ABCB5 is activated by MITF and β‐catenin and is associated with melanoma differentiation
Defining markers of different phenotypic states in melanoma is important for understanding disease progression, determining the response to therapy, and defining the molecular mechanisms underpinning phenotype‐switching driven by the changing intratumor microenvironment. The ABCB5 transporter is imp...
Saved in:
| Published in: | Pigment cell and melanoma research Vol. 33; no. 1; pp. 112 - 118 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Wiley Subscription Services, Inc
01.01.2020
|
| Subjects: | |
| ISSN: | 1755-1471, 1755-148X, 1755-148X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Defining markers of different phenotypic states in melanoma is important for understanding disease progression, determining the response to therapy, and defining the molecular mechanisms underpinning phenotype‐switching driven by the changing intratumor microenvironment. The ABCB5 transporter is implicated in drug‐resistance and has been identified as a marker of melanoma‐initiating cells. Indeed ongoing studies are using ABCB5 to define stem cell populations. However, we show here that the ABCB5 is a direct target for the microphthalmia‐associated transcription factor MITF and its expression can be induced by β‐catenin, a key activator and co‐factor for MITF. Consequently, ABCB5 mRNA expression is primarily associated with melanoma cells exhibiting differentiation markers. The results suggest first that ABCB5 is unlikely to represent a marker of de‐differentiated melanoma stem cells, and second that ABCB5 may contribute to the non‐genetic drug‐resistance associated with highly differentiated melanoma cells. To reconcile the apparently conflicting observations in the field, we propose a model in which ABCB5 may mark a slow‐cycling differentiated population of melanoma cells. |
|---|---|
| AbstractList | Defining markers of different phenotypic states in melanoma is important for understanding disease progression, determining the response to therapy, and defining the molecular mechanisms underpinning phenotype-switching driven by the changing intratumor microenvironment. The ABCB5 transporter is implicated in drug-resistance and has been identified as a marker of melanoma-initiating cells. Indeed ongoing studies are using ABCB5 to define stem cell populations. However, we show here that the ABCB5 is a direct target for the microphthalmia-associated transcription factor MITF and its expression can be induced by β-catenin, a key activator and co-factor for MITF. Consequently, ABCB5 mRNA expression is primarily associated with melanoma cells exhibiting differentiation markers. The results suggest first that ABCB5 is unlikely to represent a marker of de-differentiated melanoma stem cells, and second that ABCB5 may contribute to the non-genetic drug-resistance associated with highly differentiated melanoma cells. To reconcile the apparently conflicting observations in the field, we propose a model in which ABCB5 may mark a slow-cycling differentiated population of melanoma cells.Defining markers of different phenotypic states in melanoma is important for understanding disease progression, determining the response to therapy, and defining the molecular mechanisms underpinning phenotype-switching driven by the changing intratumor microenvironment. The ABCB5 transporter is implicated in drug-resistance and has been identified as a marker of melanoma-initiating cells. Indeed ongoing studies are using ABCB5 to define stem cell populations. However, we show here that the ABCB5 is a direct target for the microphthalmia-associated transcription factor MITF and its expression can be induced by β-catenin, a key activator and co-factor for MITF. Consequently, ABCB5 mRNA expression is primarily associated with melanoma cells exhibiting differentiation markers. The results suggest first that ABCB5 is unlikely to represent a marker of de-differentiated melanoma stem cells, and second that ABCB5 may contribute to the non-genetic drug-resistance associated with highly differentiated melanoma cells. To reconcile the apparently conflicting observations in the field, we propose a model in which ABCB5 may mark a slow-cycling differentiated population of melanoma cells. Defining markers of different phenotypic states in melanoma is important for understanding disease progression, determining the response to therapy, and defining the molecular mechanisms underpinning phenotype‐switching driven by the changing intratumor microenvironment. The ABCB5 transporter is implicated in drug‐resistance and has been identified as a marker of melanoma‐initiating cells. Indeed ongoing studies are using ABCB5 to define stem cell populations. However, we show here that the ABCB5 is a direct target for the microphthalmia‐associated transcription factor MITF and its expression can be induced by β‐catenin, a key activator and co‐factor for MITF. Consequently, ABCB5 mRNA expression is primarily associated with melanoma cells exhibiting differentiation markers. The results suggest first that ABCB5 is unlikely to represent a marker of de‐differentiated melanoma stem cells, and second that ABCB5 may contribute to the non‐genetic drug‐resistance associated with highly differentiated melanoma cells. To reconcile the apparently conflicting observations in the field, we propose a model in which ABCB5 may mark a slow‐cycling differentiated population of melanoma cells. Defining markers of different phenotypic states in melanoma is important for understanding disease progression, determining the response to therapy, and defining the molecular mechanisms underpinning phenotype‐switching driven by the changing intratumor microenvironment. The ABCB5 transporter is implicated in drug‐resistance and has been identified as a marker of melanoma‐initiating cells. Indeed ongoing studies are using ABCB5 to define stem cell populations. However, we show here that the ABCB5 is a direct target for the microphthalmia‐associated transcription factor MITF and its expression can be induced by β‐catenin, a key activator and co‐factor for MITF. Consequently, ABCB5 mRNA expression is primarily associated with melanoma cells exhibiting differentiation markers. The results suggest first that ABCB5 is unlikely to represent a marker of de‐differentiated melanoma stem cells, and second that ABCB5 may contribute to the non‐genetic drug‐resistance associated with highly differentiated melanoma cells. To reconcile the apparently conflicting observations in the field, we propose a model in which ABCB5 may mark a slow‐cycling differentiated population of melanoma cells. |
| Author | Chauhan, Jagat Louphrasitthiphol, Pakavarin Goding, Colin R. |
| Author_xml | – sequence: 1 givenname: Pakavarin surname: Louphrasitthiphol fullname: Louphrasitthiphol, Pakavarin organization: University of Oxford – sequence: 2 givenname: Jagat surname: Chauhan fullname: Chauhan, Jagat organization: University of Oxford – sequence: 3 givenname: Colin R. orcidid: 0000-0002-1614-3909 surname: Goding fullname: Goding, Colin R. email: colin.goding@ludwig.ox.ac.uk organization: University of Oxford |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31595650$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90c1KAzEQAOAgFfujFx9AFryI0DrZbPbn2BarhRZFKggelmw2iym72ZpsLb35CD6LD-JD-CSmP_ZQxFwSJt8Mw0wT1VSpBEKnGDrYnqsZL3QHuyGBA9TAAaVt7IVPtd07wHXUNGYK4AONyBGqE0wj6lNooOdur9-jjjQO45V8Y5VInWTpjIeTgcNU6nx9fr9_cBtWUq0DK2lMyeWaLmT14hQiZ6osmJPKLBNaqMp-ylIdo8OM5UacbO8WehxcT_q37dHdzbDfHbU5oQG0cQLMx1SwhIVhyInnpyTyMgh9mkUB5QF4oWd7dyOAJLIqwYnrel6W8ZRh5pEWutjUnenydS5MFRfScJHbrkQ5N7FLgLhgz4qe79FpOdfKdmeVG_k-jlyw6myr5kkh0nimZcH0Mv4dmwWXG8B1aYwW2Y5giFc7iVc7idc7sRj2MJfVekCVZjL_OwVvUhYyF8t_isf3_fHDJucHQjSdog |
| CitedBy_id | crossref_primary_10_3390_ijms242115847 crossref_primary_10_1038_s41392_021_00499_2 crossref_primary_10_1101_gad_351985_124 crossref_primary_10_1111_pcmr_13208 crossref_primary_10_1016_j_semcancer_2022_11_009 crossref_primary_10_3390_ijms26157419 crossref_primary_10_1016_j_jtos_2024_11_005 crossref_primary_10_3390_cells14120923 crossref_primary_10_1134_S1022795422070079 crossref_primary_10_1111_pcmr_13053 crossref_primary_10_1111_jebm_12434 crossref_primary_10_2147_OTT_S284262 crossref_primary_10_1016_j_jbc_2021_100478 crossref_primary_10_3389_fimmu_2024_1486680 crossref_primary_10_3390_cancers16162861 |
| Cites_doi | 10.1016/j.cell.2010.04.020 10.1034/j.1600-0749.2003.00057.x 10.1158/0008-5472.CAN-04-3327 10.1083/jcb.200202049 10.1046/j.0022-202x.2001.01563.x 10.1016/j.ccr.2004.10.014 10.1038/nature12688 10.1158/1078-0432.CCR-17-0010 10.1016/j.cell.2018.06.025 10.1083/jcb.200410115 10.1111/j.1755-148X.2007.00427.x 10.1111/pcmr.12802 10.1016/j.ccr.2010.10.012 10.1111/j.1755-148X.2009.00653.x 10.1158/0008-5472.CAN-09-2913 10.1101/gad.329771.119 10.1128/MCB.02299-05 10.1016/j.ccr.2013.02.003 10.1016/j.ccr.2012.11.020 10.1016/j.ccell.2016.02.003 10.1038/ncomms7683 10.1111/j.1755-148X.2009.00630.x 10.1038/jid.2013.235 10.1038/nature03269 10.1101/gad.14.2.158 10.1101/gad.324657.119 10.1038/nature06489 10.1158/2159-8290.CD-13-0424 10.1111/j.1755-148X.2010.00726.x 10.1128/MCB.24.7.2915-2922.2004 10.1101/gad.406406 10.1038/ncomms6712 10.1101/gad.290940.116 10.1038/jid.2012.161 10.1016/j.jdermsci.2016.04.005 10.1038/nature07567 10.1074/jbc.C000113200 10.1016/j.cmet.2014.06.014 10.1111/j.1600-0749.2006.00322.x 10.1038/jid.2013.293 10.1038/onc.2017.341 10.1016/j.ccr.2013.05.003 10.18632/oncotarget.1967 10.18632/oncotarget.3007 10.1016/0092-8674(93)90429-T 10.1038/nature10630 10.1038/nature09161 10.1038/nature03664 10.1158/0008-5472.CAN-09-2153 10.1126/science.aad0501 10.1038/onc.2014.262 10.1111/j.1755-148X.2010.00757.x 10.1016/j.bbrc.2013.06.006 10.1038/onc.2010.598 10.1073/pnas.1424576112 10.1038/nature10539 10.1038/onc.2010.612 |
| ContentType | Journal Article |
| Copyright | 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. Copyright © 2020 John Wiley & Sons A/S |
| Copyright_xml | – notice: 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd – notice: 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. – notice: Copyright © 2020 John Wiley & Sons A/S |
| DBID | AAYXX CITATION NPM 7QO 7TO 8FD FR3 H94 K9. P64 7X8 |
| DOI | 10.1111/pcmr.12830 |
| DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Biotechnology Research Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Zoology |
| EISSN | 1755-148X |
| EndPage | 118 |
| ExternalDocumentID | 31595650 10_1111_pcmr_12830 PCMR12830 |
| Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Ludwig Institute for Cancer Research |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EBC EBD EBS EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HGLYW HVGLF HZ~ IHE IX1 J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WXI WXSBR WYISQ XG1 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION O8X NPM 7QO 7TO 8FD FR3 H94 K9. P64 7X8 |
| ID | FETCH-LOGICAL-c3570-1b0a615eaba888c346d394f0865f975c704840062900b9abab1b2244ffcda1a43 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000492729200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1755-1471 1755-148X |
| IngestDate | Thu Oct 02 09:55:43 EDT 2025 Sat Nov 29 14:39:22 EST 2025 Wed Feb 19 02:30:48 EST 2025 Sat Nov 29 03:24:51 EST 2025 Tue Nov 18 22:22:12 EST 2025 Wed Jan 22 16:35:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | stem cells β-catenin melanoma MITF ABCB5 |
| Language | English |
| License | 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3570-1b0a615eaba888c346d394f0865f975c704840062900b9abab1b2244ffcda1a43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1614-3909 |
| PMID | 31595650 |
| PQID | 2329661920 |
| PQPubID | 1036336 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2303200004 proquest_journals_2329661920 pubmed_primary_31595650 crossref_primary_10_1111_pcmr_12830 crossref_citationtrail_10_1111_pcmr_12830 wiley_primary_10_1111_pcmr_12830_PCMR12830 |
| PublicationCentury | 2000 |
| PublicationDate | January 2020 2020-01-00 20200101 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: La Jolla |
| PublicationTitle | Pigment cell and melanoma research |
| PublicationTitleAlternate | Pigment Cell Melanoma Res |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2009; 22 2015; 34 2015; 6 2013; 504 2019; 33 2010; 18 2013; 23 2019; 32 2010; 466 2005; 433 2002; 158 2017; 23 2005; 436 2004; 24 2011; 30 2004; 6 2010; 141 2005; 65 2003; 16 2006; 19 2000; 275 2014; 20 2010; 23 2018; 174 2017; 31 2014; 5 2012; 132 2006; 20 2014; 4 2000; 14 2005; 168 2015; 112 1993; 74 2013; 436 2006; 26 2013; 134 2013; 133 2016; 352 2016; 83 2008; 21 2008; 456 2010; 70 2016; 29 2018; 33 2011; 480 2008; 451 2018; 37 2001; 117 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Tsoi J. (e_1_2_7_52_1) 2018; 33 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
| References_xml | – volume: 21 start-page: 39 year: 2008 end-page: 55 article-title: Cancer stem cells and human malignant melanoma publication-title: Pigment Cell & Melanoma Research – volume: 20 start-page: 526 year: 2014 end-page: 540 article-title: The lysosomal v‐ATPase‐ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism publication-title: Cell Metabolism – volume: 158 start-page: 1079 year: 2002 end-page: 1087 article-title: Beta‐catenin‐induced melanoma growth requires the downstream target Microphthalmia‐associated transcription factor publication-title: Journal of Cell Biology – volume: 33 start-page: 1295 year: 2019 end-page: 1318 article-title: Melanoma plasticity and phenotypic diversity: Therapeutic barriers and opportunities publication-title: Genes & Development – volume: 4 start-page: 816 year: 2014 end-page: 827 article-title: A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors publication-title: Cancer Discovery – volume: 174 start-page: 843 year: 2018 end-page: 855 article-title: Towards minimal residual disease‐directed therapy in melanoma publication-title: Cell – volume: 24 start-page: 2915 year: 2004 end-page: 2922 article-title: Brn‐2 expression controls melanoma proliferation and is directly regulated by beta‐catenin publication-title: Molecular and Cellular Biology – volume: 34 start-page: 3251 year: 2015 end-page: 3263 article-title: Single‐cell gene expression signatures reveal melanoma cell heterogeneity publication-title: Oncogene – volume: 31 start-page: 18 year: 2017 end-page: 33 article-title: Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma publication-title: Genes & Development – volume: 30 start-page: 2307 year: 2011 end-page: 2318 article-title: Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny publication-title: Oncogene – volume: 14 start-page: 158 year: 2000 end-page: 162 article-title: Direct regulation of , a zebrafish MITF homolog required for pigment cell formation, by the Wnt pathway publication-title: Genes & Development – volume: 70 start-page: 3813 year: 2010 end-page: 3822 article-title: Microphthalmia‐associated transcription factor controls the DNA damage response and a lineage‐specific senescence program in melanomas publication-title: Cancer Research – volume: 37 start-page: 302 year: 2018 end-page: 312 article-title: A slow‐cycling subpopulation of melanoma cells with highly invasive properties publication-title: Oncogene – volume: 70 start-page: 388 year: 2010 end-page: 397 article-title: Characterization of melanoma cells capable of propagating tumors from a single cell publication-title: Cancer Research – volume: 83 start-page: 45 year: 2016 end-page: 51 article-title: Wnt/beta‐catenin signaling pathway activates melanocyte stem cells in vitro and in vivo publication-title: Journal of Dermatological Science – volume: 33 start-page: 983 year: 2019 end-page: 1007 article-title: MITF ‐ the first 25 years publication-title: Genes & Development – volume: 19 start-page: 290 year: 2006 end-page: 302 article-title: Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature publication-title: Pigment Cell Research – volume: 22 start-page: 740 issue: 6 year: 2009 end-page: 749 article-title: Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma publication-title: Pigment Cell & Melanoma Research – volume: 74 start-page: 395 year: 1993 end-page: 404 article-title: Mutations at the mouse locus are associated with defects in a gene encoding a novel basic‐helix‐loop‐helix‐zipper protein publication-title: Cell – volume: 23 start-page: 287 year: 2013 end-page: 301 article-title: PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress publication-title: Cancer Cell – volume: 18 start-page: 510 year: 2010 end-page: 523 article-title: Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized publication-title: Cancer Cell – volume: 133 start-page: 2753 year: 2013 end-page: 2762 article-title: Wnt/beta‐catenin and kit signaling sequentially regulate melanocyte stem cell differentiation in UVB‐induced epidermal pigmentation publication-title: The Journal of Investigative Dermatology – volume: 23 start-page: 7097 year: 2017 end-page: 7107 article-title: MITF‐High and MITF‐low cells and a novel subpopulation expressing genes of both cell states contribute to intra‐ and intertumoral heterogeneity of primary melanoma publication-title: Clinical Cancer Research – volume: 16 start-page: 374 year: 2003 end-page: 382 article-title: Microphthalmia‐associated transcription factor (MITF) is required but is not sufficient to induce the expression of melanogenic genes publication-title: Pigment Cell Research – volume: 20 start-page: 3426 year: 2006 end-page: 3439 article-title: Mitf regulation of Dia1 controls melanoma proliferation and invasiveness publication-title: Genes & Development – volume: 5 start-page: 5712 year: 2014 article-title: Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma publication-title: Nature Communications – volume: 451 start-page: 345 year: 2008 end-page: 349 article-title: Identification of cells initiating human melanomas publication-title: Nature – volume: 466 start-page: 133 year: 2010 end-page: 137 article-title: Human melanoma‐initiating cells express neural crest nerve growth factor receptor CD271 publication-title: Nature – volume: 480 start-page: 94 year: 2011 end-page: 98 article-title: A SUMOylation‐defective MITF germline mutation predisposes to melanoma and renal carcinoma publication-title: Nature – volume: 26 start-page: 8914 year: 2006 end-page: 8927 article-title: The microphthalmia‐associated transcription factor Mitf interacts with beta‐catenin to determine target gene expression publication-title: Molecular and Cellular Biology – volume: 33 start-page: e895 issue: 890–904 year: 2018 article-title: Multi‐stage differentiation defines melanoma subtypes with differential vulnerability to drug‐induced iron‐dependent oxidative stress publication-title: Cancer Cell – volume: 6 start-page: 565 year: 2004 end-page: 576 article-title: Critical role of CDK2 for melanoma growth linked to its melanocyte‐specific transcriptional regulation by MITF publication-title: Cancer Cell – volume: 23 start-page: 481 issue: 4 year: 2010 end-page: 483 article-title: A role for the JARID1B stem cell marker for continuous melanoma growth publication-title: Pigment Cell & Melanoma Research – volume: 168 start-page: 35 year: 2005 end-page: 40 article-title: MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A publication-title: Journal of Cell Biology – volume: 29 start-page: 270 year: 2016 end-page: 284 article-title: Inhibiting drivers of non‐mutational drug tolerance is a salvage strategy for targeted melanoma therapy publication-title: Cancer Cell – volume: 436 start-page: 536 issue: 3 year: 2013 end-page: 542 article-title: Genetically determined ABCB5 functionality correlates with pigmentation phenotype and melanoma risk publication-title: Biochemical and Biophysical Research Communications – volume: 5 start-page: 5272 year: 2014 end-page: 5283 article-title: CD271 is an imperfect marker for melanoma initiating cells publication-title: Oncotarget – volume: 6 start-page: 5118 year: 2015 end-page: 5133 article-title: A melanoma subtype with intrinsic resistance to BRAF inhibition identified by receptor tyrosine kinases gene‐driven classification publication-title: Oncotarget – volume: 23 start-page: 811 year: 2013 end-page: 825 article-title: Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow‐cycling JARID1B(high) cells publication-title: Cancer Cell – volume: 504 start-page: 138 year: 2013 end-page: 142 article-title: A melanocyte lineage program confers resistance to MAP kinase pathway inhibition publication-title: Nature – volume: 480 start-page: 99 year: 2011 end-page: 103 article-title: A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma publication-title: Nature – volume: 433 start-page: 764 year: 2005 end-page: 769 article-title: Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression publication-title: Nature – volume: 23 start-page: 27 issue: 1 year: 2010 end-page: 40 article-title: Fifteen‐year quest for microphthalmia‐associated transcription factor target genes publication-title: Pigment Cell & Melanoma Research – volume: 134 start-page: 133 year: 2013 end-page: 140 article-title: A conditional zebrafish MITF mutation reveals MITF levels are critical for melanoma promotion versus regression in vivo publication-title: The Journal of Investigative Dermatology – volume: 23 start-page: 746 issue: 6 year: 2010 end-page: 759 article-title: Cancer stem cells versus phenotype switching in melanoma publication-title: Pigment Cell & Melanoma Research – volume: 65 start-page: 4320 year: 2005 end-page: 4333 article-title: ABCB5‐mediated doxorubicin transport and chemoresistance in human malignant melanoma publication-title: Cancer Research – volume: 23 start-page: 302 year: 2013 end-page: 315 article-title: Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF publication-title: Cancer Cell – volume: 352 start-page: 189 year: 2016 end-page: 196 article-title: Dissecting the multicellular ecosystem of metastatic melanoma by single‐cell RNA‐seq publication-title: Science – volume: 32 start-page: 792 issue: 6 year: 2019 end-page: 808 article-title: MITF controls the TCA cycle to modulate the melanoma hypoxia response publication-title: Pigment Cell & Melanoma Research – volume: 456 start-page: 593 year: 2008 end-page: 598 article-title: Efficient tumour formation by single human melanoma cells publication-title: Nature – volume: 30 start-page: 2319 year: 2011 end-page: 2332 article-title: Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma publication-title: Oncogene – volume: 436 start-page: 117 year: 2005 end-page: 122 article-title: Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma publication-title: Nature – volume: 6 start-page: 6683 year: 2015 article-title: Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state publication-title: Nature Communications – volume: 132 start-page: 2440 year: 2012 end-page: 2450 article-title: Side population cells from human melanoma tumors reveal diverse mechanisms for chemoresistance publication-title: The Journal of Investigative Dermatology – volume: 112 start-page: E420 year: 2015 end-page: 429 article-title: MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 275 start-page: 14013 year: 2000 end-page: 14016 article-title: Induction of melanocyte‐specific microphthalmia‐associated transcription factor by Wnt‐3a publication-title: Journal of Biological Chemistry – volume: 141 start-page: 583 year: 2010 end-page: 594 article-title: A temporarily distinct subpopulation of slow‐cycling melanoma cells is required for continuous tumor growth publication-title: Cell – volume: 117 start-page: 1505 year: 2001 end-page: 1511 article-title: Transcriptional repression of the microphthalmia gene in melanoma cells correlates with the unresponsiveness of target genes to ectopic microphthalmia‐associated transcription factor publication-title: The Journal of Investigative Dermatology – ident: e_1_2_7_43_1 doi: 10.1016/j.cell.2010.04.020 – ident: e_1_2_7_17_1 doi: 10.1034/j.1600-0749.2003.00057.x – ident: e_1_2_7_16_1 doi: 10.1158/0008-5472.CAN-04-3327 – ident: e_1_2_7_56_1 doi: 10.1083/jcb.200202049 – ident: e_1_2_7_53_1 doi: 10.1046/j.0022-202x.2001.01563.x – ident: e_1_2_7_11_1 doi: 10.1016/j.ccr.2004.10.014 – ident: e_1_2_7_29_1 doi: 10.1038/nature12688 – ident: e_1_2_7_13_1 doi: 10.1158/1078-0432.CCR-17-0010 – ident: e_1_2_7_42_1 doi: 10.1016/j.cell.2018.06.025 – ident: e_1_2_7_33_1 doi: 10.1083/jcb.200410115 – ident: e_1_2_7_45_1 doi: 10.1111/j.1755-148X.2007.00427.x – ident: e_1_2_7_34_1 doi: 10.1111/pcmr.12802 – ident: e_1_2_7_39_1 doi: 10.1016/j.ccr.2010.10.012 – ident: e_1_2_7_8_1 doi: 10.1111/j.1755-148X.2009.00653.x – ident: e_1_2_7_19_1 doi: 10.1158/0008-5472.CAN-09-2913 – ident: e_1_2_7_41_1 doi: 10.1101/gad.329771.119 – ident: e_1_2_7_47_1 doi: 10.1128/MCB.02299-05 – ident: e_1_2_7_23_1 doi: 10.1016/j.ccr.2013.02.003 – ident: e_1_2_7_54_1 doi: 10.1016/j.ccr.2012.11.020 – ident: e_1_2_7_48_1 doi: 10.1016/j.ccell.2016.02.003 – ident: e_1_2_7_55_1 doi: 10.1038/ncomms7683 – ident: e_1_2_7_9_1 doi: 10.1111/j.1755-148X.2009.00630.x – ident: e_1_2_7_57_1 doi: 10.1038/jid.2013.235 – ident: e_1_2_7_4_1 doi: 10.1038/nature03269 – ident: e_1_2_7_10_1 doi: 10.1101/gad.14.2.158 – ident: e_1_2_7_20_1 doi: 10.1101/gad.324657.119 – ident: e_1_2_7_46_1 doi: 10.1038/nature06489 – ident: e_1_2_7_30_1 doi: 10.1158/2159-8290.CD-13-0424 – ident: e_1_2_7_24_1 doi: 10.1111/j.1755-148X.2010.00726.x – ident: e_1_2_7_21_1 doi: 10.1128/MCB.24.7.2915-2922.2004 – ident: e_1_2_7_5_1 doi: 10.1101/gad.406406 – ident: e_1_2_7_36_1 doi: 10.1038/ncomms6712 – ident: e_1_2_7_15_1 doi: 10.1101/gad.290940.116 – ident: e_1_2_7_35_1 doi: 10.1038/jid.2012.161 – ident: e_1_2_7_22_1 doi: 10.1016/j.jdermsci.2016.04.005 – ident: e_1_2_7_40_1 doi: 10.1038/nature07567 – volume: 33 start-page: e895 issue: 890 year: 2018 ident: e_1_2_7_52_1 article-title: Multi‐stage differentiation defines melanoma subtypes with differential vulnerability to drug‐induced iron‐dependent oxidative stress publication-title: Cancer Cell – ident: e_1_2_7_50_1 doi: 10.1074/jbc.C000113200 – ident: e_1_2_7_59_1 doi: 10.1016/j.cmet.2014.06.014 – ident: e_1_2_7_28_1 doi: 10.1111/j.1600-0749.2006.00322.x – ident: e_1_2_7_32_1 doi: 10.1038/jid.2013.293 – ident: e_1_2_7_37_1 doi: 10.1038/onc.2017.341 – ident: e_1_2_7_44_1 doi: 10.1016/j.ccr.2013.05.003 – ident: e_1_2_7_6_1 doi: 10.18632/oncotarget.1967 – ident: e_1_2_7_12_1 doi: 10.18632/oncotarget.3007 – ident: e_1_2_7_26_1 doi: 10.1016/0092-8674(93)90429-T – ident: e_1_2_7_58_1 doi: 10.1038/nature10630 – ident: e_1_2_7_3_1 doi: 10.1038/nature09161 – ident: e_1_2_7_18_1 doi: 10.1038/nature03664 – ident: e_1_2_7_25_1 doi: 10.1158/0008-5472.CAN-09-2153 – ident: e_1_2_7_51_1 doi: 10.1126/science.aad0501 – ident: e_1_2_7_14_1 doi: 10.1038/onc.2014.262 – ident: e_1_2_7_27_1 doi: 10.1111/j.1755-148X.2010.00757.x – ident: e_1_2_7_31_1 doi: 10.1016/j.bbrc.2013.06.006 – ident: e_1_2_7_7_1 doi: 10.1038/onc.2010.598 – ident: e_1_2_7_38_1 doi: 10.1073/pnas.1424576112 – ident: e_1_2_7_2_1 doi: 10.1038/nature10539 – ident: e_1_2_7_49_1 doi: 10.1038/onc.2010.612 |
| SSID | ssj0060593 |
| Score | 2.3640573 |
| Snippet | Defining markers of different phenotypic states in melanoma is important for understanding disease progression, determining the response to therapy, and... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 112 |
| SubjectTerms | ABCB5 Biomarkers Catenin Cell differentiation Drug resistance Gene expression Melanoma Microphthalmia-associated transcription factor MITF Molecular modelling Phenotypes Stem cells β‐catenin |
| Title | ABCB5 is activated by MITF and β‐catenin and is associated with melanoma differentiation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpcmr.12830 https://www.ncbi.nlm.nih.gov/pubmed/31595650 https://www.proquest.com/docview/2329661920 https://www.proquest.com/docview/2303200004 |
| Volume | 33 |
| WOSCitedRecordID | wos000492729200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1755-148X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060593 issn: 1755-1471 databaseCode: DRFUL dateStart: 20080101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsQwEB50VfDi_8_6R0QvCpX-JJsWvOjq4kFFRGHRQ0nSBhZ2u7K7Ct58BJ_FB_EhfBInabsqiiDeSjMhZSYz8800mQHYDngoXeUzhwmXOzTQvhOha3CUkqIWJCyRqS2Zf8rPz8NmM7oYgf3yLkxeH2KYcDOaYe21UXAh-5-U_E51enueqV81CmM-blxagbGjy8b1aWmJa25edBc9JHM8tMJFeVJzkudj9leH9A1lfgWt1us0pv_3vTMwVaBNcpBvj1kYSbM5mLjp2lz6PNweHNYPGWn1ibne8ICwMyHykaA5axCRJeT15e3p2RyZylqZfWEoC3kiqcnhkk7aFlm3I0jZamWQC3sBrhvHV_UTp-i24KiAcdfxpCsQ3qRCCoyKVUBrSRBRjSEP0xFniqOuU3PlMnJdGSGV9CT6f6q1SoQnaLAIlaybpctAtOaU6ZALpSPqKx36nhRJGIXC07WUulXYKVkeq6IUuemI0Y7LkMQwK7bMqsLWkPYuL8DxI9VaKbm4UMJ-jGARgzmEsDi8ORxG9TH_RESWdu8Njekgb5BtFZZyiQ-XCRDqId7F2btWsL-sH1_Uzy7t08pfiFdh0jfxu03prEFl0LtP12FcPQxa_d4GjPJmuFFs6ndeQ_lW |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS-NAEB_OqujL_fPUenq3x_mikCN_dpvkUXsWxVpEFEQfwu4mC4U2lbYKvvkR_Cx-ED-En-RmNkk9UQTxLWRn2TCzM_Obye4MwHoQRsrVvnCEdEOHB8Z3YnQNjtZKNoJUpCqzJfPbYacTnZ7Gh-XZHLoLU9SHmCTcSDOsvSYFp4T0f1p-ofvDPx4VsJqCaY77SNRg-u9R66RdmeKGW1TdRRcpHA_NcFmflI7yPM5-6pGewcynqNW6ndand37wZ_hY4k22VWyQL_Ahy7_C7NnAZtMX4Hxru7ktWHfE6ILDFQLPlKlrhgatxWSesvu7h5tbOjSVd3P7gihLiSIpZXFZP-vJfNCXrGq2Mi7E_Q1OWjvHzV2n7Lfg6ECEruMpVyLAyaSSGBfrgDfSIOYGgx5h4lDoELWd06XL2HVVjFTKU4gAuDE6lZ7kwSLU8kGeLQMzJuTCRKHUJua-NpHvKZlGcSQ908i4W4eNiueJLouRU0-MXlIFJcSsxDKrDr8ntBdFCY4XqVYr0SWlGo4ShIsYziGIxeFfk2FUIPorIvNscEk01EOesG0dlgqRT5YJEOwh4sXZm1ayr6yfHDYPjuzTyluIf8Lc7vFBO2nvdfa_w7xP0bxN8KxCbTy8zNZgRl-Nu6Phj3Jv_wNqCvxe |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BWxCXlvK7tIAruFApKD92Eh_bLRGIZbWqqFTBIbIdW1qpm13tbitx4xF4Fh6Eh-BJOuMkWyoQEuIWxWM5mvHMfDOxZwBeJlmuQxOLQKgwC3ji4kCiawiM0SpNKlFp60vmD7LhMD89laP2bA7dhWnqQ6wSbqQZ3l6TgttZ5X7R8pmZzF9HVMDqJqxzIVPUy_Wj4-Jk0JniNGyq7qKLFEGEZritT0pHea5mX_dIv8HM66jVu51i6z8_-C5stniTHTQbZBtu2Poe3Po09dn0-_D54LB_KNh4weiCwwUCz4rpLwwNWsFUXbEf339-_UaHpupx7V8QZStRJKUsLpvYM1VPJ4p1zVaWjbgfwEnx5mP_bdD2WwhMIrIwiHSoEOBYpRXGxSbhaZVI7jDoEU5mwmSo7ZwuXcow1BKpdKQRAXDnTKUixZOHsFZPa_sYmHMZFy7PlHGSx8blcaRVlctcRS61POzBq47npWmLkVNPjLOyC0qIWaVnVg9erGhnTQmOP1LtdqIrWzVclAgXMZxDEIvDe6thVCD6K6JqOz0nGuohT9i2B48aka-WSRDsIeLF2ftesn9Zvxz1Pxz7pyf_Qvwcbo-OinLwbvh-B-7EFMz7_M4urC3n5_YpbJiL5Xgxf9Zu7Uv62PvZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ABCB5+is+activated+by+MITF+and+%CE%B2%E2%80%90catenin+and+is+associated+with+melanoma+differentiation&rft.jtitle=Pigment+cell+and+melanoma+research&rft.au=Louphrasitthiphol%2C+Pakavarin&rft.au=Chauhan%2C+Jagat&rft.au=Goding%2C+Colin+R.&rft.date=2020-01-01&rft.issn=1755-1471&rft.eissn=1755-148X&rft.volume=33&rft.issue=1&rft.spage=112&rft.epage=118&rft_id=info:doi/10.1111%2Fpcmr.12830&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_pcmr_12830 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-1471&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-1471&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-1471&client=summon |