The Maryland analysis of developmental EEG (MADE) pipeline

Compared to adult EEG, EEG signals recorded from pediatric populations have shorter recording periods and contain more artifact contamination. Therefore, pediatric EEG data necessitate specific preprocessing approaches in order to remove environmental noise and physiological artifacts without losing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychophysiology Jg. 57; H. 6; S. e13580 - n/a
Hauptverfasser: Debnath, Ranjan, Buzzell, George A., Morales, Santiago, Bowers, Maureen E., Leach, Stephanie C., Fox, Nathan A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Blackwell Publishing Ltd 01.06.2020
Schlagworte:
ISSN:0048-5772, 1469-8986, 1469-8986, 1540-5958
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Compared to adult EEG, EEG signals recorded from pediatric populations have shorter recording periods and contain more artifact contamination. Therefore, pediatric EEG data necessitate specific preprocessing approaches in order to remove environmental noise and physiological artifacts without losing large amounts of data. However, there is presently a scarcity of standard automated preprocessing pipelines suitable for pediatric EEG. In an effort to achieve greater standardization of EEG preprocessing, and in particular, for the analysis of pediatric data, we developed the Maryland analysis of developmental EEG (MADE) pipeline as an automated preprocessing pipeline compatible with EEG data recorded with different hardware systems, different populations, levels of artifact contamination, and length of recordings. MADE uses EEGLAB and functions from some EEGLAB plugins and includes additional customized features particularly useful for EEG data collected from pediatric populations. MADE processes event‐related and resting state EEG from raw data files through a series of preprocessing steps and outputs processed clean data ready to be analyzed in time, frequency, or time‐frequency domain. MADE provides a report file at the end of the preprocessing that describes a variety of features of the processed data to facilitate the assessment of the quality of processed data. In this article, we discuss some practical issues, which are specifically relevant to pediatric EEG preprocessing. We also provide custom‐written scripts to address these practical issues. MADE is freely available under the terms of the GNU General Public License at https://github.com/ChildDevLab/MADE-EEG-preprocessing-pipeline. This article presents the Maryland Analysis of Developmental EEG (MADE) pipeline, an automated preprocessing pipeline for EEG data that can be used with EEG recorded with different systems, populations, levels of artifact contamination, and lengths of recording. MADE is based on MATLAB and includes customized features particularly useful for EEG data collected from pediatric populations.
AbstractList Compared to adult EEG, EEG signals recorded from pediatric populations have shorter recording periods and contain more artifact contamination. Therefore, pediatric EEG data necessitate specific preprocessing approaches in order to remove environmental noise and physiological artifacts without losing large amounts of data. However, there is presently a scarcity of standard automated preprocessing pipelines suitable for pediatric EEG. In an effort to achieve greater standardization of EEG preprocessing, and in particular, for the analysis of pediatric data, we developed the Maryland analysis of developmental EEG (MADE) pipeline as an automated preprocessing pipeline compatible with EEG data recorded with different hardware systems, different populations, levels of artifact contamination, and length of recordings. MADE uses EEGLAB and functions from some EEGLAB plugins and includes additional customized features particularly useful for EEG data collected from pediatric populations. MADE processes event‐related and resting state EEG from raw data files through a series of preprocessing steps and outputs processed clean data ready to be analyzed in time, frequency, or time‐frequency domain. MADE provides a report file at the end of the preprocessing that describes a variety of features of the processed data to facilitate the assessment of the quality of processed data. In this article, we discuss some practical issues, which are specifically relevant to pediatric EEG preprocessing. We also provide custom‐written scripts to address these practical issues. MADE is freely available under the terms of the GNU General Public License at https://github.com/ChildDevLab/MADE-EEG-preprocessing-pipeline. This article presents the Maryland Analysis of Developmental EEG (MADE) pipeline, an automated preprocessing pipeline for EEG data that can be used with EEG recorded with different systems, populations, levels of artifact contamination, and lengths of recording. MADE is based on MATLAB and includes customized features particularly useful for EEG data collected from pediatric populations.
Compared to adult EEG, EEG signals recorded from pediatric populations have shorter recording periods and contain more artifact contamination. Therefore, pediatric EEG data necessitate specific preprocessing approaches in order to remove environmental noise and physiological artifacts without losing large amounts of data. However, there is presently a scarcity of standard automated preprocessing pipelines suitable for pediatric EEG. In an effort to achieve greater standardization of EEG preprocessing, and in particular, for the analysis of pediatric data, we developed the Maryland analysis of developmental EEG (MADE) pipeline as an automated preprocessing pipeline compatible with EEG data recorded with different hardware systems, different populations, levels of artifact contamination, and length of recordings. MADE uses EEGLAB and functions from some EEGLAB plugins and includes additional customized features particularly useful for EEG data collected from pediatric populations. MADE processes event‐related and resting state EEG from raw data files through a series of preprocessing steps and outputs processed clean data ready to be analyzed in time, frequency, or time‐frequency domain. MADE provides a report file at the end of the preprocessing that describes a variety of features of the processed data to facilitate the assessment of the quality of processed data. In this article, we discuss some practical issues, which are specifically relevant to pediatric EEG preprocessing. We also provide custom‐written scripts to address these practical issues. MADE is freely available under the terms of the GNU General Public License at https://github.com/ChildDevLab/MADE-EEG-preprocessing-pipeline.
Compared to adult EEG, EEG signals recorded from pediatric populations have shorter recording periods and contain more artifact contamination. Therefore, pediatric EEG data necessitate specific preprocessing approaches in order to remove environmental noise and physiological artifacts without losing large amounts of data. However, there is presently a scarcity of standard automated preprocessing pipelines suitable for pediatric EEG. In an effort to achieve greater standardization of EEG preprocessing, and in particular, for the analysis of pediatric data, we developed the Maryland analysis of developmental EEG (MADE ) pipeline as an automated preprocessing pipeline compatible with EEG data recorded with different hardware systems, different populations, levels of artifact contamination, and length of recordings. MADE uses EEGLAB and functions from some EEGLAB plugins and includes additional customized features particularly useful for EEG data collected from pediatric populations. MADE processes event‐related and resting state EEG from raw data files through a series of preprocessing steps and outputs processed clean data ready to be analyzed in time, frequency, or time‐frequency domain. MADE provides a report file at the end of the preprocessing that describes a variety of features of the processed data to facilitate the assessment of the quality of processed data. In this article, we discuss some practical issues, which are specifically relevant to pediatric EEG preprocessing. We also provide custom‐written scripts to address these practical issues. MADE is freely available under the terms of the GNU General Public License at https://github.com/ChildDevLab/MADE-EEG-preprocessing-pipeline . This article presents the Maryland Analysis of Developmental EEG (MADE) pipeline, an automated preprocessing pipeline for EEG data that can be used with EEG recorded with different systems, populations, levels of artifact contamination, and lengths of recording. MADE is based on MATLAB and includes customized features particularly useful for EEG data collected from pediatric populations.
Compared to adult EEG, EEG signals recorded from pediatric populations have shorter recording periods and contain more artifact contamination. Therefore, pediatric EEG data necessitate specific preprocessing approaches in order to remove environmental noise and physiological artifacts without losing large amounts of data. However, there is presently a scarcity of standard automated preprocessing pipelines suitable for pediatric EEG. In an effort to achieve greater standardization of EEG preprocessing, and in particular, for the analysis of pediatric data, we developed the Maryland analysis of developmental EEG (MADE) pipeline as an automated preprocessing pipeline compatible with EEG data recorded with different hardware systems, different populations, levels of artifact contamination, and length of recordings. MADE uses EEGLAB and functions from some EEGLAB plugins and includes additional customized features particularly useful for EEG data collected from pediatric populations. MADE processes event-related and resting state EEG from raw data files through a series of preprocessing steps and outputs processed clean data ready to be analyzed in time, frequency, or time-frequency domain. MADE provides a report file at the end of the preprocessing that describes a variety of features of the processed data to facilitate the assessment of the quality of processed data. In this article, we discuss some practical issues, which are specifically relevant to pediatric EEG preprocessing. We also provide custom-written scripts to address these practical issues. MADE is freely available under the terms of the GNU General Public License at https://github.com/ChildDevLab/MADE-EEG-preprocessing-pipeline.Compared to adult EEG, EEG signals recorded from pediatric populations have shorter recording periods and contain more artifact contamination. Therefore, pediatric EEG data necessitate specific preprocessing approaches in order to remove environmental noise and physiological artifacts without losing large amounts of data. However, there is presently a scarcity of standard automated preprocessing pipelines suitable for pediatric EEG. In an effort to achieve greater standardization of EEG preprocessing, and in particular, for the analysis of pediatric data, we developed the Maryland analysis of developmental EEG (MADE) pipeline as an automated preprocessing pipeline compatible with EEG data recorded with different hardware systems, different populations, levels of artifact contamination, and length of recordings. MADE uses EEGLAB and functions from some EEGLAB plugins and includes additional customized features particularly useful for EEG data collected from pediatric populations. MADE processes event-related and resting state EEG from raw data files through a series of preprocessing steps and outputs processed clean data ready to be analyzed in time, frequency, or time-frequency domain. MADE provides a report file at the end of the preprocessing that describes a variety of features of the processed data to facilitate the assessment of the quality of processed data. In this article, we discuss some practical issues, which are specifically relevant to pediatric EEG preprocessing. We also provide custom-written scripts to address these practical issues. MADE is freely available under the terms of the GNU General Public License at https://github.com/ChildDevLab/MADE-EEG-preprocessing-pipeline.
Author Buzzell, George A.
Debnath, Ranjan
Fox, Nathan A.
Morales, Santiago
Bowers, Maureen E.
Leach, Stephanie C.
Author_xml – sequence: 1
  givenname: Ranjan
  orcidid: 0000-0001-6952-8426
  surname: Debnath
  fullname: Debnath, Ranjan
  email: rdebnath@umd.edu
  organization: University of Maryland
– sequence: 2
  givenname: George A.
  surname: Buzzell
  fullname: Buzzell, George A.
  organization: University of Maryland
– sequence: 3
  givenname: Santiago
  orcidid: 0000-0002-9850-042X
  surname: Morales
  fullname: Morales, Santiago
  organization: University of Maryland
– sequence: 4
  givenname: Maureen E.
  surname: Bowers
  fullname: Bowers, Maureen E.
  organization: University of Maryland
– sequence: 5
  givenname: Stephanie C.
  surname: Leach
  fullname: Leach, Stephanie C.
  organization: University of Maryland
– sequence: 6
  givenname: Nathan A.
  surname: Fox
  fullname: Fox, Nathan A.
  organization: University of Maryland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32293719$$D View this record in MEDLINE/PubMed
BookMark eNp90EFLwzAcBfAgim7Tix9ACl6mUP0nTZrG25hzCooD9eCppGmKkaytTavs25vZ6UHEXHL5vUfyhmi7rEqN0CGGM-zPee1W9RmOWAJbaIBpLMJEJPE2GgDQJGSckz00dO4VAAQmZBftRYSIiGMxQBePLzq4k83KyjIPZCntyhkXVEWQ63dtq3qpy1baYDabB-O7yeXsJKhNra0p9T7aKaR1-mBzj9DT1exxeh3e3s9vppPbUEWMQ4gZZirLBWWZhIxgJXlOSMElJDFVEMVcEhzzohCKYUGSOOdFknHGqRKCYRmN0LjvrZvqrdOuTZfGKW39i3XVuZREAnwBp8LT41_0teoa_ymvKABhlBLw6mijumyp87RuzNIvkH6v4sFpD1RTOdfo4odgSNeTp-vJ06_JPYZfWJlWtqYq20Ya-3cE95EPY_Xqn_J08fC86DOft1WP6g
CitedBy_id crossref_primary_10_1002_dev_70068
crossref_primary_10_1007_s10802_023_01127_z
crossref_primary_10_1016_j_pediatrneurol_2025_08_001
crossref_primary_10_1017_S0033291723000466
crossref_primary_10_1002_aur_2518
crossref_primary_10_1016_j_bpsc_2021_05_001
crossref_primary_10_1016_j_neuroimage_2023_119925
crossref_primary_10_1111_psyp_14043
crossref_primary_10_1016_j_neuroimage_2021_118712
crossref_primary_10_1016_j_dcn_2022_101066
crossref_primary_10_1016_j_dcn_2022_101067
crossref_primary_10_1016_j_ecosta_2022_10_005
crossref_primary_10_1017_S0954579424001780
crossref_primary_10_1111_desc_13468
crossref_primary_10_1016_j_dcn_2022_101104
crossref_primary_10_1016_j_actpsy_2025_105157
crossref_primary_10_1016_j_dcn_2022_101068
crossref_primary_10_3390_diagnostics15020210
crossref_primary_10_1016_j_dcn_2022_101069
crossref_primary_10_1523_JNEUROSCI_0462_23_2023
crossref_primary_10_1523_JNEUROSCI_0886_23_2023
crossref_primary_10_1016_j_jecp_2022_105415
crossref_primary_10_1016_j_ijpsycho_2023_01_005
crossref_primary_10_1111_desc_13613
crossref_primary_10_1111_desc_70030
crossref_primary_10_1111_psyp_14336
crossref_primary_10_1111_psyp_14733
crossref_primary_10_1017_S0033291723001940
crossref_primary_10_1073_pnas_2122481120
crossref_primary_10_1109_TCSS_2023_3276755
crossref_primary_10_1111_psyp_14211
crossref_primary_10_1016_j_dcn_2022_101070
crossref_primary_10_1016_j_dcn_2022_101073
crossref_primary_10_1016_j_dcn_2023_101295
crossref_primary_10_3758_s13415_024_01198_5
crossref_primary_10_1016_j_bpsc_2021_03_016
crossref_primary_10_1016_j_dcn_2022_101077
crossref_primary_10_1016_j_neuroimage_2023_120116
crossref_primary_10_1016_j_dcn_2025_101611
crossref_primary_10_1016_j_neuroimage_2025_121148
crossref_primary_10_1002_dev_22128
crossref_primary_10_1088_1741_2552_ad5c04
crossref_primary_10_1186_s12984_024_01349_2
crossref_primary_10_1111_psyp_14228
crossref_primary_10_3389_fpsyg_2024_1516616
crossref_primary_10_1016_j_ijpsycho_2024_112311
crossref_primary_10_1038_s41598_025_13713_w
crossref_primary_10_1016_j_dcn_2023_101287
crossref_primary_10_1016_j_clinph_2023_01_018
crossref_primary_10_1016_j_bandl_2024_105462
crossref_primary_10_1016_j_dcn_2023_101201
crossref_primary_10_1016_j_dcn_2023_101207
crossref_primary_10_1051_shsconf_202213903029
crossref_primary_10_3390_s21165308
crossref_primary_10_1016_j_dcn_2024_101447
crossref_primary_10_1002_dev_22476
crossref_primary_10_1016_j_dcn_2021_100934
crossref_primary_10_1016_j_clinph_2022_07_500
crossref_primary_10_1016_j_dcn_2022_101092
crossref_primary_10_1016_j_dcn_2022_101095
crossref_primary_10_1186_s40359_025_02911_w
crossref_primary_10_1016_j_neuroimage_2021_117732
crossref_primary_10_3758_s13414_024_02857_y
crossref_primary_10_1080_15389588_2024_2373950
crossref_primary_10_1002_dev_22240
crossref_primary_10_1016_j_dcn_2024_101458
crossref_primary_10_1093_cercor_bhaf087
crossref_primary_10_1038_s41598_021_94162_z
crossref_primary_10_1111_desc_12976
crossref_primary_10_1017_S0954579424001858
crossref_primary_10_1002_dev_70023
crossref_primary_10_3389_fnins_2021_660449
crossref_primary_10_1016_j_dcn_2022_101140
crossref_primary_10_1016_j_infbeh_2025_102125
crossref_primary_10_1111_psyp_14360
crossref_primary_10_3389_fpsyg_2022_833112
crossref_primary_10_1038_s41467_024_50204_4
crossref_primary_10_7554_eLife_88775_3
crossref_primary_10_1002_dev_22194
crossref_primary_10_1016_j_dcn_2021_101024
crossref_primary_10_1016_j_dcn_2023_101302
crossref_primary_10_1002_hbm_70034
crossref_primary_10_1002_dev_70014
crossref_primary_10_1007_s10803_024_06638_2
crossref_primary_10_1016_j_xpro_2025_103682
crossref_primary_10_1002_dev_22215
crossref_primary_10_1016_j_gaitpost_2025_08_075
crossref_primary_10_1016_j_ijpsycho_2021_02_005
crossref_primary_10_1017_S0954579424000816
crossref_primary_10_1016_j_biopsycho_2023_108683
crossref_primary_10_1111_psyp_14530
crossref_primary_10_3389_fnhum_2025_1460584
crossref_primary_10_1038_s41398_025_03434_z
crossref_primary_10_1038_s41598_022_10942_1
crossref_primary_10_1016_j_dcn_2025_101539
crossref_primary_10_1038_s41598_023_28988_0
crossref_primary_10_1016_j_neuroimage_2022_119390
crossref_primary_10_1016_j_bpsc_2021_06_004
crossref_primary_10_1038_s41597_023_02525_0
crossref_primary_10_1016_j_dcn_2021_100988
crossref_primary_10_1016_j_neubiorev_2023_105366
crossref_primary_10_1016_j_jneumeth_2020_108961
crossref_primary_10_1109_TNSRE_2024_3360137
crossref_primary_10_1109_TCE_2025_3528438
crossref_primary_10_1002_dev_22208
crossref_primary_10_1016_j_jneumeth_2025_110405
crossref_primary_10_1016_j_neuroimage_2022_119508
crossref_primary_10_1016_j_dcn_2024_101366
crossref_primary_10_3389_fnhum_2025_1552410
crossref_primary_10_7554_eLife_88775
crossref_primary_10_1016_j_dcn_2022_101163
crossref_primary_10_3389_fpsyg_2023_983361
crossref_primary_10_1016_j_cortex_2021_12_006
crossref_primary_10_1002_dev_22157
crossref_primary_10_1111_desc_13517
crossref_primary_10_1111_psyp_14158
crossref_primary_10_1523_JNEUROSCI_1301_23_2024
crossref_primary_10_1038_s41598_024_64498_3
crossref_primary_10_1016_j_jneumeth_2025_110400
crossref_primary_10_1016_j_infbeh_2025_102112
crossref_primary_10_1016_j_dcn_2024_101493
crossref_primary_10_1111_desc_13070
crossref_primary_10_3390_brainsci11020214
crossref_primary_10_1016_j_dcn_2021_101035
crossref_primary_10_1007_s10548_024_01043_5
crossref_primary_10_1016_j_dcn_2021_101036
crossref_primary_10_1007_s11760_021_01947_w
crossref_primary_10_1002_dev_22163
Cites_doi 10.1111/psyp.13566
10.1016/j.jneumeth.2010.07.015
10.1016/j.jneumeth.2003.10.009
10.1093/acprof:oso/9780195050387.001.0001
10.1111/j.2517-6161.1995.tb02031.x
10.1186/1866-1955-6-40
10.1016/j.neuroimage.2019.06.046
10.1016/0013-4694(93)90121-B
10.1111/j.1469-8986.2010.01009.x
10.1016/j.clinph.2018.04.600
10.1016/0013-4694(89)90180-6
10.1109/EMBC.2015.7319296
10.1111/1469-8986.3720163
10.1162/0898929042304723
10.1111/desc.12872
10.1111/j.1469-8986.2010.01061.x
10.7551/mitpress/9609.001.0001
10.1016/j.neuroimage.2019.04.077
10.1093/acprof:oso/9780195372731.003.0008
10.1016/S1388-2457(02)00163-3
ContentType Journal Article
Copyright 2020 Society for Psychophysiological Research
2020 Society for Psychophysiological Research.
Copyright © 2020 by the Society for Psychophysiological Research
Copyright_xml – notice: 2020 Society for Psychophysiological Research
– notice: 2020 Society for Psychophysiological Research.
– notice: Copyright © 2020 by the Society for Psychophysiological Research
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
DOI 10.1111/psyp.13580
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-8986
1540-5958
EndPage n/a
ExternalDocumentID 32293719
10_1111_psyp_13580
PSYP13580
Genre article
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
Maryland
GeographicLocations_xml – name: Maryland
– name: United States--US
GrantInformation_xml – fundername: NIH
  funderid: 1UG3OD023279‐01; P01HD064653; U01MH093349
– fundername: NIH HHS
  grantid: P01HD064653
– fundername: NIH HHS
  grantid: U01MH093349
– fundername: NIH HHS
  grantid: 1UG3OD023279-01
GroupedDBID ---
--Z
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
186
1OB
1OC
29P
2QV
31~
33P
36B
4.4
50Y
50Z
51W
51Y
52M
52O
52Q
52R
52S
52T
52U
52V
52W
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A04
AABNI
AAESR
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AAONW
AAOUF
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABGDZ
ABITZ
ABIVO
ABJNI
ABLJU
ABPPZ
ABPVW
ABQWH
ABSOO
ABVKB
ABXGK
ACAHQ
ACBKW
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACHQT
ACMXC
ACNCT
ACPOU
ACPRK
ACQPF
ACRPL
ACSCC
ACUHS
ACWUS
ACXQS
ACYXJ
ADBBV
ADBTR
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFKFF
AFPWT
AFWVQ
AFYRF
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AIFKG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BY8
CAG
COF
CS3
D-6
D-7
D-C
D-D
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSSH
DU5
DXH
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EPS
ESX
F00
F01
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
G50
GODZA
HAOEW
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
L7B
LATKE
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSSH
MSFUL
MSMAN
MSSSH
MVM
MXFUL
MXMAN
MXSSH
N04
N06
N9A
NEJ
NF~
O66
O9-
OHT
OIG
OVD
P2W
P2Y
P2Z
P4B
P4C
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RCA
RIG
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SUPJJ
SV3
TEORI
TN5
TUS
UAP
UB1
V8K
VQA
W8V
W99
WBKPD
WH7
WHDPE
WIH
WII
WIJ
WOHZO
WQZ
WRC
WSUWO
WXI
WXSBR
X7M
XG1
XJT
XOL
XSW
YNT
YYM
YYP
YZZ
ZCA
ZGI
ZWS
ZXP
ZZTAW
~IA
~WP
AAMMB
AAYXX
ABUFD
ADXHL
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
Z5M
7TK
K9.
7X8
ID FETCH-LOGICAL-c3570-1515cbd945ba0b21ca7d22f7a0864c0367a2167ff9c519286d7f8b7574c9951a3
IEDL.DBID DRFUL
ISICitedReferencesCount 139
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000525779800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0048-5772
1469-8986
IngestDate Sun Nov 09 10:02:35 EST 2025
Mon Oct 06 18:21:48 EDT 2025
Wed Feb 19 02:28:30 EST 2025
Tue Nov 18 20:56:26 EST 2025
Sat Nov 29 03:04:32 EST 2025
Wed Jan 22 16:34:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords pipeline
automated
preprocessing
EEG
pediatric
Language English
License 2020 Society for Psychophysiological Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3570-1515cbd945ba0b21ca7d22f7a0864c0367a2167ff9c519286d7f8b7574c9951a3
Notes Funding information
This work was supported by the National Institute of Health (1UG3OD023279‐01, P01HD064653, U01MH093349).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9850-042X
0000-0001-6952-8426
PMID 32293719
PQID 2400254420
PQPubID 41359
PageCount 13
ParticipantIDs proquest_miscellaneous_2390167749
proquest_journals_2400254420
pubmed_primary_32293719
crossref_primary_10_1111_psyp_13580
crossref_citationtrail_10_1111_psyp_13580
wiley_primary_10_1111_psyp_13580_PSYP13580
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Psychophysiology
PublicationTitleAlternate Psychophysiology
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2004; 134
1989; 72
2010; 47
2000; 37
2010
2004; 16
2018; 129
2020
1995; 57
2002; 113
2015; 86
1993; 87
2007
2006
2020; 23
2015
2014
2011; 48
2010; 192
2018; 12
2015; 9
2014; 6
2019; 200
2019; 198
e_1_2_7_6_1
e_1_2_7_5_1
Riggins T. (e_1_2_7_24_1) 2015; 86
e_1_2_7_4_1
Free Software Foundation (e_1_2_7_10_1) 2007
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
Luck S. J. (e_1_2_7_15_1) 2014
e_1_2_7_26_1
Gabard‐Durnam L. J. (e_1_2_7_11_1) 2018; 12
e_1_2_7_25_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
Bigdely‐Shamlo N. (e_1_2_7_3_1) 2015; 9
References_xml – volume: 47
  start-page: 888
  issue: 5
  year: 2010
  end-page: 904
  article-title: The effects of electrode impedance on data quality and statistical significance in ERP recordings
  publication-title: Psychophysiology
– volume: 113
  start-page: 1199
  issue: 8
  year: 2002
  end-page: 1208
  article-title: Development of the EEG from 5 months to 4 years of age
  publication-title: Clinical Neurophysiology
– volume: 86
  start-page: 889
  issue: 3
  year: 2015
  end-page: 902
  article-title: Developmental differences in memory during early childhood: Insights from event‐related potentials
  publication-title: Developmental Science
– volume: 48
  start-page: 229
  issue: 2
  year: 2011
  end-page: 240
  article-title: ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features
  publication-title: Psychophysiology
– volume: 72
  start-page: 184
  issue: 2
  year: 1989
  end-page: 187
  article-title: Spherical splines for scalp potential and current density mapping
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 16
  start-page: 1327
  issue: 8
  year: 2004
  end-page: 1338
  article-title: A comparison of the electroencephalogram between institutionalized and community children in Romania
  publication-title: Journal of Cognitive Neuroscience
– volume: 129
  start-page: 1427
  issue: 7
  year: 2018
  end-page: 1437
  article-title: An automatic pre‐processing pipeline for EEG analysis (APP) based on robust statistics
  publication-title: Clinical Neurophysiology
– volume: 6
  start-page: 40
  issue: 1
  year: 2014
  article-title: EEG hyper‐connectivity in high‐risk infants is associated with later autism
  publication-title: Journal of Neurodevelopmental Disorders
– volume: 198
  start-page: 13
  year: 2019
  end-page: 30
  article-title: Adolescent cognitive control, theta oscillations, and social observation
  publication-title: NeuroImage
– start-page: 121
  year: 2010
  end-page: 135
– year: 2020
  article-title: Adjusting ADJUST: Optimizing the ADJUST algorithm for pediatric data using geodesic nets
  publication-title: Psychophysiology
– volume: 192
  start-page: 152
  issue: 1
  year: 2010
  end-page: 162
  article-title: FASTER: Fully automated statistical thresholding for EEG artifact rejection
  publication-title: Journal of Neuroscience Methods
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
– year: 2007
– year: 2006
– volume: 134
  start-page: 9
  issue: 1
  year: 2004
  end-page: 21
  article-title: EEGLAB: An open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis
  publication-title: Journal of Neuroscience Methods
– volume: 200
  start-page: 460
  year: 2019
  end-page: 473
  article-title: Automagic: Standardized preprocessing of big EEG data
  publication-title: NeuroImage
– volume: 23
  issue: 1
  year: 2020
  article-title: The long‐term effects of institutional rearing, foster care intervention and disruptions in care on brain electrical activity in adolescence
  publication-title: Developmental Science
– start-page: 4101
  year: 2015
  end-page: 4105
– volume: 9
  start-page: 1
  issue: 16
  year: 2015
  end-page: 20
  article-title: The PREP pipeline: Standardized preprocessing for large‐scale EEG analysis
  publication-title: Frontiers in Neuroinformatics
– volume: 12
  start-page: 1
  issue: 97
  year: 2018
  end-page: 24
  article-title: The harvard automated processing pipeline for electroencephalography (HAPPE): Standardized processing software for developmental and high‐artifact data
  publication-title: Frontiers in Neuroscience
– volume: 37
  start-page: 163
  issue: 2
  year: 2000
  end-page: 178
  article-title: Removing electroencephalographic artifacts by blind source separation
  publication-title: Psychophysiology
– volume: 87
  start-page: 154
  issue: 3
  year: 1993
  end-page: 163
  article-title: Spatial sampling of head electrical fields: The geodesic sensor net
  publication-title: Electroencephalography and Clinical Neurophysiology
– year: 2014
– ident: e_1_2_7_14_1
  doi: 10.1111/psyp.13566
– volume: 86
  start-page: 889
  issue: 3
  year: 2015
  ident: e_1_2_7_24_1
  article-title: Developmental differences in memory during early childhood: Insights from event‐related potentials
  publication-title: Developmental Science
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jneumeth.2010.07.015
– ident: e_1_2_7_9_1
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: e_1_2_7_20_1
  doi: 10.1093/acprof:oso/9780195050387.001.0001
– ident: e_1_2_7_2_1
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_2_7_21_1
  doi: 10.1186/1866-1955-6-40
– ident: e_1_2_7_22_1
  doi: 10.1016/j.neuroimage.2019.06.046
– volume: 12
  start-page: 1
  issue: 97
  year: 2018
  ident: e_1_2_7_11_1
  article-title: The harvard automated processing pipeline for electroencephalography (HAPPE): Standardized processing software for developmental and high‐artifact data
  publication-title: Frontiers in Neuroscience
– volume: 9
  start-page: 1
  issue: 16
  year: 2015
  ident: e_1_2_7_3_1
  article-title: The PREP pipeline: Standardized preprocessing for large‐scale EEG analysis
  publication-title: Frontiers in Neuroinformatics
– ident: e_1_2_7_25_1
  doi: 10.1016/0013-4694(93)90121-B
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1469-8986.2010.01009.x
– ident: e_1_2_7_6_1
  doi: 10.1016/j.clinph.2018.04.600
– ident: e_1_2_7_23_1
  doi: 10.1016/0013-4694(89)90180-6
– ident: e_1_2_7_26_1
  doi: 10.1109/EMBC.2015.7319296
– ident: e_1_2_7_12_1
  doi: 10.1111/1469-8986.3720163
– volume-title: GNU General Public License
  year: 2007
  ident: e_1_2_7_10_1
– volume-title: An introduction to the event‐related potential technique
  year: 2014
  ident: e_1_2_7_15_1
– ident: e_1_2_7_17_1
  doi: 10.1162/0898929042304723
– ident: e_1_2_7_8_1
  doi: 10.1111/desc.12872
– ident: e_1_2_7_18_1
  doi: 10.1111/j.1469-8986.2010.01061.x
– ident: e_1_2_7_5_1
  doi: 10.7551/mitpress/9609.001.0001
– ident: e_1_2_7_4_1
  doi: 10.1016/j.neuroimage.2019.04.077
– ident: e_1_2_7_7_1
  doi: 10.1093/acprof:oso/9780195372731.003.0008
– ident: e_1_2_7_16_1
  doi: 10.1016/S1388-2457(02)00163-3
SSID ssj0009122
Score 2.6366763
Snippet Compared to adult EEG, EEG signals recorded from pediatric populations have shorter recording periods and contain more artifact contamination. Therefore,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e13580
SubjectTerms Adolescent
automated
Automation
Child
Child, Preschool
Contamination
Datasets as Topic
EEG
Electroencephalography
Electroencephalography - methods
Electroencephalography - standards
Functional Neuroimaging - methods
Functional Neuroimaging - standards
Humans
Infant
pediatric
Pediatrics
pipeline
Pipelines
preprocessing
Reproducibility of Results
Signal Processing, Computer-Assisted
Standardization
Title The Maryland analysis of developmental EEG (MADE) pipeline
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpsyp.13580
https://www.ncbi.nlm.nih.gov/pubmed/32293719
https://www.proquest.com/docview/2400254420
https://www.proquest.com/docview/2390167749
Volume 57
WOSCitedRecordID wos000525779800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1469-8986
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009122
  issn: 0048-5772
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90-uCL3x_zi4giKhTatFlS8UV00weV4RfzqSRpCgPtinPC_nsvWbcpiiC-FZImJXeX_O56-R3AXuCbIDOUeUYy34tSwTyhVc3TSjLGQqZCVz_l8Yrf3IhWK25OwMnwLsyAH2IUcLOW4fZra-BSdT8ZedHtF7Zqg0CHfYqi4rIKTJ3fNh6uxqS7QckWHgmPIYws6UltJs_47a8H0jeU-RW0ulOnMfe_752H2RJtktOBeizAhMkXYek0R0_7pU_2icv_dIH1JThGjSHXOL7NdSSyJCshnYyk48QiHKxevyAH1yjAQ1K0C3ud3SzDQ6N-f3bplZUVPB0y7nsWxWiVxhFT0lc00JKnlGZcooMTaTzUuKRBjWdZrBHhUVFLeSYUZzzSMUIyGa5AJe_kZg1IJKSRJtQqTgMUNZXo8abCRJGvUqq0qcLhcHkTXdKO2-oXz8nQ_bALk7iFqcLuqG8xINv4sdfmUEpJaXDdxKbCWrY1is07o2Y0Ffv_Q-am08M-Nr5TQ7wbV2F1IN3RNLivWWZAbDlyQvxl_qR599R0T-t_6bwBM9T66i6CswmVt9ee2YJp_f7W7r5uwyRvie1SgT8AXs7xCw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rS-QwEA-iB_rFe_haz0eOO0SFQpsmm_S-ie6ex-0uy_lAP5UkTUHQbnH1wP_-ZrLZXUURxG-FTJuSmWl-M538hpAfSeyS0jEROS3iiBdKRMqaZmSNFkKkwqS-f8p5R_Z66uIi64faHDwLM-KHmCTc0DP89xodHBPSj7y8Hj7U2LZBQcQ-x8GOwMDnjv62zzpT1t0k0IVzFQnAkYGfFEt5pnc_3ZGewcynqNVvO-2P73zhT2Qx4E16MDKQz2TGVV_I0kEFsfbNA92hvgLUp9aXyE-wGdqFCbDakepAV0IHJS2mpUXwsFbrF93tggr3aH1V44F2t0zO2q3Tw-Mo9FaIbCpkHCGOsabIuDA6NiyxWhaMlVJDiMMtbGtSs6QpyzKzgPGYahayVEYKyW0GoEynK2S2GlRujVCutNMutSYrElA20xDzFspxHpuCGesaZG-8vrkNxOPY_-I6HwcguDC5X5gG-T6RrUd0Gy9KbYzVlAeXG-ZYDIt8awyGv02GwVnwD4iu3OAeZDDD0wTEmzXI6ki9k2ngy4bcgDCy77X4yvx5_-Sy76_W3yK8TeaPT7udvPO79-crWWAYuft8zgaZvbu9d5vkg_13dzW83Qp2_B8kY_QT
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB_kKuKLX9V62mpEEVtY2M0ml2zfir1T8XocaqV9WvK1UNC9pdcK_e-dyeXuLIogvi1kdrNkMslvJpPfALwq8lA0gcssGJlnwmuZaWcHmbNGSllKW8b6KV_HajLRJyfVNOXm0F2YBT_EKuBGlhHXazLw0PnmFyvv5lcdlW3Q6LFvCKoi04ONw0-j4_GadbdIdOFCZxJxZOInpVSe9dvXd6TfYOZ11Bq3ndHd__zhe3An4U12sJgg9-FGaB_A5kGLvvb3K_aaxQzQGFrfhH2cM-wIO6BsR2YSXQmbNcyvU4vwY8PhO_bmCFW4y7qzji60h4dwPBp-efs-S7UVMldKlWeEY5z1lZDW5JYXzijPeaMMujjC4bamDC8GqmkqhxiP64FXjbZKKuEqBGWmfAS9dtaGx8CENsGE0tnKF6hsbtDn9ToIkVvPrQt92F2Ob-0S8TjVv_hWLx0QGpg6DkwfXq5kuwXdxh-ltpdqqpPJzWtKhiW-NY7NL1bNaCx0AmLaMLtEGYrwDBDxVn3YWqh31Q2ubMQNiC17UYt_6b-efj6dxqcn_yL8HG5ND0f1-MPk41O4zclxj-GcbehdnF-GHbjpflyczc-fpWn8E8C1844
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Maryland+analysis+of+developmental+EEG+%28MADE%29+pipeline&rft.jtitle=Psychophysiology&rft.au=Debnath%2C+Ranjan&rft.au=Buzzell%2C+George+A&rft.au=Morales%2C+Santiago&rft.au=Bowers%2C+Maureen+E&rft.date=2020-06-01&rft.issn=1469-8986&rft.eissn=1469-8986&rft.volume=57&rft.issue=6&rft.spage=e13580&rft_id=info:doi/10.1111%2Fpsyp.13580&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-5772&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-5772&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-5772&client=summon