Detection of abnormal photovoltaic systems’ operation with minimum data requirements based on Recursive Least Squares algorithms

In the last years, the massive deployment of new photovoltaic (PV) power plants has launched the connection of PV inverters to the electrical network. A single medium-sized ground-mounted PV plant may have thousands of these inverters linked to the grid and even more PV panels on the DC side. Upon r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy Jg. 274; S. 112556
Hauptverfasser: Laguna, Gerard, Moreno, Pablo, Cipriano, Jordi, Mor, Gerard, Gabaldón, Eloi, Luna, Alvaro
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.05.2024
Schlagworte:
ISSN:0038-092X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the last years, the massive deployment of new photovoltaic (PV) power plants has launched the connection of PV inverters to the electrical network. A single medium-sized ground-mounted PV plant may have thousands of these inverters linked to the grid and even more PV panels on the DC side. Upon reaching such a substantial magnitude of devices involved in grid-connected installations, the effective operation, management, predictive maintenance, and fault detection becomes increasingly challenging without integrating advanced prediction and automated anomaly detection systems. Artificial intelligence algorithms, grounded in data measurements, can be pivotal in addressing this challenge. This paper proposes several regression-based methods to predict PV plants’ energy generation, which is useful for detecting transient and long-term anomalies. These models are trained using a Recursive Least Squares (RLS) method and require a minimum number of variables to yield satisfactory outcomes, which is one of the paper’s contributions. They mainly rely on energy generation measurements and geolocation. Within the scope of this research, two distinct algorithms have been implemented and validated. The first algorithm, a simplified model, is engineered to analyse the daily efficiency variation, prioritizing the identification of faults and abnormal operational profiles in PV plants. On the other hand, the second algorithm adopts a more intricate model tailored to facilitate long-term diagnosis, enabling the assessment of PV efficiency degradation. In this work, both algorithms are described and their performance is validated using the historical data from more than 20 PV plants placed in different climatic regions. •Photovoltaic systems’ modelling using linear regression models.•Photovoltaic fault detection using linear regression coefficients evaluation.•Automatic fault detection for photovoltaic plants with low sensors’ availability.•Short-term and long-term efficiency trend evaluation of photovoltaic plants.
AbstractList In the last years, the massive deployment of new photovoltaic (PV) power plants has launched the connection of PV inverters to the electrical network. A single medium-sized ground-mounted PV plant may have thousands of these inverters linked to the grid and even more PV panels on the DC side. Upon reaching such a substantial magnitude of devices involved in grid-connected installations, the effective operation, management, predictive maintenance, and fault detection becomes increasingly challenging without integrating advanced prediction and automated anomaly detection systems. Artificial intelligence algorithms, grounded in data measurements, can be pivotal in addressing this challenge. This paper proposes several regression-based methods to predict PV plants’ energy generation, which is useful for detecting transient and long-term anomalies. These models are trained using a Recursive Least Squares (RLS) method and require a minimum number of variables to yield satisfactory outcomes, which is one of the paper’s contributions. They mainly rely on energy generation measurements and geolocation. Within the scope of this research, two distinct algorithms have been implemented and validated. The first algorithm, a simplified model, is engineered to analyse the daily efficiency variation, prioritizing the identification of faults and abnormal operational profiles in PV plants. On the other hand, the second algorithm adopts a more intricate model tailored to facilitate long-term diagnosis, enabling the assessment of PV efficiency degradation. In this work, both algorithms are described and their performance is validated using the historical data from more than 20 PV plants placed in different climatic regions. •Photovoltaic systems’ modelling using linear regression models.•Photovoltaic fault detection using linear regression coefficients evaluation.•Automatic fault detection for photovoltaic plants with low sensors’ availability.•Short-term and long-term efficiency trend evaluation of photovoltaic plants.
