Detection of abnormal photovoltaic systems’ operation with minimum data requirements based on Recursive Least Squares algorithms
In the last years, the massive deployment of new photovoltaic (PV) power plants has launched the connection of PV inverters to the electrical network. A single medium-sized ground-mounted PV plant may have thousands of these inverters linked to the grid and even more PV panels on the DC side. Upon r...
Gespeichert in:
| Veröffentlicht in: | Solar energy Jg. 274; S. 112556 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.05.2024
|
| Schlagworte: | |
| ISSN: | 0038-092X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In the last years, the massive deployment of new photovoltaic (PV) power plants has launched the connection of PV inverters to the electrical network. A single medium-sized ground-mounted PV plant may have thousands of these inverters linked to the grid and even more PV panels on the DC side. Upon reaching such a substantial magnitude of devices involved in grid-connected installations, the effective operation, management, predictive maintenance, and fault detection becomes increasingly challenging without integrating advanced prediction and automated anomaly detection systems. Artificial intelligence algorithms, grounded in data measurements, can be pivotal in addressing this challenge. This paper proposes several regression-based methods to predict PV plants’ energy generation, which is useful for detecting transient and long-term anomalies. These models are trained using a Recursive Least Squares (RLS) method and require a minimum number of variables to yield satisfactory outcomes, which is one of the paper’s contributions. They mainly rely on energy generation measurements and geolocation. Within the scope of this research, two distinct algorithms have been implemented and validated. The first algorithm, a simplified model, is engineered to analyse the daily efficiency variation, prioritizing the identification of faults and abnormal operational profiles in PV plants. On the other hand, the second algorithm adopts a more intricate model tailored to facilitate long-term diagnosis, enabling the assessment of PV efficiency degradation. In this work, both algorithms are described and their performance is validated using the historical data from more than 20 PV plants placed in different climatic regions.
•Photovoltaic systems’ modelling using linear regression models.•Photovoltaic fault detection using linear regression coefficients evaluation.•Automatic fault detection for photovoltaic plants with low sensors’ availability.•Short-term and long-term efficiency trend evaluation of photovoltaic plants. |
|---|---|
| AbstractList | In the last years, the massive deployment of new photovoltaic (PV) power plants has launched the connection of PV inverters to the electrical network. A single medium-sized ground-mounted PV plant may have thousands of these inverters linked to the grid and even more PV panels on the DC side. Upon reaching such a substantial magnitude of devices involved in grid-connected installations, the effective operation, management, predictive maintenance, and fault detection becomes increasingly challenging without integrating advanced prediction and automated anomaly detection systems. Artificial intelligence algorithms, grounded in data measurements, can be pivotal in addressing this challenge. This paper proposes several regression-based methods to predict PV plants’ energy generation, which is useful for detecting transient and long-term anomalies. These models are trained using a Recursive Least Squares (RLS) method and require a minimum number of variables to yield satisfactory outcomes, which is one of the paper’s contributions. They mainly rely on energy generation measurements and geolocation. Within the scope of this research, two distinct algorithms have been implemented and validated. The first algorithm, a simplified model, is engineered to analyse the daily efficiency variation, prioritizing the identification of faults and abnormal operational profiles in PV plants. On the other hand, the second algorithm adopts a more intricate model tailored to facilitate long-term diagnosis, enabling the assessment of PV efficiency degradation. In this work, both algorithms are described and their performance is validated using the historical data from more than 20 PV plants placed in different climatic regions.
•Photovoltaic systems’ modelling using linear regression models.•Photovoltaic fault detection using linear regression coefficients evaluation.•Automatic fault detection for photovoltaic plants with low sensors’ availability.•Short-term and long-term efficiency trend evaluation of photovoltaic plants. |
| ArticleNumber | 112556 |
| Author | Mor, Gerard Laguna, Gerard Gabaldón, Eloi Luna, Alvaro Moreno, Pablo Cipriano, Jordi |
| Author_xml | – sequence: 1 givenname: Gerard orcidid: 0000-0002-7514-9243 surname: Laguna fullname: Laguna, Gerard organization: Centre Internacional de Mètodes Numèrics en Enginyeria. Building Energy and Environment Group. CIMNE-Lleida, Parc Agrobiotech. H3 building. Office 11, 25005 Lleida, Spain – sequence: 2 givenname: Pablo orcidid: 0009-0008-8665-4190 surname: Moreno fullname: Moreno, Pablo email: pablo.alexander.moreno@upc.edu organization: Department of Electrical Engineering, Universitat Politècnica de Catalunya, BARCELONATECH, ESEIAAT, Campus de Terrassa, 08222, Terrassa, Spain – sequence: 3 givenname: Jordi surname: Cipriano fullname: Cipriano, Jordi organization: Centre Internacional de Mètodes Numèrics en Enginyeria. Building Energy and Environment Group. CIMNE-Lleida, Parc Agrobiotech. H3 building. Office 11, 25005 Lleida, Spain – sequence: 4 givenname: Gerard surname: Mor fullname: Mor, Gerard organization: Centre Internacional de Mètodes Numèrics en Enginyeria. Building Energy and Environment Group. CIMNE-Lleida, Parc Agrobiotech. H3 building. Office 11, 25005 Lleida, Spain – sequence: 5 givenname: Eloi surname: Gabaldón fullname: Gabaldón, Eloi organization: Centre Internacional de Mètodes Numèrics en Enginyeria. Building Energy and Environment Group. CIMNE-Lleida, Parc Agrobiotech. H3 building. Office 11, 25005 Lleida, Spain – sequence: 6 givenname: Alvaro surname: Luna fullname: Luna, Alvaro organization: Department of Electrical Engineering, Universitat Politècnica de Catalunya, BARCELONATECH, ESEIAAT, Campus de Terrassa, 08222, Terrassa, Spain |
| BookMark | eNqFkEtOwzAURT0oEm1hCUjeQIKdj5OIAULlK1VC4iMxs1z7mbpK4tZ2ijpD7ILtsRJS2hGTjt7g3nOld0Zo0NoWEDqjJKaEsvNF7G0NLbg4IUkWU5rkORugISFpGZEqeTtGI-8XhNCClsUQfV1DABmMbbHVWMxa6xpR4-XcBru2dRBGYr_xARr_8_mN7RKc-Gt_mDDHjWlN0zVYiSCwg1VnHDTQBo9nwoPCfe8JZOe8WQOegvABP6864cBjUb9b1280_gQdaVF7ON3fMXq9vXmZ3EfTx7uHydU0kmnOQqSzlFR5llSapIUuc1boSmklUqoKRkSqRZnJXJelJipjlZKQJpIoIDMmmZRZOkb5blc6670DzZfONMJtOCV8K48v-F4e38rjO3k9d_GPkyb8SQhOmPogfbmjoX9tbfrUSwOtBNW7koEraw4s_AItW5ii |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3599314 crossref_primary_10_38124_ijisrt_25apr988 crossref_primary_10_1002_solr_202500289 crossref_primary_10_1016_j_jii_2024_100760 crossref_primary_10_1109_ACCESS_2024_3492017 |
| Cites_doi | 10.32614/RJ-2023-031 10.1016/j.solener.2018.07.038 10.1016/j.solener.2018.12.048 10.1016/j.epsr.2023.109881 10.1016/j.simpat.2022.102704 10.1016/j.renene.2022.06.105 10.1016/j.energy.2015.10.037 10.1109/ACCESS.2021.3063461 10.1109/JPHOTOV.2019.2955183 10.3390/app13042470 10.3390/s21113733 10.1016/j.heliyon.2023.e21491 10.1016/j.solener.2018.08.021 10.1016/j.solener.2013.05.001 10.1016/j.solener.2021.01.011 10.1016/j.seta.2024.103713 10.1016/j.epsr.2015.10.004 10.1016/j.seta.2023.103363 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) |
| Copyright_xml | – notice: 2024 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.solener.2024.112556 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_solener_2024_112556 S0038092X24002500 |
| GroupedDBID | --K --M -ET -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAHCO AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXKI AAXUO ABMAC ABXRA ACDAQ ACGFS ACGOD ACIWK ACRLP ADBBV ADEZE ADHUB AEBSH AEIPS AEKER AENEX AEZYN AFJKZ AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BKOMP BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA H~9 IHE J1W JARJE KOM LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ RXW SDF SDG SDP SES SEW SPC SPCBC SSM SSR SSZ T5K TAE TN5 WH7 XPP YNT ZMT ~02 ~G- ~KM ~S- 6TJ 9DU AAQXK AATTM AAYWO AAYXX ABDPE ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ NEJ R2- SAC UKR VOH WUQ XOL ZY4 ~A~ ~HD |
| ID | FETCH-LOGICAL-c356t-f43095429f037f8567f9dfda31d760a3fa84c5f88f0d469dce32c0de0b6c6cc43 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001285981700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0038-092X |
| IngestDate | Sat Nov 29 01:45:54 EST 2025 Tue Nov 18 22:29:04 EST 2025 Sat Jan 18 16:09:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Energy prediction Low-data methods Fault detection in PV plants Smart grids Renewable energy Machine learning |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c356t-f43095429f037f8567f9dfda31d760a3fa84c5f88f0d469dce32c0de0b6c6cc43 |
| ORCID | 0009-0008-8665-4190 0000-0002-7514-9243 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.solener.2024.112556 |
| ParticipantIDs | crossref_primary_10_1016_j_solener_2024_112556 crossref_citationtrail_10_1016_j_solener_2024_112556 elsevier_sciencedirect_doi_10_1016_j_solener_2024_112556 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-15 |
| PublicationDateYYYYMMDD | 2024-05-15 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Solar energy |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Perez Sky Diffuse Model – PV Performance Modeling Collaborative (PVPMC), [Online]. Available Li, Li, Yang, Yan, Zomaya (b15) 2020; 10 Quansah, Adaramola (b26) 2018; 173 Yurtseven, Karatepe, Deniz (b17) 2021; 216 Gaviria, Narváez, Guillen, Giraldo, Bressan (b11) 2022; 196 The Paris agreement | UNFCCC, [Online]. Available Hwang, Ku, Chan (b16) 2021; 9 Bacher, Bergsteinsson, Frölke, Sørensen, Lemos-Vinasco, Liisberg, Møller, Nielsen, Madsen (b18) 2023; 15 Kelley, Richards, Chantelle, magnetic field (b25) 2023 [Online]. Available Venkatesh, Sugumaran, Subramanian, Josephin, Varuvel (b14) 2024; 64 Sepúlveda-Oviedo, Travé-Massuyès, Subias, Pavlov, Alonso (b6) 2023; 9 Khalil, Ul Haq, Ul Islam (b19) 2024; 226 Kamenopoulos, Tsoutsos (b5) 2015; 93 Kataray, Nitesh, Yarram, Sinha, Cuce, Shaik, Vigneshwaran, Roy (b2) 2023; 58 Seghiour, Abbas, Chouder, Rabhi (b9) 2023; 123 Malik, Lehtonen (b3) 2016; 131 Dimitrievska, Pittino, Muehleisen, Diewald, Hilweg, Montvay, Hirschl (b20) 2021; 21 . WeatherKit REST API, [Online]. Available Chine, Mellit, Pavan, Lughi (b13) 2015 Madeti, Singh (b8) 2018; 173 pvlib/pvlib-python: v0.9.0 Seo, Yoon, Song, Hwang (b10) 2023; 13 (b4) 2022 Silvestre, Chouder, Karatepe (b12) 2013; 94 CAMS radiation service, [Online]. Available Fadhel, Delpha, Diallo, Bahri, Migan, Trabelsi, Mimouni (b7) 2019; 179 Seo (10.1016/j.solener.2024.112556_b10) 2023; 13 Quansah (10.1016/j.solener.2024.112556_b26) 2018; 173 Malik (10.1016/j.solener.2024.112556_b3) 2016; 131 Bacher (10.1016/j.solener.2024.112556_b18) 2023; 15 Fadhel (10.1016/j.solener.2024.112556_b7) 2019; 179 Li (10.1016/j.solener.2024.112556_b15) 2020; 10 (10.1016/j.solener.2024.112556_b4) 2022 Chine (10.1016/j.solener.2024.112556_b13) 2015 Venkatesh (10.1016/j.solener.2024.112556_b14) 2024; 64 Hwang (10.1016/j.solener.2024.112556_b16) 2021; 9 Yurtseven (10.1016/j.solener.2024.112556_b17) 2021; 216 Silvestre (10.1016/j.solener.2024.112556_b12) 2013; 94 Khalil (10.1016/j.solener.2024.112556_b19) 2024; 226 Kataray (10.1016/j.solener.2024.112556_b2) 2023; 58 Gaviria (10.1016/j.solener.2024.112556_b11) 2022; 196 10.1016/j.solener.2024.112556_b1 Dimitrievska (10.1016/j.solener.2024.112556_b20) 2021; 21 Madeti (10.1016/j.solener.2024.112556_b8) 2018; 173 10.1016/j.solener.2024.112556_b22 10.1016/j.solener.2024.112556_b21 Seghiour (10.1016/j.solener.2024.112556_b9) 2023; 123 10.1016/j.solener.2024.112556_b24 10.1016/j.solener.2024.112556_b23 Kamenopoulos (10.1016/j.solener.2024.112556_b5) 2015; 93 Sepúlveda-Oviedo (10.1016/j.solener.2024.112556_b6) 2023; 9 Kelley (10.1016/j.solener.2024.112556_b25) 2023 |
| References_xml | – volume: 58 year: 2023 ident: b2 article-title: Integration of smart grid with renewable energy sources: Opportunities and challenges – A comprehensive review publication-title: Sustain. Energy Technol. Assess. – volume: 9 year: 2023 ident: b6 article-title: Fault diagnosis of photovoltaic systems using artificial intelligence: A bibliometric approach publication-title: Heliyon – volume: 94 start-page: 119 year: 2013 end-page: 127 ident: b12 article-title: Automatic fault detection in grid connected PV systems publication-title: Sol. Energy – volume: 123 year: 2023 ident: b9 article-title: Deep learning method based on autoencoder neural network applied to faults detection and diagnosis of photovoltaic system publication-title: Simul. Model. Pract. Theory – volume: 9 start-page: 37210 year: 2021 end-page: 37219 ident: b16 article-title: Detection of malfunctioning photovoltaic modules based on machine learning algorithms publication-title: IEEE Access – reference: , [Online]. Available: – reference: CAMS radiation service, [Online]. Available: – volume: 13 start-page: 2470 year: 2023 ident: b10 article-title: Label-free fault detection scheme for inverters of PV systems: Deep reinforcement learning-based dynamic threshold publication-title: Appl. Sci. – reference: The Paris agreement | UNFCCC, [Online]. Available: – year: 2023 ident: b25 article-title: Oce: Analysis of oceanographic data – volume: 226 year: 2024 ident: b19 article-title: A novel procedure for photovoltaic fault forecasting publication-title: Electr. Power Syst. Res. – volume: 15 start-page: 173 year: 2023 end-page: 194 ident: b18 article-title: Onlineforecast: An R package for adaptive and recursive forecasting publication-title: R J. – volume: 93 start-page: 1633 year: 2015 end-page: 1638 ident: b5 article-title: Assessment of the safe operation and maintenance of photovoltaic systems publication-title: Energy – start-page: 67 year: 2015 end-page: 72 ident: b13 article-title: Fault diagnosis in photovoltaic arrays publication-title: 2015 International Conference on Clean Electrical Power – volume: 179 start-page: 1 year: 2019 end-page: 10 ident: b7 article-title: PV shading fault detection and classification based on I-V curve using principal component analysis: Application to isolated PV system publication-title: Sol. Energy – year: 2022 ident: b4 article-title: Snapshot of Global PV Markets - 2022 – volume: 10 start-page: 568 year: 2020 end-page: 576 ident: b15 article-title: An unmanned inspection system for multiple defects detection in photovoltaic plants publication-title: IEEE J. Photovolt. – volume: 21 start-page: 3733 year: 2021 ident: b20 article-title: Statistical methods for degradation estimation and anomaly detection in photovoltaic plants publication-title: Sensors – reference: WeatherKit REST API, [Online]. Available: – reference: . – volume: 131 start-page: 71 year: 2016 end-page: 79 ident: b3 article-title: A review: Agents in smart grids publication-title: Electr. Power Syst. Res. – volume: 173 start-page: 139 year: 2018 end-page: 151 ident: b8 article-title: Modeling of PV system based on experimental data for fault detection using kNN method publication-title: Sol. Energy – volume: 173 start-page: 834 year: 2018 end-page: 847 ident: b26 article-title: Ageing and degradation in solar photovoltaic modules installed in northern ghana publication-title: Sol. Energy – reference: pvlib/pvlib-python: v0.9.0, – volume: 64 year: 2024 ident: b14 article-title: A comparative study on bayes classifier for detecting photovoltaic module visual faults using deep learning features publication-title: Sustain. Energy Technol. Assess. – volume: 216 start-page: 96 year: 2021 end-page: 110 ident: b17 article-title: Sensorless fault detection method for photovoltaic systems through mapping the inherent characteristics of PV plant site: Simple and practical publication-title: Sol. Energy – volume: 196 start-page: 298 year: 2022 end-page: 318 ident: b11 article-title: Machine learning in photovoltaic systems: A review publication-title: Renew. Energy – reference: Perez Sky Diffuse Model – PV Performance Modeling Collaborative (PVPMC), [Online]. Available: – volume: 15 start-page: 173 issn: 2073-4859 issue: 1 year: 2023 ident: 10.1016/j.solener.2024.112556_b18 article-title: Onlineforecast: An R package for adaptive and recursive forecasting publication-title: R J. doi: 10.32614/RJ-2023-031 – volume: 173 start-page: 139 issn: 0038-092X year: 2018 ident: 10.1016/j.solener.2024.112556_b8 article-title: Modeling of PV system based on experimental data for fault detection using kNN method publication-title: Sol. Energy doi: 10.1016/j.solener.2018.07.038 – ident: 10.1016/j.solener.2024.112556_b24 – volume: 179 start-page: 1 issn: 0038-092X year: 2019 ident: 10.1016/j.solener.2024.112556_b7 article-title: PV shading fault detection and classification based on I-V curve using principal component analysis: Application to isolated PV system publication-title: Sol. Energy doi: 10.1016/j.solener.2018.12.048 – volume: 226 issn: 03787796 year: 2024 ident: 10.1016/j.solener.2024.112556_b19 article-title: A novel procedure for photovoltaic fault forecasting publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2023.109881 – ident: 10.1016/j.solener.2024.112556_b22 – volume: 123 issn: 1569-190X year: 2023 ident: 10.1016/j.solener.2024.112556_b9 article-title: Deep learning method based on autoencoder neural network applied to faults detection and diagnosis of photovoltaic system publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2022.102704 – volume: 196 start-page: 298 issn: 09601481 year: 2022 ident: 10.1016/j.solener.2024.112556_b11 article-title: Machine learning in photovoltaic systems: A review publication-title: Renew. Energy doi: 10.1016/j.renene.2022.06.105 – ident: 10.1016/j.solener.2024.112556_b1 – volume: 93 start-page: 1633 issn: 0360-5442 year: 2015 ident: 10.1016/j.solener.2024.112556_b5 article-title: Assessment of the safe operation and maintenance of photovoltaic systems publication-title: Energy doi: 10.1016/j.energy.2015.10.037 – volume: 9 start-page: 37210 issn: 2169-3536 year: 2021 ident: 10.1016/j.solener.2024.112556_b16 article-title: Detection of malfunctioning photovoltaic modules based on machine learning algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3063461 – volume: 10 start-page: 568 issue: 2 year: 2020 ident: 10.1016/j.solener.2024.112556_b15 article-title: An unmanned inspection system for multiple defects detection in photovoltaic plants publication-title: IEEE J. Photovolt. doi: 10.1109/JPHOTOV.2019.2955183 – year: 2022 ident: 10.1016/j.solener.2024.112556_b4 – volume: 13 start-page: 2470 issn: 2076-3417 issue: 4 year: 2023 ident: 10.1016/j.solener.2024.112556_b10 article-title: Label-free fault detection scheme for inverters of PV systems: Deep reinforcement learning-based dynamic threshold publication-title: Appl. Sci. doi: 10.3390/app13042470 – volume: 21 start-page: 3733 issn: 1424-8220 issue: 11 year: 2021 ident: 10.1016/j.solener.2024.112556_b20 article-title: Statistical methods for degradation estimation and anomaly detection in photovoltaic plants publication-title: Sensors doi: 10.3390/s21113733 – volume: 9 issn: 2405-8440 issue: 11 year: 2023 ident: 10.1016/j.solener.2024.112556_b6 article-title: Fault diagnosis of photovoltaic systems using artificial intelligence: A bibliometric approach publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e21491 – volume: 173 start-page: 834 issn: 0038-092X year: 2018 ident: 10.1016/j.solener.2024.112556_b26 article-title: Ageing and degradation in solar photovoltaic modules installed in northern ghana publication-title: Sol. Energy doi: 10.1016/j.solener.2018.08.021 – ident: 10.1016/j.solener.2024.112556_b23 – volume: 94 start-page: 119 issn: 0038-092X year: 2013 ident: 10.1016/j.solener.2024.112556_b12 article-title: Automatic fault detection in grid connected PV systems publication-title: Sol. Energy doi: 10.1016/j.solener.2013.05.001 – ident: 10.1016/j.solener.2024.112556_b21 – volume: 216 start-page: 96 issn: 0038-092X year: 2021 ident: 10.1016/j.solener.2024.112556_b17 article-title: Sensorless fault detection method for photovoltaic systems through mapping the inherent characteristics of PV plant site: Simple and practical publication-title: Sol. Energy doi: 10.1016/j.solener.2021.01.011 – start-page: 67 year: 2015 ident: 10.1016/j.solener.2024.112556_b13 article-title: Fault diagnosis in photovoltaic arrays – volume: 64 issn: 22131388 year: 2024 ident: 10.1016/j.solener.2024.112556_b14 article-title: A comparative study on bayes classifier for detecting photovoltaic module visual faults using deep learning features publication-title: Sustain. Energy Technol. Assess. doi: 10.1016/j.seta.2024.103713 – volume: 131 start-page: 71 issn: 0378-7796 year: 2016 ident: 10.1016/j.solener.2024.112556_b3 article-title: A review: Agents in smart grids publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2015.10.004 – year: 2023 ident: 10.1016/j.solener.2024.112556_b25 – volume: 58 issn: 2213-1388 year: 2023 ident: 10.1016/j.solener.2024.112556_b2 article-title: Integration of smart grid with renewable energy sources: Opportunities and challenges – A comprehensive review publication-title: Sustain. Energy Technol. Assess. doi: 10.1016/j.seta.2023.103363 |
| SSID | ssj0017187 |
| Score | 2.4552217 |
| Snippet | In the last years, the massive deployment of new photovoltaic (PV) power plants has launched the connection of PV inverters to the electrical network. A single... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 112556 |
| SubjectTerms | Energy prediction Fault detection in PV plants Low-data methods Machine learning Renewable energy Smart grids |
| Title | Detection of abnormal photovoltaic systems’ operation with minimum data requirements based on Recursive Least Squares algorithms |
| URI | https://dx.doi.org/10.1016/j.solener.2024.112556 |
| Volume | 274 |
| WOSCitedRecordID | wos001285981700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0038-092X databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017187 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RCsgHbtEuaeI4ybGC8qhQhaBIe4u8jt3uKk1CNlv1WPEvOPHf-CXMxI43lKrQA5coSuxJlPky_mzPg5AXqS85E90OayhhghKnY4FELsJkN1wGwteiKzYRHxwk02n6cTT60cfCnBZxWSZnZ2n9X1UN10DZGDp7DXU7oXABzkHpcAS1w_GfFP9atUr2PFDMSiSlhVcfV20FpqgVc2nTNy97R4fUq2plkdCty2K-kZPViYfuo16j0FlYmVA4HPRy3GD4hOv0nev7B6z-433-usJIJk8UR1UDMmwS9EUfBIzOrqqLM3QuQOJoZQLS3mIQdO5UXzWqqwcO7HZWVG6TZF7DxzM39mHGPB-0vyDELmIEDPffTRhnb5hD9MLoKqs7wxzEbGBagRhGJgf5H1bfLEAsJkt0ZVCY5TVgk3X737NsXxj9nE9i7-62yKyYDMVkRswNshnEUQqWf3P3_d50321UwdBu0rLa918Hib289H0upz8DSnN4l9yxcxG6azB0j4xUeZ_cHmSofEC-OTTRStMeTXSIJmrR9PP8O3U4oogjanFEEUd0iCPa4YhCO4cj2uGIWhzRNY4eki9v9g5fvRvbsh1jGUa8HWsWAm8HnqP9MNZJxGOd5joX4U4ec1-EWiRMRjpJtJ8znuZShYH0c-XPuORSsvAR2SirUj0m1OdwR2oZMA0CeZ5o6BFImGQoEciddIuw_mtm0ua0x9IqRXalNrfIxHWrTVKXv3VIelVllpkaxpkBBK_u-uS6z9omt9Z_yFOy0TYr9YzclKftfNk8t_j7BVqtuZA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+abnormal+photovoltaic+systems%E2%80%99+operation+with+minimum+data+requirements+based+on+Recursive+Least+Squares+algorithms&rft.jtitle=Solar+energy&rft.au=Laguna%2C+Gerard&rft.au=Moreno%2C+Pablo&rft.au=Cipriano%2C+Jordi&rft.au=Mor%2C+Gerard&rft.date=2024-05-15&rft.issn=0038-092X&rft.volume=274&rft.spage=112556&rft_id=info:doi/10.1016%2Fj.solener.2024.112556&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solener_2024_112556 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon |