
pubmed_primary_31595650
crossref_primary_10_1111_pcmr_12830
crossref_citationtrail_10_1111_pcmr_12830
wiley_primary_10_1111_pcmr_12830_PCMR12830
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: La Jolla
PublicationTitle Pigment cell and melanoma research
PublicationTitleAlternate Pigment Cell Melanoma Res
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 22
2015; 34
2015; 6
2013; 504
2019; 33
2010; 18
2013; 23
2019; 32
2010; 466
2005; 433
2002; 158
2017; 23
2005; 436
2004; 24
2011; 30
2004; 6
2010; 141
2005; 65
2003; 16
2006; 19
2000; 275
2014; 20
2010; 23
2018; 174
2017; 31
2014; 5
2012; 132
2006; 20
2014; 4
2000; 14
2005; 168
2015; 112
1993; 74
2013; 436
2006; 26
2013; 134
2013; 133
2016; 352
2016; 83
2008; 21
2008; 456
2010; 70
2016; 29
2018; 33
2011; 480
2008; 451
2018; 37
2001; 117
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Tsoi J. (e_1_2_7_52_1) 2018; 33
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 21
  start-page: 39
  year: 2008
  end-page: 55
  article-title: Cancer stem cells and human malignant melanoma
  publication-title: Pigment Cell & Melanoma Research
– volume: 20
  start-page: 526
  year: 2014
  end-page: 540
  article-title: The lysosomal v‐ATPase‐ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism
  publication-title: Cell Metabolism
– volume: 158
  start-page: 1079
  year: 2002
  end-page: 1087
  article-title: Beta‐catenin‐induced melanoma growth requires the downstream target Microphthalmia‐associated transcription factor
  publication-title: Journal of Cell Biology
– volume: 33
  start-page: 1295
  year: 2019
  end-page: 1318
  article-title: Melanoma plasticity and phenotypic diversity: Therapeutic barriers and opportunities
  publication-title: Genes & Development
– volume: 4
  start-page: 816
  year: 2014
  end-page: 827
  article-title: A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors
  publication-title: Cancer Discovery
– volume: 174
  start-page: 843
  year: 2018
  end-page: 855
  article-title: Towards minimal residual disease‐directed therapy in melanoma
  publication-title: Cell
– volume: 24
  start-page: 2915
  year: 2004
  end-page: 2922
  article-title: Brn‐2 expression controls melanoma proliferation and is directly regulated by beta‐catenin
  publication-title: Molecular and Cellular Biology
– volume: 34
  start-page: 3251
  year: 2015
  end-page: 3263
  article-title: Single‐cell gene expression signatures reveal melanoma cell heterogeneity
  publication-title: Oncogene
– volume: 31
  start-page: 18
  year: 2017
  end-page: 33
  article-title: Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma
  publication-title: Genes & Development
– volume: 30
  start-page: 2307
  year: 2011
  end-page: 2318
  article-title: Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny
  publication-title: Oncogene
– volume: 14
  start-page: 158
  year: 2000
  end-page: 162
  article-title: Direct regulation of , a zebrafish MITF homolog required for pigment cell formation, by the Wnt pathway
  publication-title: Genes & Development
– volume: 70
  start-page: 3813
  year: 2010
  end-page: 3822
  article-title: Microphthalmia‐associated transcription factor controls the DNA damage response and a lineage‐specific senescence program in melanomas
  publication-title: Cancer Research
– volume: 37
  start-page: 302
  year: 2018
  end-page: 312
  article-title: A slow‐cycling subpopulation of melanoma cells with highly invasive properties
  publication-title: Oncogene
– volume: 70
  start-page: 388
  year: 2010
  end-page: 397
  article-title: Characterization of melanoma cells capable of propagating tumors from a single cell
  publication-title: Cancer Research
– volume: 83
  start-page: 45
  year: 2016
  end-page: 51
  article-title: Wnt/beta‐catenin signaling pathway activates melanocyte stem cells in vitro and in vivo
  publication-title: Journal of Dermatological Science
– volume: 33
  start-page: 983
  year: 2019
  end-page: 1007
  article-title: MITF ‐ the first 25 years
  publication-title: Genes & Development
– volume: 19
  start-page: 290
  year: 2006
  end-page: 302
  article-title: Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature
  publication-title: Pigment Cell Research
– volume: 22
  start-page: 740
  issue: 6
  year: 2009
  end-page: 749
  article-title: Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma
  publication-title: Pigment Cell & Melanoma Research
– volume: 74
  start-page: 395
  year: 1993
  end-page: 404
  article-title: Mutations at the mouse locus are associated with defects in a gene encoding a novel basic‐helix‐loop‐helix‐zipper protein
  publication-title: Cell
– volume: 23
  start-page: 287
  year: 2013
  end-page: 301
  article-title: PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress
  publication-title: Cancer Cell
– volume: 18
  start-page: 510
  year: 2010
  end-page: 523
  article-title: Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized
  publication-title: Cancer Cell
– volume: 133
  start-page: 2753
  year: 2013
  end-page: 2762
  article-title: Wnt/beta‐catenin and kit signaling sequentially regulate melanocyte stem cell differentiation in UVB‐induced epidermal pigmentation
  publication-title: The Journal of Investigative Dermatology
– volume: 23
  start-page: 7097
  year: 2017
  end-page: 7107
  article-title: MITF‐High and MITF‐low cells and a novel subpopulation expressing genes of both cell states contribute to intra‐ and intertumoral heterogeneity of primary melanoma
  publication-title: Clinical Cancer Research
– volume: 16
  start-page: 374
  year: 2003
  end-page: 382
  article-title: Microphthalmia‐associated transcription factor (MITF) is required but is not sufficient to induce the expression of melanogenic genes
  publication-title: Pigment Cell Research
– volume: 20
  start-page: 3426
  year: 2006
  end-page: 3439
  article-title: Mitf regulation of Dia1 controls melanoma proliferation and invasiveness
  publication-title: Genes & Development
– volume: 5
  start-page: 5712
  year: 2014
  article-title: Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma
  publication-title: Nature Communications
– volume: 451
  start-page: 345
  year: 2008
  end-page: 349
  article-title: Identification of cells initiating human melanomas
  publication-title: Nature
– volume: 466
  start-page: 133
  year: 2010
  end-page: 137
  article-title: Human melanoma‐initiating cells express neural crest nerve growth factor receptor CD271
  publication-title: Nature
– volume: 480
  start-page: 94
  year: 2011
  end-page: 98
  article-title: A SUMOylation‐defective MITF germline mutation predisposes to melanoma and renal carcinoma
  publication-title: Nature
– volume: 26
  start-page: 8914
  year: 2006
  end-page: 8927
  article-title: The microphthalmia‐associated transcription factor Mitf interacts with beta‐catenin to determine target gene expression
  publication-title: Molecular and Cellular Biology
– volume: 33
  start-page: e895
  issue: 890–904
  year: 2018
  article-title: Multi‐stage differentiation defines melanoma subtypes with differential vulnerability to drug‐induced iron‐dependent oxidative stress
  publication-title: Cancer Cell
– volume: 6
  start-page: 565
  year: 2004
  end-page: 576
  article-title: Critical role of CDK2 for melanoma growth linked to its melanocyte‐specific transcriptional regulation by MITF
  publication-title: Cancer Cell
– volume: 23
  start-page: 481
  issue: 4
  year: 2010
  end-page: 483
  article-title: A role for the JARID1B stem cell marker for continuous melanoma growth
  publication-title: Pigment Cell & Melanoma Research
– volume: 168
  start-page: 35
  year: 2005
  end-page: 40
  article-title: MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A
  publication-title: Journal of Cell Biology
– volume: 29
  start-page: 270
  year: 2016
  end-page: 284
  article-title: Inhibiting drivers of non‐mutational drug tolerance is a salvage strategy for targeted melanoma therapy
  publication-title: Cancer Cell
– volume: 436
  start-page: 536
  issue: 3
  year: 2013
  end-page: 542
  article-title: Genetically determined ABCB5 functionality correlates with pigmentation phenotype and melanoma risk
  publication-title: Biochemical and Biophysical Research Communications
– volume: 5
  start-page: 5272
  year: 2014
  end-page: 5283
  article-title: CD271 is an imperfect marker for melanoma initiating cells
  publication-title: Oncotarget
– volume: 6
  start-page: 5118
  year: 2015
  end-page: 5133
  article-title: A melanoma subtype with intrinsic resistance to BRAF inhibition identified by receptor tyrosine kinases gene‐driven classification
  publication-title: Oncotarget
– volume: 23
  start-page: 811
  year: 2013
  end-page: 825
  article-title: Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow‐cycling JARID1B(high) cells
  publication-title: Cancer Cell
– volume: 504
  start-page: 138
  year: 2013
  end-page: 142
  article-title: A melanocyte lineage program confers resistance to MAP kinase pathway inhibition
  publication-title: Nature
– volume: 480
  start-page: 99
  year: 2011
  end-page: 103
  article-title: A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma
  publication-title: Nature
– volume: 433
  start-page: 764
  year: 2005
  end-page: 769
  article-title: Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression
  publication-title: Nature
– volume: 23
  start-page: 27
  issue: 1
  year: 2010
  end-page: 40
  article-title: Fifteen‐year quest for microphthalmia‐associated transcription factor target genes
  publication-title: Pigment Cell & Melanoma Research
– volume: 134
  start-page: 133
  year: 2013
  end-page: 140
  article-title: A conditional zebrafish MITF mutation reveals MITF levels are critical for melanoma promotion versus regression in vivo
  publication-title: The Journal of Investigative Dermatology
– volume: 23
  start-page: 746
  issue: 6
  year: 2010
  end-page: 759
  article-title: Cancer stem cells versus phenotype switching in melanoma
  publication-title: Pigment Cell & Melanoma Research
– volume: 65
  start-page: 4320
  year: 2005
  end-page: 4333
  article-title: ABCB5‐mediated doxorubicin transport and chemoresistance in human malignant melanoma
  publication-title: Cancer Research
– volume: 23
  start-page: 302
  year: 2013
  end-page: 315
  article-title: Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF
  publication-title: Cancer Cell
– volume: 352
  start-page: 189
  year: 2016
  end-page: 196
  article-title: Dissecting the multicellular ecosystem of metastatic melanoma by single‐cell RNA‐seq
  publication-title: Science
– volume: 32
  start-page: 792
  issue: 6
  year: 2019
  end-page: 808
  article-title: MITF controls the TCA cycle to modulate the melanoma hypoxia response
  publication-title: Pigment Cell & Melanoma Research
– volume: 456
  start-page: 593
  year: 2008
  end-page: 598
  article-title: Efficient tumour formation by single human melanoma cells
  publication-title: Nature
– volume: 30
  start-page: 2319
  year: 2011
  end-page: 2332
  article-title: Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma
  publication-title: Oncogene
– volume: 436
  start-page: 117
  year: 2005
  end-page: 122
  article-title: Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma
  publication-title: Nature
– volume: 6
  start-page: 6683
  year: 2015
  article-title: Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state
  publication-title: Nature Communications
– volume: 132
  start-page: 2440
  year: 2012
  end-page: 2450
  article-title: Side population cells from human melanoma tumors reveal diverse mechanisms for chemoresistance
  publication-title: The Journal of Investigative Dermatology
– volume: 112
  start-page: E420
  year: 2015
  end-page: 429
  article-title: MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 275
  start-page: 14013
  year: 2000
  end-page: 14016
  article-title: Induction of melanocyte‐specific microphthalmia‐associated transcription factor by Wnt‐3a
  publication-title: Journal of Biological Chemistry
– volume: 141
  start-page: 583
  year: 2010
  end-page: 594
  article-title: A temporarily distinct subpopulation of slow‐cycling melanoma cells is required for continuous tumor growth
  publication-title: Cell
– volume: 117
  start-page: 1505
  year: 2001
  end-page: 1511
  article-title: Transcriptional repression of the microphthalmia gene in melanoma cells correlates with the unresponsiveness of target genes to ectopic microphthalmia‐associated transcription factor
  publication-title: The Journal of Investigative Dermatology
– ident: e_1_2_7_43_1
  doi: 10.1016/j.cell.2010.04.020
– ident: e_1_2_7_17_1
  doi: 10.1034/j.1600-0749.2003.00057.x
– ident: e_1_2_7_16_1
  doi: 10.1158/0008-5472.CAN-04-3327
– ident: e_1_2_7_56_1
  doi: 10.1083/jcb.200202049
– ident: e_1_2_7_53_1
  doi: 10.1046/j.0022-202x.2001.01563.x
– ident: e_1_2_7_11_1
  doi: 10.1016/j.ccr.2004.10.014
– ident: e_1_2_7_29_1
  doi: 10.1038/nature12688
– ident: e_1_2_7_13_1
  doi: 10.1158/1078-0432.CCR-17-0010
– ident: e_1_2_7_42_1
  doi: 10.1016/j.cell.2018.06.025
– ident: e_1_2_7_33_1
  doi: 10.1083/jcb.200410115
– ident: e_1_2_7_45_1
  doi: 10.1111/j.1755-148X.2007.00427.x
– ident: e_1_2_7_34_1
  doi: 10.1111/pcmr.12802
– ident: e_1_2_7_39_1
  doi: 10.1016/j.ccr.2010.10.012
– ident: e_1_2_7_8_1
  doi: 10.1111/j.1755-148X.2009.00653.x
– ident: e_1_2_7_19_1
  doi: 10.1158/0008-5472.CAN-09-2913
– ident: e_1_2_7_41_1
  doi: 10.1101/gad.329771.119
– ident: e_1_2_7_47_1
  doi: 10.1128/MCB.02299-05
– ident: e_1_2_7_23_1
  doi: 10.1016/j.ccr.2013.02.003
– ident: e_1_2_7_54_1
  doi: 10.1016/j.ccr.2012.11.020
– ident: e_1_2_7_48_1
  doi: 10.1016/j.ccell.2016.02.003
– ident: e_1_2_7_55_1
  doi: 10.1038/ncomms7683
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1755-148X.2009.00630.x
– ident: e_1_2_7_57_1
  doi: 10.1038/jid.2013.235
– ident: e_1_2_7_4_1
  doi: 10.1038/nature03269
– ident: e_1_2_7_10_1
  doi: 10.1101/gad.14.2.158
– ident: e_1_2_7_20_1
  doi: 10.1101/gad.324657.119
– ident: e_1_2_7_46_1
  doi: 10.1038/nature06489
– ident: e_1_2_7_30_1
  doi: 10.1158/2159-8290.CD-13-0424
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1755-148X.2010.00726.x
– ident: e_1_2_7_21_1
  doi: 10.1128/MCB.24.7.2915-2922.2004
– ident: e_1_2_7_5_1
  doi: 10.1101/gad.406406
– ident: e_1_2_7_36_1
  doi: 10.1038/ncomms6712
– ident: e_1_2_7_15_1
  doi: 10.1101/gad.290940.116
– ident: e_1_2_7_35_1
  doi: 10.1038/jid.2012.161
– ident: e_1_2_7_22_1
  doi: 10.1016/j.jdermsci.2016.04.005
– ident: e_1_2_7_40_1
  doi: 10.1038/nature07567
– volume: 33
  start-page: e895
  issue: 890
  year: 2018
  ident: e_1_2_7_52_1
  article-title: Multi‐stage differentiation defines melanoma subtypes with differential vulnerability to drug‐induced iron‐dependent oxidative stress
  publication-title: Cancer Cell
– ident: e_1_2_7_50_1
  doi: 10.1074/jbc.C000113200
– ident: e_1_2_7_59_1
  doi: 10.1016/j.cmet.2014.06.014
– ident: e_1_2_7_28_1
  doi: 10.1111/j.1600-0749.2006.00322.x
– ident: e_1_2_7_32_1
  doi: 10.1038/jid.2013.293
– ident: e_1_2_7_37_1
  doi: 10.1038/onc.2017.341
– ident: e_1_2_7_44_1
  doi: 10.1016/j.ccr.2013.05.003
– ident: e_1_2_7_6_1
  doi: 10.18632/oncotarget.1967
– ident: e_1_2_7_12_1
  doi: 10.18632/oncotarget.3007
– ident: e_1_2_7_26_1
  doi: 10.1016/0092-8674(93)90429-T
– ident: e_1_2_7_58_1
  doi: 10.1038/nature10630
– ident: e_1_2_7_3_1
  doi: 10.1038/nature09161
– ident: e_1_2_7_18_1
  doi: 10.1038/nature03664
– ident: e_1_2_7_25_1
  doi: 10.1158/0008-5472.CAN-09-2153
– ident: e_1_2_7_51_1
  doi: 10.1126/science.aad0501
– ident: e_1_2_7_14_1
  doi: 10.1038/onc.2014.262
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1755-148X.2010.00757.x
– ident: e_1_2_7_31_1
  doi: 10.1016/j.bbrc.2013.06.006
– ident: e_1_2_7_7_1
  doi: 10.1038/onc.2010.598
– ident: e_1_2_7_38_1
  doi: 10.1073/pnas.1424576112
– ident: e_1_2_7_2_1
  doi: 10.1038/nature10539
– ident: e_1_2_7_49_1
  doi: 10.1038/onc.2010.612
SSID ssj0060593
Score 2.3640573
Snippet Defining markers of different phenotypic states in melanoma is important for understanding disease progression, determining the response to therapy, and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 112
SubjectTerms ABCB5
Biomarkers
Catenin
Cell differentiation
Drug resistance
Gene expression
Melanoma
Microphthalmia-associated transcription factor
MITF
Molecular modelling
Phenotypes
Stem cells
β‐catenin
Title ABCB5 is activated by MITF and β‐catenin and is associated with melanoma differentiation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpcmr.12830
https://www.ncbi.nlm.nih.gov/pubmed/31595650
https://www.proquest.com/docview/2329661920
https://www.proquest.com/docview/2303200004
Volume 33
WOSCitedRecordID wos000492729200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1755-148X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060593
  issn: 1755-1471
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsQwEB50VfDi_8_6R0QvCpX-JJsWvOjq4kFFRGHRQ0nSBhZ2u7K7Ct58BJ_FB_EhfBInabsqiiDeSjMhZSYz8800mQHYDngoXeUzhwmXOzTQvhOha3CUkqIWJCyRqS2Zf8rPz8NmM7oYgf3yLkxeH2KYcDOaYe21UXAh-5-U_E51enueqV81CmM-blxagbGjy8b1aWmJa25edBc9JHM8tMJFeVJzkudj9leH9A1lfgWt1us0pv_3vTMwVaBNcpBvj1kYSbM5mLjp2lz6PNweHNYPGWn1ibne8ICwMyHykaA5axCRJeT15e3p2RyZylqZfWEoC3kiqcnhkk7aFlm3I0jZamWQC3sBrhvHV_UTp-i24KiAcdfxpCsQ3qRCCoyKVUBrSRBRjSEP0xFniqOuU3PlMnJdGSGV9CT6f6q1SoQnaLAIlaybpctAtOaU6ZALpSPqKx36nhRJGIXC07WUulXYKVkeq6IUuemI0Y7LkMQwK7bMqsLWkPYuL8DxI9VaKbm4UMJ-jGARgzmEsDi8ORxG9TH_RESWdu8Njekgb5BtFZZyiQ-XCRDqId7F2btWsL-sH1_Uzy7t08pfiFdh0jfxu03prEFl0LtP12FcPQxa_d4GjPJmuFFs6ndeQ_lW
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS-NAEB_OqujL_fPUenq3x_mikCN_dpvkUXsWxVpEFEQfwu4mC4U2lbYKvvkR_Cx-ED-En-RmNkk9UQTxLWRn2TCzM_Obye4MwHoQRsrVvnCEdEOHB8Z3YnQNjtZKNoJUpCqzJfPbYacTnZ7Gh-XZHLoLU9SHmCTcSDOsvSYFp4T0f1p-ofvDPx4VsJqCaY77SNRg-u9R66RdmeKGW1TdRRcpHA_NcFmflI7yPM5-6pGewcynqNW6ndand37wZ_hY4k22VWyQL_Ahy7_C7NnAZtMX4Hxru7ktWHfE6ILDFQLPlKlrhgatxWSesvu7h5tbOjSVd3P7gihLiSIpZXFZP-vJfNCXrGq2Mi7E_Q1OWjvHzV2n7Lfg6ECEruMpVyLAyaSSGBfrgDfSIOYGgx5h4lDoELWd06XL2HVVjFTKU4gAuDE6lZ7kwSLU8kGeLQMzJuTCRKHUJua-NpHvKZlGcSQ908i4W4eNiueJLouRU0-MXlIFJcSsxDKrDr8ntBdFCY4XqVYr0SWlGo4ShIsYziGIxeFfk2FUIPorIvNscEk01EOesG0dlgqRT5YJEOwh4sXZm1ayr6yfHDYPjuzTyluIf8Lc7vFBO2nvdfa_w7xP0bxN8KxCbTy8zNZgRl-Nu6Phj3Jv_wNqCvxe
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BWxCXlvK7tIAruFApKD92Eh_bLRGIZbWqqFTBIbIdW1qpm13tbitx4xF4Fh6Eh-BJOuMkWyoQEuIWxWM5mvHMfDOxZwBeJlmuQxOLQKgwC3ji4kCiawiM0SpNKlFp60vmD7LhMD89laP2bA7dhWnqQ6wSbqQZ3l6TgttZ5X7R8pmZzF9HVMDqJqxzIVPUy_Wj4-Jk0JniNGyq7qKLFEGEZritT0pHea5mX_dIv8HM66jVu51i6z8_-C5stniTHTQbZBtu2Poe3Po09dn0-_D54LB_KNh4weiCwwUCz4rpLwwNWsFUXbEf339-_UaHpupx7V8QZStRJKUsLpvYM1VPJ4p1zVaWjbgfwEnx5mP_bdD2WwhMIrIwiHSoEOBYpRXGxSbhaZVI7jDoEU5mwmSo7ZwuXcow1BKpdKQRAXDnTKUixZOHsFZPa_sYmHMZFy7PlHGSx8blcaRVlctcRS61POzBq47npWmLkVNPjLOyC0qIWaVnVg9erGhnTQmOP1LtdqIrWzVclAgXMZxDEIvDe6thVCD6K6JqOz0nGuohT9i2B48aka-WSRDsIeLF2ftesn9Zvxz1Pxz7pyf_Qvwcbo-OinLwbvh-B-7EFMz7_M4urC3n5_YpbJiL5Xgxf9Zu7Uv62PvZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ABCB5+is+activated+by+MITF+and+%CE%B2%E2%80%90catenin+and+is+associated+with+melanoma+differentiation&rft.jtitle=Pigment+cell+and+melanoma+research&rft.au=Louphrasitthiphol%2C+Pakavarin&rft.au=Chauhan%2C+Jagat&rft.au=Goding%2C+Colin+R.&rft.date=2020-01-01&rft.issn=1755-1471&rft.eissn=1755-148X&rft.volume=33&rft.issue=1&rft.spage=112&rft.epage=118&rft_id=info:doi/10.1111%2Fpcmr.12830&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_pcmr_12830
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-1471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-1471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-1471&client=summon