ArticleNumber 112556
Author Mor, Gerard
Laguna, Gerard
Gabaldón, Eloi
Luna, Alvaro
Moreno, Pablo
Cipriano, Jordi
Author_xml – sequence: 1
  givenname: Gerard
  orcidid: 0000-0002-7514-9243
  surname: Laguna
  fullname: Laguna, Gerard
  organization: Centre Internacional de Mètodes Numèrics en Enginyeria. Building Energy and Environment Group. CIMNE-Lleida, Parc Agrobiotech. H3 building. Office 11, 25005 Lleida, Spain
– sequence: 2
  givenname: Pablo
  orcidid: 0009-0008-8665-4190
  surname: Moreno
  fullname: Moreno, Pablo
  email: pablo.alexander.moreno@upc.edu
  organization: Department of Electrical Engineering, Universitat Politècnica de Catalunya, BARCELONATECH, ESEIAAT, Campus de Terrassa, 08222, Terrassa, Spain
– sequence: 3
  givenname: Jordi
  surname: Cipriano
  fullname: Cipriano, Jordi
  organization: Centre Internacional de Mètodes Numèrics en Enginyeria. Building Energy and Environment Group. CIMNE-Lleida, Parc Agrobiotech. H3 building. Office 11, 25005 Lleida, Spain
– sequence: 4
  givenname: Gerard
  surname: Mor
  fullname: Mor, Gerard
  organization: Centre Internacional de Mètodes Numèrics en Enginyeria. Building Energy and Environment Group. CIMNE-Lleida, Parc Agrobiotech. H3 building. Office 11, 25005 Lleida, Spain
– sequence: 5
  givenname: Eloi
  surname: Gabaldón
  fullname: Gabaldón, Eloi
  organization: Centre Internacional de Mètodes Numèrics en Enginyeria. Building Energy and Environment Group. CIMNE-Lleida, Parc Agrobiotech. H3 building. Office 11, 25005 Lleida, Spain
– sequence: 6
  givenname: Alvaro
  surname: Luna
  fullname: Luna, Alvaro
  organization: Department of Electrical Engineering, Universitat Politècnica de Catalunya, BARCELONATECH, ESEIAAT, Campus de Terrassa, 08222, Terrassa, Spain
BookMark eNqFkEtOwzAURT0oEm1hCUjeQIKdj5OIAULlK1VC4iMxs1z7mbpK4tZ2ijpD7ILtsRJS2hGTjt7g3nOld0Zo0NoWEDqjJKaEsvNF7G0NLbg4IUkWU5rkORugISFpGZEqeTtGI-8XhNCClsUQfV1DABmMbbHVWMxa6xpR4-XcBru2dRBGYr_xARr_8_mN7RKc-Gt_mDDHjWlN0zVYiSCwg1VnHDTQBo9nwoPCfe8JZOe8WQOegvABP6864cBjUb9b1280_gQdaVF7ON3fMXq9vXmZ3EfTx7uHydU0kmnOQqSzlFR5llSapIUuc1boSmklUqoKRkSqRZnJXJelJipjlZKQJpIoIDMmmZRZOkb5blc6670DzZfONMJtOCV8K48v-F4e38rjO3k9d_GPkyb8SQhOmPogfbmjoX9tbfrUSwOtBNW7koEraw4s_AItW5ii
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3599314
crossref_primary_10_38124_ijisrt_25apr988
crossref_primary_10_1002_solr_202500289
crossref_primary_10_1016_j_jii_2024_100760
crossref_primary_10_1109_ACCESS_2024_3492017
Cites_doi 10.32614/RJ-2023-031
10.1016/j.solener.2018.07.038
10.1016/j.solener.2018.12.048
10.1016/j.epsr.2023.109881
10.1016/j.simpat.2022.102704
10.1016/j.renene.2022.06.105
10.1016/j.energy.2015.10.037
10.1109/ACCESS.2021.3063461
10.1109/JPHOTOV.2019.2955183
10.3390/app13042470
10.3390/s21113733
10.1016/j.heliyon.2023.e21491
10.1016/j.solener.2018.08.021
10.1016/j.solener.2013.05.001
10.1016/j.solener.2021.01.011
10.1016/j.seta.2024.103713
10.1016/j.epsr.2015.10.004
10.1016/j.seta.2023.103363
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.solener.2024.112556
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_solener_2024_112556
S0038092X24002500
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABMAC
ABXRA
ACDAQ
ACGFS
ACGOD
ACIWK
ACRLP
ADBBV
ADEZE
ADHUB
AEBSH
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
WH7
XPP
YNT
ZMT
~02
~G-
~KM
~S-
6TJ
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
NEJ
R2-
SAC
UKR
VOH
WUQ
XOL
ZY4
~A~
~HD
ID FETCH-LOGICAL-c356t-f43095429f037f8567f9dfda31d760a3fa84c5f88f0d469dce32c0de0b6c6cc43
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001285981700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0038-092X
IngestDate Sat Nov 29 01:45:54 EST 2025
Tue Nov 18 22:29:04 EST 2025
Sat Jan 18 16:09:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Energy prediction
Low-data methods
Fault detection in PV plants
Smart grids
Renewable energy
Machine learning
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c356t-f43095429f037f8567f9dfda31d760a3fa84c5f88f0d469dce32c0de0b6c6cc43
ORCID 0009-0008-8665-4190
0000-0002-7514-9243
OpenAccessLink https://dx.doi.org/10.1016/j.solener.2024.112556
ParticipantIDs crossref_primary_10_1016_j_solener_2024_112556
crossref_citationtrail_10_1016_j_solener_2024_112556
elsevier_sciencedirect_doi_10_1016_j_solener_2024_112556
PublicationCentury 2000
PublicationDate 2024-05-15
PublicationDateYYYYMMDD 2024-05-15
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Solar energy
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Perez Sky Diffuse Model – PV Performance Modeling Collaborative (PVPMC), [Online]. Available
Li, Li, Yang, Yan, Zomaya (b15) 2020; 10
Quansah, Adaramola (b26) 2018; 173
Yurtseven, Karatepe, Deniz (b17) 2021; 216
Gaviria, Narváez, Guillen, Giraldo, Bressan (b11) 2022; 196
The Paris agreement | UNFCCC, [Online]. Available
Hwang, Ku, Chan (b16) 2021; 9
Bacher, Bergsteinsson, Frölke, Sørensen, Lemos-Vinasco, Liisberg, Møller, Nielsen, Madsen (b18) 2023; 15
Kelley, Richards, Chantelle, magnetic field (b25) 2023
[Online]. Available
Venkatesh, Sugumaran, Subramanian, Josephin, Varuvel (b14) 2024; 64
Sepúlveda-Oviedo, Travé-Massuyès, Subias, Pavlov, Alonso (b6) 2023; 9
Khalil, Ul Haq, Ul Islam (b19) 2024; 226
Kamenopoulos, Tsoutsos (b5) 2015; 93
Kataray, Nitesh, Yarram, Sinha, Cuce, Shaik, Vigneshwaran, Roy (b2) 2023; 58
Seghiour, Abbas, Chouder, Rabhi (b9) 2023; 123
Malik, Lehtonen (b3) 2016; 131
Dimitrievska, Pittino, Muehleisen, Diewald, Hilweg, Montvay, Hirschl (b20) 2021; 21
.
WeatherKit REST API, [Online]. Available
Chine, Mellit, Pavan, Lughi (b13) 2015
Madeti, Singh (b8) 2018; 173
pvlib/pvlib-python: v0.9.0
Seo, Yoon, Song, Hwang (b10) 2023; 13
(b4) 2022
Silvestre, Chouder, Karatepe (b12) 2013; 94
CAMS radiation service, [Online]. Available
Fadhel, Delpha, Diallo, Bahri, Migan, Trabelsi, Mimouni (b7) 2019; 179
Seo (10.1016/j.solener.2024.112556_b10) 2023; 13
Quansah (10.1016/j.solener.2024.112556_b26) 2018; 173
Malik (10.1016/j.solener.2024.112556_b3) 2016; 131
Bacher (10.1016/j.solener.2024.112556_b18) 2023; 15
Fadhel (10.1016/j.solener.2024.112556_b7) 2019; 179
Li (10.1016/j.solener.2024.112556_b15) 2020; 10
(10.1016/j.solener.2024.112556_b4) 2022
Chine (10.1016/j.solener.2024.112556_b13) 2015
Venkatesh (10.1016/j.solener.2024.112556_b14) 2024; 64
Hwang (10.1016/j.solener.2024.112556_b16) 2021; 9
Yurtseven (10.1016/j.solener.2024.112556_b17) 2021; 216
Silvestre (10.1016/j.solener.2024.112556_b12) 2013; 94
Khalil (10.1016/j.solener.2024.112556_b19) 2024; 226
Kataray (10.1016/j.solener.2024.112556_b2) 2023; 58
Gaviria (10.1016/j.solener.2024.112556_b11) 2022; 196
10.1016/j.solener.2024.112556_b1
Dimitrievska (10.1016/j.solener.2024.112556_b20) 2021; 21
Madeti (10.1016/j.solener.2024.112556_b8) 2018; 173
10.1016/j.solener.2024.112556_b22
10.1016/j.solener.2024.112556_b21
Seghiour (10.1016/j.solener.2024.112556_b9) 2023; 123
10.1016/j.solener.2024.112556_b24
10.1016/j.solener.2024.112556_b23
Kamenopoulos (10.1016/j.solener.2024.112556_b5) 2015; 93
Sepúlveda-Oviedo (10.1016/j.solener.2024.112556_b6) 2023; 9
Kelley (10.1016/j.solener.2024.112556_b25) 2023
References_xml – volume: 58
  year: 2023
  ident: b2
  article-title: Integration of smart grid with renewable energy sources: Opportunities and challenges – A comprehensive review
  publication-title: Sustain. Energy Technol. Assess.
– volume: 9
  year: 2023
  ident: b6
  article-title: Fault diagnosis of photovoltaic systems using artificial intelligence: A bibliometric approach
  publication-title: Heliyon
– volume: 94
  start-page: 119
  year: 2013
  end-page: 127
  ident: b12
  article-title: Automatic fault detection in grid connected PV systems
  publication-title: Sol. Energy
– volume: 123
  year: 2023
  ident: b9
  article-title: Deep learning method based on autoencoder neural network applied to faults detection and diagnosis of photovoltaic system
  publication-title: Simul. Model. Pract. Theory
– volume: 9
  start-page: 37210
  year: 2021
  end-page: 37219
  ident: b16
  article-title: Detection of malfunctioning photovoltaic modules based on machine learning algorithms
  publication-title: IEEE Access
– reference: , [Online]. Available:
– reference: CAMS radiation service, [Online]. Available:
– volume: 13
  start-page: 2470
  year: 2023
  ident: b10
  article-title: Label-free fault detection scheme for inverters of PV systems: Deep reinforcement learning-based dynamic threshold
  publication-title: Appl. Sci.
– reference: The Paris agreement | UNFCCC, [Online]. Available:
– year: 2023
  ident: b25
  article-title: Oce: Analysis of oceanographic data
– volume: 226
  year: 2024
  ident: b19
  article-title: A novel procedure for photovoltaic fault forecasting
  publication-title: Electr. Power Syst. Res.
– volume: 15
  start-page: 173
  year: 2023
  end-page: 194
  ident: b18
  article-title: Onlineforecast: An R package for adaptive and recursive forecasting
  publication-title: R J.
– volume: 93
  start-page: 1633
  year: 2015
  end-page: 1638
  ident: b5
  article-title: Assessment of the safe operation and maintenance of photovoltaic systems
  publication-title: Energy
– start-page: 67
  year: 2015
  end-page: 72
  ident: b13
  article-title: Fault diagnosis in photovoltaic arrays
  publication-title: 2015 International Conference on Clean Electrical Power
– volume: 179
  start-page: 1
  year: 2019
  end-page: 10
  ident: b7
  article-title: PV shading fault detection and classification based on I-V curve using principal component analysis: Application to isolated PV system
  publication-title: Sol. Energy
– year: 2022
  ident: b4
  article-title: Snapshot of Global PV Markets - 2022
– volume: 10
  start-page: 568
  year: 2020
  end-page: 576
  ident: b15
  article-title: An unmanned inspection system for multiple defects detection in photovoltaic plants
  publication-title: IEEE J. Photovolt.
– volume: 21
  start-page: 3733
  year: 2021
  ident: b20
  article-title: Statistical methods for degradation estimation and anomaly detection in photovoltaic plants
  publication-title: Sensors
– reference: WeatherKit REST API, [Online]. Available:
– reference: .
– volume: 131
  start-page: 71
  year: 2016
  end-page: 79
  ident: b3
  article-title: A review: Agents in smart grids
  publication-title: Electr. Power Syst. Res.
– volume: 173
  start-page: 139
  year: 2018
  end-page: 151
  ident: b8
  article-title: Modeling of PV system based on experimental data for fault detection using kNN method
  publication-title: Sol. Energy
– volume: 173
  start-page: 834
  year: 2018
  end-page: 847
  ident: b26
  article-title: Ageing and degradation in solar photovoltaic modules installed in northern ghana
  publication-title: Sol. Energy
– reference: pvlib/pvlib-python: v0.9.0,
– volume: 64
  year: 2024
  ident: b14
  article-title: A comparative study on bayes classifier for detecting photovoltaic module visual faults using deep learning features
  publication-title: Sustain. Energy Technol. Assess.
– volume: 216
  start-page: 96
  year: 2021
  end-page: 110
  ident: b17
  article-title: Sensorless fault detection method for photovoltaic systems through mapping the inherent characteristics of PV plant site: Simple and practical
  publication-title: Sol. Energy
– volume: 196
  start-page: 298
  year: 2022
  end-page: 318
  ident: b11
  article-title: Machine learning in photovoltaic systems: A review
  publication-title: Renew. Energy
– reference: Perez Sky Diffuse Model – PV Performance Modeling Collaborative (PVPMC), [Online]. Available:
– volume: 15
  start-page: 173
  issn: 2073-4859
  issue: 1
  year: 2023
  ident: 10.1016/j.solener.2024.112556_b18
  article-title: Onlineforecast: An R package for adaptive and recursive forecasting
  publication-title: R J.
  doi: 10.32614/RJ-2023-031
– volume: 173
  start-page: 139
  issn: 0038-092X
  year: 2018
  ident: 10.1016/j.solener.2024.112556_b8
  article-title: Modeling of PV system based on experimental data for fault detection using kNN method
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.07.038
– ident: 10.1016/j.solener.2024.112556_b24
– volume: 179
  start-page: 1
  issn: 0038-092X
  year: 2019
  ident: 10.1016/j.solener.2024.112556_b7
  article-title: PV shading fault detection and classification based on I-V curve using principal component analysis: Application to isolated PV system
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.12.048
– volume: 226
  issn: 03787796
  year: 2024
  ident: 10.1016/j.solener.2024.112556_b19
  article-title: A novel procedure for photovoltaic fault forecasting
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2023.109881
– ident: 10.1016/j.solener.2024.112556_b22
– volume: 123
  issn: 1569-190X
  year: 2023
  ident: 10.1016/j.solener.2024.112556_b9
  article-title: Deep learning method based on autoencoder neural network applied to faults detection and diagnosis of photovoltaic system
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2022.102704
– volume: 196
  start-page: 298
  issn: 09601481
  year: 2022
  ident: 10.1016/j.solener.2024.112556_b11
  article-title: Machine learning in photovoltaic systems: A review
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.06.105
– ident: 10.1016/j.solener.2024.112556_b1
– volume: 93
  start-page: 1633
  issn: 0360-5442
  year: 2015
  ident: 10.1016/j.solener.2024.112556_b5
  article-title: Assessment of the safe operation and maintenance of photovoltaic systems
  publication-title: Energy
  doi: 10.1016/j.energy.2015.10.037
– volume: 9
  start-page: 37210
  issn: 2169-3536
  year: 2021
  ident: 10.1016/j.solener.2024.112556_b16
  article-title: Detection of malfunctioning photovoltaic modules based on machine learning algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3063461
– volume: 10
  start-page: 568
  issue: 2
  year: 2020
  ident: 10.1016/j.solener.2024.112556_b15
  article-title: An unmanned inspection system for multiple defects detection in photovoltaic plants
  publication-title: IEEE J. Photovolt.
  doi: 10.1109/JPHOTOV.2019.2955183
– year: 2022
  ident: 10.1016/j.solener.2024.112556_b4
– volume: 13
  start-page: 2470
  issn: 2076-3417
  issue: 4
  year: 2023
  ident: 10.1016/j.solener.2024.112556_b10
  article-title: Label-free fault detection scheme for inverters of PV systems: Deep reinforcement learning-based dynamic threshold
  publication-title: Appl. Sci.
  doi: 10.3390/app13042470
– volume: 21
  start-page: 3733
  issn: 1424-8220
  issue: 11
  year: 2021
  ident: 10.1016/j.solener.2024.112556_b20
  article-title: Statistical methods for degradation estimation and anomaly detection in photovoltaic plants
  publication-title: Sensors
  doi: 10.3390/s21113733
– volume: 9
  issn: 2405-8440
  issue: 11
  year: 2023
  ident: 10.1016/j.solener.2024.112556_b6
  article-title: Fault diagnosis of photovoltaic systems using artificial intelligence: A bibliometric approach
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e21491
– volume: 173
  start-page: 834
  issn: 0038-092X
  year: 2018
  ident: 10.1016/j.solener.2024.112556_b26
  article-title: Ageing and degradation in solar photovoltaic modules installed in northern ghana
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.08.021
– ident: 10.1016/j.solener.2024.112556_b23
– volume: 94
  start-page: 119
  issn: 0038-092X
  year: 2013
  ident: 10.1016/j.solener.2024.112556_b12
  article-title: Automatic fault detection in grid connected PV systems
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.05.001
– ident: 10.1016/j.solener.2024.112556_b21
– volume: 216
  start-page: 96
  issn: 0038-092X
  year: 2021
  ident: 10.1016/j.solener.2024.112556_b17
  article-title: Sensorless fault detection method for photovoltaic systems through mapping the inherent characteristics of PV plant site: Simple and practical
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2021.01.011
– start-page: 67
  year: 2015
  ident: 10.1016/j.solener.2024.112556_b13
  article-title: Fault diagnosis in photovoltaic arrays
– volume: 64
  issn: 22131388
  year: 2024
  ident: 10.1016/j.solener.2024.112556_b14
  article-title: A comparative study on bayes classifier for detecting photovoltaic module visual faults using deep learning features
  publication-title: Sustain. Energy Technol. Assess.
  doi: 10.1016/j.seta.2024.103713
– volume: 131
  start-page: 71
  issn: 0378-7796
  year: 2016
  ident: 10.1016/j.solener.2024.112556_b3
  article-title: A review: Agents in smart grids
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2015.10.004
– year: 2023
  ident: 10.1016/j.solener.2024.112556_b25
– volume: 58
  issn: 2213-1388
  year: 2023
  ident: 10.1016/j.solener.2024.112556_b2
  article-title: Integration of smart grid with renewable energy sources: Opportunities and challenges – A comprehensive review
  publication-title: Sustain. Energy Technol. Assess.
  doi: 10.1016/j.seta.2023.103363
SSID ssj0017187
Score 2.4552217
Snippet In the last years, the massive deployment of new photovoltaic (PV) power plants has launched the connection of PV inverters to the electrical network. A single...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112556
SubjectTerms Energy prediction
Fault detection in PV plants
Low-data methods
Machine learning
Renewable energy
Smart grids
Title Detection of abnormal photovoltaic systems’ operation with minimum data requirements based on Recursive Least Squares algorithms
URI https://dx.doi.org/10.1016/j.solener.2024.112556
Volume 274
WOSCitedRecordID wos001285981700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0038-092X
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017187
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RCsgHbtEuaeI4ybGC8qhQhaBIe4u8jt3uKk1CNlv1WPEvOPHf-CXMxI43lKrQA5coSuxJlPky_mzPg5AXqS85E90OayhhghKnY4FELsJkN1wGwteiKzYRHxwk02n6cTT60cfCnBZxWSZnZ2n9X1UN10DZGDp7DXU7oXABzkHpcAS1w_GfFP9atUr2PFDMSiSlhVcfV20FpqgVc2nTNy97R4fUq2plkdCty2K-kZPViYfuo16j0FlYmVA4HPRy3GD4hOv0nev7B6z-433-usJIJk8UR1UDMmwS9EUfBIzOrqqLM3QuQOJoZQLS3mIQdO5UXzWqqwcO7HZWVG6TZF7DxzM39mHGPB-0vyDELmIEDPffTRhnb5hD9MLoKqs7wxzEbGBagRhGJgf5H1bfLEAsJkt0ZVCY5TVgk3X737NsXxj9nE9i7-62yKyYDMVkRswNshnEUQqWf3P3_d50321UwdBu0rLa918Hib289H0upz8DSnN4l9yxcxG6azB0j4xUeZ_cHmSofEC-OTTRStMeTXSIJmrR9PP8O3U4oogjanFEEUd0iCPa4YhCO4cj2uGIWhzRNY4eki9v9g5fvRvbsh1jGUa8HWsWAm8HnqP9MNZJxGOd5joX4U4ec1-EWiRMRjpJtJ8znuZShYH0c-XPuORSsvAR2SirUj0m1OdwR2oZMA0CeZ5o6BFImGQoEciddIuw_mtm0ua0x9IqRXalNrfIxHWrTVKXv3VIelVllpkaxpkBBK_u-uS6z9omt9Z_yFOy0TYr9YzclKftfNk8t_j7BVqtuZA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+abnormal+photovoltaic+systems%E2%80%99+operation+with+minimum+data+requirements+based+on+Recursive+Least+Squares+algorithms&rft.jtitle=Solar+energy&rft.au=Laguna%2C+Gerard&rft.au=Moreno%2C+Pablo&rft.au=Cipriano%2C+Jordi&rft.au=Mor%2C+Gerard&rft.date=2024-05-15&rft.issn=0038-092X&rft.volume=274&rft.spage=112556&rft_id=info:doi/10.1016%2Fj.solener.2024.112556&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solener_2024_112556
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon