Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms

[Display omitted] The Enhanced Permeability and Retention (EPR) effect has been recognized as the central paradigm in tumor-targeted delivery in the last decades. In the wake of this concept, nanotechnologies have reached phenomenal levels in research. However, clinical tumors display a poor manifes...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced drug delivery reviews Ročník 188; s. 114449
Hlavní autori: Zi, Yixuan, Yang, Kaiyun, He, Jianhua, Wu, Zimei, Liu, Jianping, Zhang, Wenli
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier B.V 01.09.2022
Predmet:
ISSN:0169-409X, 1872-8294, 1872-8294
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract [Display omitted] The Enhanced Permeability and Retention (EPR) effect has been recognized as the central paradigm in tumor-targeted delivery in the last decades. In the wake of this concept, nanotechnologies have reached phenomenal levels in research. However, clinical tumors display a poor manifestation of EPR effect. Factors including tumor heterogeneity, complicating tumor microenvironment, and discrepancies between laboratory models and human tumors largely contribute to poor efficiency in tumor-targeted delivery and therapeutic failure in clinical translation. In this article, approaches for evaluation of EPR effect in human tumor were overviewed as guidance to employ EPR effect for cancer treatment. Strategies to augment EPR-mediated tumoral delivery are discussed in different dimensions including enhancement of vascular permeability, depletion of tumor extracellular matrix and optimization of nanoparticle design. Besides, the recent development in alternative tumor-targeted delivery mechanisms are highlighted including transendothelial pathway, endogenous cell carriers and non-immunogenic bacteria-mediated delivery. In addition, the emerging preclinical models better reflect human tumors are introduced. Finally, more rational applications of EPR effect in other disease and field are proposed. This article elaborates on fundamental reasons for the gaps between theoretical expectation and clinical outcomes, attempting to provide some perspective directions for future development of cancer nanomedicines in this still evolving landscape.
AbstractList The Enhanced Permeability and Retention (EPR) effect has been recognized as the central paradigm in tumor-targeted delivery in the last decades. In the wake of this concept, nanotechnologies have reached phenomenal levels in research. However, clinical tumors display a poor manifestation of EPR effect. Factors including tumor heterogeneity, complicating tumor microenvironment, and discrepancies between laboratory models and human tumors largely contribute to poor efficiency in tumor-targeted delivery and therapeutic failure in clinical translation. In this article, approaches for evaluation of EPR effect in human tumor were overviewed as guidance to employ EPR effect for cancer treatment. Strategies to augment EPR-mediated tumoral delivery are discussed in different dimensions including enhancement of vascular permeability, depletion of tumor extracellular matrix and optimization of nanoparticle design. Besides, the recent development in alternative tumor-targeted delivery mechanisms are highlighted including transendothelial pathway, endogenous cell carriers and non-immunogenic bacteria-mediated delivery. In addition, the emerging preclinical models better reflect human tumors are introduced. Finally, more rational applications of EPR effect in other disease and field are proposed. This article elaborates on fundamental reasons for the gaps between theoretical expectation and clinical outcomes, attempting to provide some perspective directions for future development of cancer nanomedicines in this still evolving landscape.
[Display omitted] The Enhanced Permeability and Retention (EPR) effect has been recognized as the central paradigm in tumor-targeted delivery in the last decades. In the wake of this concept, nanotechnologies have reached phenomenal levels in research. However, clinical tumors display a poor manifestation of EPR effect. Factors including tumor heterogeneity, complicating tumor microenvironment, and discrepancies between laboratory models and human tumors largely contribute to poor efficiency in tumor-targeted delivery and therapeutic failure in clinical translation. In this article, approaches for evaluation of EPR effect in human tumor were overviewed as guidance to employ EPR effect for cancer treatment. Strategies to augment EPR-mediated tumoral delivery are discussed in different dimensions including enhancement of vascular permeability, depletion of tumor extracellular matrix and optimization of nanoparticle design. Besides, the recent development in alternative tumor-targeted delivery mechanisms are highlighted including transendothelial pathway, endogenous cell carriers and non-immunogenic bacteria-mediated delivery. In addition, the emerging preclinical models better reflect human tumors are introduced. Finally, more rational applications of EPR effect in other disease and field are proposed. This article elaborates on fundamental reasons for the gaps between theoretical expectation and clinical outcomes, attempting to provide some perspective directions for future development of cancer nanomedicines in this still evolving landscape.
The Enhanced Permeability and Retention (EPR) effect has been recognized as the central paradigm in tumor-targeted delivery in the last decades. In the wake of this concept, nanotechnologies have reached phenomenal levels in research. However, clinical tumors display a poor manifestation of EPR effect. Factors including tumor heterogeneity, complicating tumor microenvironment, and discrepancies between laboratory models and human tumors largely contribute to poor efficiency in tumor-targeted delivery and therapeutic failure in clinical translation. In this article, approaches for evaluation of EPR effect in human tumor were overviewed as guidance to employ EPR effect for cancer treatment. Strategies to augment EPR-mediated tumoral delivery are discussed in different dimensions including enhancement of vascular permeability, depletion of tumor extracellular matrix and optimization of nanoparticle design. Besides, the recent development in alternative tumor-targeted delivery mechanisms are highlighted including transendothelial pathway, endogenous cell carriers and non-immunogenic bacteria-mediated delivery. In addition, the emerging preclinical models better reflect human tumors are introduced. Finally, more rational applications of EPR effect in other disease and field are proposed. This article elaborates on fundamental reasons for the gaps between theoretical expectation and clinical outcomes, attempting to provide some perspective directions for future development of cancer nanomedicines in this still evolving landscape.The Enhanced Permeability and Retention (EPR) effect has been recognized as the central paradigm in tumor-targeted delivery in the last decades. In the wake of this concept, nanotechnologies have reached phenomenal levels in research. However, clinical tumors display a poor manifestation of EPR effect. Factors including tumor heterogeneity, complicating tumor microenvironment, and discrepancies between laboratory models and human tumors largely contribute to poor efficiency in tumor-targeted delivery and therapeutic failure in clinical translation. In this article, approaches for evaluation of EPR effect in human tumor were overviewed as guidance to employ EPR effect for cancer treatment. Strategies to augment EPR-mediated tumoral delivery are discussed in different dimensions including enhancement of vascular permeability, depletion of tumor extracellular matrix and optimization of nanoparticle design. Besides, the recent development in alternative tumor-targeted delivery mechanisms are highlighted including transendothelial pathway, endogenous cell carriers and non-immunogenic bacteria-mediated delivery. In addition, the emerging preclinical models better reflect human tumors are introduced. Finally, more rational applications of EPR effect in other disease and field are proposed. This article elaborates on fundamental reasons for the gaps between theoretical expectation and clinical outcomes, attempting to provide some perspective directions for future development of cancer nanomedicines in this still evolving landscape.
ArticleNumber 114449
Author Zi, Yixuan
Liu, Jianping
Yang, Kaiyun
Zhang, Wenli
He, Jianhua
Wu, Zimei
Author_xml – sequence: 1
  givenname: Yixuan
  surname: Zi
  fullname: Zi, Yixuan
  organization: Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
– sequence: 2
  givenname: Kaiyun
  surname: Yang
  fullname: Yang, Kaiyun
  organization: School of Pharmacy, University of Auckland, Private Bag 92019, Auckland, New Zealand
– sequence: 3
  givenname: Jianhua
  surname: He
  fullname: He, Jianhua
  organization: Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
– sequence: 4
  givenname: Zimei
  surname: Wu
  fullname: Wu, Zimei
  email: z.wu@auckland.ac.nz
  organization: School of Pharmacy, University of Auckland, Private Bag 92019, Auckland, New Zealand
– sequence: 5
  givenname: Jianping
  surname: Liu
  fullname: Liu, Jianping
  email: jianping1293@163.com
  organization: Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
– sequence: 6
  givenname: Wenli
  surname: Zhang
  fullname: Zhang, Wenli
  email: zwllz@163.com
  organization: Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35835353$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtrHDEUhYVxsNeO_4CLoDLNbCTNYyVIE4zzAENC4iKd0Eh3drXMSI6uZmH_vTWs3aQwKm6h7xw451yR8xADEHLL2Zoz3n3ar41zaS2YEGvOm6ZRZ2TF5UZUUqjmnKwKpKqGqb-X5ApxzxgXm45dkMu6lXVb3ooc_uRkMmw9IM2RQtiZYIG6NG-pg9EfIB2XD4yjdzTPU0xI-yPdmRQA0YctzTug979-UxgGsBmpCY6aMUMKJhc9zSZtIS_kBLbYe5zwPXk3mBHh5uVek8ev949336uHn99-3H15qGzddrkCB1xtQFoBfd-brlGNa13NlrBMinrolGK9akpQZyW3TDrWSsthaKEfTH1NPp5sn1L8NwNmPXm0MI4mQJxRi05x1tZKdgX98ILO_QROPyU_mXTUr1UVQJ4AmyJigkFbn0vCGEqDftSc6WUVvdfLKnpZRZ9WKVLxn_TV_U3R55MISj8HD0mj9VDGcT6VnrWL_i35M_t4p20
CitedBy_id crossref_primary_10_1021_jacs_3c01532
crossref_primary_10_1002_smll_202402648
crossref_primary_10_1016_j_jconrel_2022_12_028
crossref_primary_10_34133_bmr_0087
crossref_primary_10_1016_j_addr_2023_114707
crossref_primary_10_1016_j_omto_2023_02_001
crossref_primary_10_1016_j_cej_2024_153171
crossref_primary_10_1002_advs_202413367
crossref_primary_10_1007_s12032_025_02853_8
crossref_primary_10_1016_j_ijpharm_2023_123136
crossref_primary_10_1016_j_addr_2023_114821
crossref_primary_10_1021_acs_cgd_4c01687
crossref_primary_10_1002_adhm_202401074
crossref_primary_10_1002_tcr_202400171
crossref_primary_10_1016_j_bioadv_2023_213344
crossref_primary_10_1016_j_bbcan_2025_189261
crossref_primary_10_1021_acs_molpharmaceut_4c00856
crossref_primary_10_3390_ijms25021195
crossref_primary_10_1186_s12645_025_00314_5
crossref_primary_10_1039_D2NR06621A
crossref_primary_10_1016_j_ejps_2023_106425
crossref_primary_10_1002_advs_202400297
crossref_primary_10_1016_j_cej_2025_167348
crossref_primary_10_1039_D4RA01075B
crossref_primary_10_1002_cplu_202400783
crossref_primary_10_1016_j_nantod_2024_102251
crossref_primary_10_1016_j_biomaterials_2025_123311
crossref_primary_10_1080_10837450_2025_2518564
crossref_primary_10_1007_s44174_024_00179_z
crossref_primary_10_3390_pharmaceutics16091128
crossref_primary_10_1080_17425247_2023_2223941
crossref_primary_10_2147_IJN_S520205
crossref_primary_10_1016_j_jconrel_2024_11_071
crossref_primary_10_2147_IJN_S377149
crossref_primary_10_3390_nano13182597
crossref_primary_10_2147_IJN_S452824
crossref_primary_10_1016_j_ijpharm_2025_125979
crossref_primary_10_1016_j_nantod_2023_101799
crossref_primary_10_1016_j_ijbiomac_2025_140830
crossref_primary_10_1007_s13346_024_01655_1
crossref_primary_10_15212_bioi_2025_0016
crossref_primary_10_1007_s11427_022_2240_6
crossref_primary_10_1016_S1875_5364_25_60851_X
crossref_primary_10_1016_j_eurpolymj_2024_113282
crossref_primary_10_1016_j_apsb_2024_05_028
crossref_primary_10_1016_S1875_5364_25_60815_6
crossref_primary_10_1016_j_jconrel_2024_03_049
crossref_primary_10_1016_j_cclet_2023_108220
crossref_primary_10_3389_fbioe_2024_1403511
crossref_primary_10_1016_j_jconrel_2025_113783
crossref_primary_10_1038_s41392_024_01889_y
crossref_primary_10_1080_17435889_2024_2387530
crossref_primary_10_3390_mi15050652
crossref_primary_10_1186_s40824_023_00464_w
crossref_primary_10_1002_bmm2_12083
crossref_primary_10_61186_MCH_2025_1079
crossref_primary_10_1080_1061186X_2025_2522868
crossref_primary_10_1002_med_22036
crossref_primary_10_1002_anbr_202300125
crossref_primary_10_3390_pharmaceutics17060779
crossref_primary_10_1097_CM9_0000000000003703
crossref_primary_10_3390_pharmaceutics16111432
crossref_primary_10_1016_j_ijpharm_2024_124933
crossref_primary_10_1208_s12249_023_02714_5
crossref_primary_10_1016_S1875_5364_25_60910_1
crossref_primary_10_1016_j_addr_2023_115108
crossref_primary_10_1016_j_nantod_2025_102816
crossref_primary_10_1016_j_jconrel_2023_02_009
crossref_primary_10_3390_pharmaceutics17050572
crossref_primary_10_26599_NR_2025_94907030
crossref_primary_10_34133_bmr_0200
crossref_primary_10_1002_jbm_a_37939
crossref_primary_10_1016_j_ijbiomac_2025_146478
crossref_primary_10_1080_17425247_2024_2361117
crossref_primary_10_1002_cbic_202400804
crossref_primary_10_1016_j_jconrel_2025_02_066
crossref_primary_10_1016_j_biopha_2024_117693
crossref_primary_10_1016_j_ijpharm_2025_125640
crossref_primary_10_3390_ph17070919
crossref_primary_10_1080_10717544_2024_2342844
crossref_primary_10_1186_s12645_024_00257_3
crossref_primary_10_3390_biom15060895
crossref_primary_10_1007_s40820_023_01266_4
crossref_primary_10_1039_D2BM00660J
crossref_primary_10_2147_IJN_S523621
crossref_primary_10_1016_j_cclet_2023_108557
crossref_primary_10_3389_fimmu_2022_1057850
crossref_primary_10_1016_j_jconrel_2023_01_022
crossref_primary_10_1002_adhm_202302902
crossref_primary_10_1021_acs_biomac_5c00763
crossref_primary_10_1002_wnan_1990
crossref_primary_10_1016_j_actbio_2023_12_026
crossref_primary_10_1016_j_eurpolymj_2025_113988
crossref_primary_10_3389_fonc_2024_1296091
crossref_primary_10_1016_j_colsurfa_2023_131788
crossref_primary_10_3390_ijms25105213
crossref_primary_10_1002_pol_20230833
crossref_primary_10_1039_D5RA00728C
crossref_primary_10_1016_j_actbio_2023_03_004
crossref_primary_10_1016_j_addr_2022_114614
crossref_primary_10_1016_j_jcis_2023_06_177
crossref_primary_10_3390_ph18091288
crossref_primary_10_1016_j_jconrel_2025_114125
crossref_primary_10_3389_fbioe_2024_1436297
crossref_primary_10_1016_j_mtbio_2025_101684
crossref_primary_10_3390_jpm13030389
crossref_primary_10_1016_j_cej_2024_151072
crossref_primary_10_26599_NR_2025_94907773
crossref_primary_10_1007_s10549_025_07696_5
crossref_primary_10_1039_D4BM01121J
crossref_primary_10_1016_j_addr_2023_114871
crossref_primary_10_3390_pharmaceutics17010136
crossref_primary_10_1016_j_jcis_2024_09_133
crossref_primary_10_1016_j_jsamd_2025_100977
crossref_primary_10_1016_j_matdes_2023_112232
crossref_primary_10_1016_j_ijbiomac_2023_124088
crossref_primary_10_1007_s12032_025_02660_1
crossref_primary_10_1007_s00210_025_04068_0
crossref_primary_10_3390_cancers17152466
crossref_primary_10_1002_cbdv_202300187
crossref_primary_10_3390_pharmaceutics15122770
crossref_primary_10_1080_17435889_2025_2528593
crossref_primary_10_1039_D4BM00647J
crossref_primary_10_3390_ijms241210082
crossref_primary_10_1016_j_biomaterials_2024_122469
crossref_primary_10_1186_s12645_023_00244_0
crossref_primary_10_1080_17435889_2025_2535281
crossref_primary_10_1021_acs_biomac_5c00280
crossref_primary_10_1002_adma_202510293
crossref_primary_10_2174_0109298673283362231220115050
crossref_primary_10_1039_D3RA01782F
crossref_primary_10_1016_j_inoche_2025_115215
crossref_primary_10_1016_j_phrs_2024_107150
crossref_primary_10_1016_j_nano_2024_102753
crossref_primary_10_1038_s41563_023_01630_0
crossref_primary_10_1007_s00210_025_04038_6
crossref_primary_10_1007_s40843_024_2858_8
crossref_primary_10_1016_j_wneu_2025_124142
crossref_primary_10_1016_j_ejphar_2024_176827
crossref_primary_10_1016_j_preme_2025_100037
crossref_primary_10_1016_j_trac_2023_117020
crossref_primary_10_1016_j_ijpharm_2024_124292
crossref_primary_10_3390_ijms26146608
Cites_doi 10.1016/j.biomaterials.2016.06.048
10.1007/s11095-017-2340-y
10.1016/j.colsurfb.2018.05.026
10.1093/jac/dks379
10.1158/0008-5472.CAN-04-0074
10.1016/j.addr.2010.04.009
10.1016/j.canlet.2013.11.015
10.1016/S0169-409X(01)00107-7
10.1111/j.1349-7006.1992.tb00093.x
10.1016/j.cell.2008.05.009
10.3390/cancers11081187
10.1038/nnano.2012.45
10.1002/smll.201701621
10.1021/acsnano.0c02110
10.3390/jpm11111160
10.1074/jbc.M113.476903
10.1038/s41565-019-0597-5
10.1038/s41565-019-0485-z
10.1016/j.bbrc.2012.07.150
10.1021/acsami.8b19840
10.1016/j.addr.2017.04.010
10.1016/j.jconrel.2017.02.035
10.1021/acsnano.9b02395
10.1038/nrc2934
10.1073/pnas.251543698
10.1023/B:PHAM.0000045232.18134.e9
10.1002/adhm.202001550
10.1158/0008-5472.CAN-04-1874
10.1016/j.xphs.2017.06.019
10.1073/pnas.0510412103
10.1007/s13346-018-00610-1
10.1016/j.addr.2012.09.038
10.1016/j.addr.2020.06.005
10.1038/nature01451
10.21873/anticanres.12919
10.1016/j.addr.2021.02.019
10.1007/s10456-017-9562-9
10.1038/nnano.2016.137
10.1021/acs.nanolett.9b04683
10.1016/j.devcel.2010.05.012
10.1016/j.msec.2019.01.066
10.1007/s10555-016-9653-x
10.1016/j.chom.2013.01.005
10.1159/000313880
10.1038/s41563-020-0672-1
10.1016/j.apsb.2020.10.009
10.1016/j.pharmthera.2015.11.008
10.1016/j.biomaterials.2020.119769
10.1016/j.ccell.2016.10.018
10.4155/tde.13.8
10.1016/j.ccr.2013.01.008
10.1016/j.cellimm.2020.104119
10.1016/S1470-2045(16)00078-4
10.1016/B978-0-12-809717-5.00002-6
10.1021/acs.molpharmaceut.1c00036
10.1158/1535-7163.MCT-15-0602
10.3390/ijms20194719
10.1016/j.jconrel.2017.06.022
10.1126/science.1104819
10.1038/s41563-020-0669-9
10.1126/sciadv.1500821
10.1021/acsnano.5b01320
10.1016/j.jtbi.2020.110229
10.3109/1061186X.2015.1051049
10.3390/cancers13123070
10.1039/c3nr90022c
10.1002/adma.201200454
10.3390/jpm12010095
10.1021/acsami.9b18112
10.1016/j.radonc.2015.09.026
10.1016/j.nantod.2016.06.006
10.2174/1871526517666170606102623
10.1158/2326-6066.CIR-14-0209
10.1016/j.addr.2015.11.001
10.1021/acs.nanolett.6b00820
10.1016/j.biomaterials.2010.01.065
10.1038/s41573-018-0004-1
10.1002/adfm.201707249
10.1016/j.addr.2018.07.007
10.1021/acsami.8b17684
10.1093/jnci/93.4.266
10.1158/0008-5472.CAN-12-2217
10.3727/096368907783338271
10.1002/adma.201404715
10.14348/molcells.2016.2350
10.1002/stem.217
10.1517/14712598.6.3.243
10.1073/pnas.0813203106
10.3390/cells8091102
10.1007/978-1-4939-6931-9_6
10.1038/onc.2017.261
10.1158/1535-7163.MCT-18-0696
10.1038/s41551-017-0115-8
10.7150/thno.38587
10.1021/acs.nanolett.6b00262
10.1101/cshperspect.a016345
10.1016/j.jconrel.2018.05.002
10.1016/j.addr.2015.01.002
10.1016/j.addr.2015.11.009
10.1039/C8NR00640G
10.1073/pnas.77.12.7380
10.1038/nm.2938
10.1007/978-1-60761-609-2_3
10.1002/smll.201801694
10.1016/0162-3109(96)00063-X
10.1016/j.jconrel.2011.06.001
10.1248/cpb.c17-00789
10.1038/s41565-019-0494-y
10.1016/0092-8674(87)90646-5
10.1016/j.jconrel.2016.11.015
10.1088/0957-4484/23/50/505702
10.2147/IJN.S132780
10.1186/s13045-019-0829-z
10.1016/j.canlet.2018.11.011
10.1016/j.jconrel.2020.01.040
10.1042/BC20070116
10.1016/j.ceb.2010.08.015
10.1007/s11912-017-0608-3
10.1021/acsnano.0c08185
10.1038/nature10632
10.1016/j.jconrel.2019.10.020
10.1038/nrc.2016.108
10.1289/ehp.97105s51261
10.1016/j.ejca.2006.01.003
10.1038/ncomms11838
10.1182/blood-2004-03-1109
10.1073/pnas.0801763105
10.1039/D0TB00649A
10.1007/978-3-319-66095-0_11
10.1038/nrclinonc.2010.139
10.1021/acs.chemrev.0c00779
10.1021/acsnano.8b03525
10.1016/j.biomaterials.2018.08.004
10.1038/nature08989
10.1016/j.addr.2012.03.006
10.1016/j.nantod.2014.04.011
10.15252/emmm.201606857
10.1166/jbn.2018.2592
10.3390/jpm11080825
10.1136/gutjnl-2012-302529
10.1200/JCO.2014.60.0759
10.1111/j.1349-7006.2008.01003.x
10.1158/0008-5472.CAN-14-3373
10.1080/17425247.2018.1420051
10.1002/adhm.201700818
10.1093/jjco/hyp074
10.1039/C6CS00592F
10.1097/TP.0b013e3181a28533
10.1186/ar3130
10.1111/j.1476-5381.2009.00057.x
10.1016/S0076-6879(04)81023-1
10.1136/gutjnl-2011-300756
10.1002/advs.201802070
10.1080/19420862.2018.1452580
10.1016/S0301-472X(00)00635-4
10.1016/j.jconrel.2017.09.016
10.1517/17425247.2014.955011
10.1021/acs.nanolett.9b03211
10.1007/s11095-014-1353-z
10.1161/01.STR.32.4.1005
10.1128/iai.48.3.747-753.1985
10.1016/j.canlet.2014.01.032
10.1038/s41565-019-0567-y
10.1002/hep.29088
10.2147/HP.S93413
10.3109/10731199509117955
10.1016/j.msec.2020.111004
10.1038/nrc1456
10.1097/MPA.0b013e318296f866
10.1016/j.jconrel.2020.07.007
10.1016/j.biomaterials.2021.120910
10.1186/s13287-015-0271-2
10.1111/j.1349-7006.2000.tb00940.x
10.1002/adma.201601498
10.1056/NEJMoa1113205
10.1038/nnano.2017.54
10.1016/j.jconrel.2012.05.022
10.1021/acsnano.7b01522
10.1111/micc.12228
10.1158/2159-8290.CD-14-0001
10.1016/j.jconrel.2014.03.057
10.1039/C8NJ05877F
10.1172/JCI92284
10.1159/000455154
10.1021/bc100070g
10.1016/j.biomaterials.2016.09.001
10.1038/s41563-019-0566-2
10.1016/j.jconrel.2013.10.001
10.1021/acs.nanolett.8b04236
10.1016/j.jconrel.2019.05.018
10.1016/j.jconrel.2015.01.011
10.1073/pnas.1818357116
10.1158/0008-5472.CAN-10-2349
10.1016/S0169-409X(00)00134-4
10.2147/IJN.S140462
10.1158/1078-0432.CCR-16-3193
10.1016/j.cis.2013.10.013
10.1007/s00280-015-2833-5
10.2174/187152571103140120103816
10.1016/j.jconrel.2012.03.020
10.1016/j.addr.2017.07.007
10.1038/ncomms12630
10.1007/s10439-011-0415-1
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.addr.2022.114449
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Pharmacy, Therapeutics, & Pharmacology
EISSN 1872-8294
ExternalDocumentID 35835353
10_1016_j_addr_2022_114449
S0169409X22003398
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXUO
ABFNM
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMT
HVGLF
HX~
HZ~
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SPT
SSP
SSU
SSZ
T5K
TEORI
WUQ
Y6R
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c356t-ede197e8c2ebbba6494d5d3014440823f6990b94016dc81c08d058c1ef5ebfa3
ISICitedReferencesCount 172
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000853367300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-409X
1872-8294
IngestDate Sun Sep 28 07:14:54 EDT 2025
Wed Feb 19 02:26:28 EST 2025
Sat Nov 29 07:24:21 EST 2025
Tue Nov 18 21:36:26 EST 2025
Fri Feb 23 02:40:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Clinical translation
Transendothelial pathway
independent of EPR effect
Nanomedicine
Preclinical models
EPR effect
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c356t-ede197e8c2ebbba6494d5d3014440823f6990b94016dc81c08d058c1ef5ebfa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 35835353
PQID 2691053986
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2691053986
pubmed_primary_35835353
crossref_citationtrail_10_1016_j_addr_2022_114449
crossref_primary_10_1016_j_addr_2022_114449
elsevier_sciencedirect_doi_10_1016_j_addr_2022_114449
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Advanced drug delivery reviews
PublicationTitleAlternate Adv Drug Deliv Rev
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Heldin (b0125) 2004; 4
Couvreur (b0020) 2019; 311–312
Okada, Vaeteewoottacharn, Kariya (b0950) 2018; 66
Fu (b0435) 2020; 353
Liu (b0410) 2021; 172
Dobrolecki (b0960) 2016; 35
Yan (b0450) 2017; 36
Sordi (b0900) 2009; 87
Fang, Nakamura, Maeda (b0040) 2011; 63
Xiangsheng (b0695) 2019; 9
Th Ee K (b0345) 2018
Conner, Schmid (b0725) 2003; 422
Nakamizo (b0915) 2005; 65
Hidalgo (b0955) 2014; 4
Zangi (b0920) 2009; 27
Jenne (b0830) 2013; 13
Unzek (b0905) 2007; 16
Ekdawi, Jaffray, Allen (b0205) 2016; 11
Boucher, Jain (b0130) 1992; 52
Sakaguchi (b0880) 2008; 133
Maeda (b0060) 2010; 21
He (b0840) 2010; 31
Jin (b0680) 2018; 35
Van Acker (b0440) 2016; 158
Yeh, Kim (b0190) 2015; 33
Muthana (b0865) 2011; 71
Azzopardi, Ferguson, Thomas (b0045) 2013; 68
Jang, Sengupta (b0110) 2019; 14
Ostman (b0630) 2012; 18
Marangoni (b0585) 1950; 2018
Ma (b0355) 2019; 11
Liu (b0745) 2019; 19
Pangarkar, Dinh, Mitragotri (b1075) 2012; 162
Yoo (b0810) 2011; 480
Pober, Sessa (b1005) 2014; 7
H. Lee, et al., 64Cu-MM-302 Positron Emission Tomography Quantifies Variability of Enhanced Permeability and Retention of Nanoparticles in Relation to Treatment Response in Patients with Metastatic Breast Cancer. Clinical Cancer Research, 2017: p. clincanres.3193.2016.
Krafft (b0500) 2001; 47
Cho (b0970) 2016; 39
Gordon (b0985) 1980; 77
Holden (b0870) 2010; 5
Chrastina (b0805) 2010; 47
Venditto, Szoka (b0065) 2013; 65
Pérez-Medina (b0260) 2016; 7
Nakamura, Fang, Maeda (b0080) 2015; 12
Natfji (b0220) 2017; 106
Song (b0335) 2016; 108
A. Jasim, S. Abdelghany, K. Greish, Chapter 2 - Current Update on the Role of Enhanced Permeability and Retention Effect in Cancer Nanomedicine, in Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes, V. Mishra, et al., Editors. 2017, Academic Press. p. 62-109.
Nagamitsu, Greish, Maeda (b0285) 2009; 39
F. Krombach, et al., Cell size of alveolar macrophages: an interspecies comparison. Environ Health Perspect. 105 Suppl 5(Suppl 5) (1997) 1261-3.
Mazur, Siveke (b1000) 2012; 61
Mpekris (b0565) 2017; 261
Zhang (b0700) 2020; 14
Noguchi (b0380) 1992; 83
Zhang, Coleman, Brekken (b0195) 2021; 13
Tang (b0615) 2019; 9
Murdoch, Giannoudis, Lewis (b0845) 2004; 104
Islam, Maeda, Fang (b0095) 2021
Park (b0330) 2016; 30
Liu (b0795) 2017; 72
Lee (b0525) 2017; 263
Silva (b1025) 2020; 496
Tian (b0620) 2009; 106
van der Meel (b0105) 2019; 14
Moughon (b0455) 2015; 75
Dai (b0670) 2018; 28
Gratton (b0735) 2008; 105
Akashi (b0975) 2013; 42
Liu (b0490) 2017; 13
Jacobetz (b0135) 2013; 62
Luo (b0945) 2016; 16
Wang, Huang, Chen (b0650) 2016; 28
Danhier (b0120) 2016; 244
Wang (b0655) 2018; 15
Gestin, Dowaidar, Langel (b0765) 2017; 1030
Yoshida (b0980) 2020; 13
Park (b0085) 2013; 172
R.K. Jain, R.K. Jain, Determinants of tumor blood flow: A review. Cancer Res 48: 2641-2658. Cancer Research, 1988. 48(10): p. 2641-2658.
Kadonosono (b0770) 2015; 201
Jain (b0235) 2005; 307
Hori (b0385) 2000; 91
Wang (b1040) 2004; 21
Zhou (b0310) 2018; 14
Kisucka (b0390) 2006; 103
Zhao (b0505) 2019; 116
Jain, Stylianopoulos (b0155) 2010; 7
Yoshida (b0545) 2018; 38
Dang (b0925) 2001; 98
Matsumura, Maeda (b0035) 1986; 46
Morris (b0755) 2008; 100
Egeblad, Rasch, Weaver (b0150) 2010; 22
Gerlinger (b0210) 2012; 366
Pandit, Dutta, Nie (b0715) 2020; 19
Ino (b0400) 2006; 6
Fang (b0115) 2022; 12
Liu (b0780) 2017; 127
Gordon-Weeks (b0825) 2017; 65
Chimen, Apta, Mcgettrick (b0875) 2017
Xu (b1080) 2014; 31
Viallard, Larrivée (b0425) 2017; 20
Dvorak (b1010) 2015; 3
Kumari, Ghosh, Biswas (b0010) 2016; 24
Maeda (b0145) 2001; 46
Zhang (b0340) 2021; 15
Ji (b0575) 2015; 27
Germano (b0445) 2013; 23
Lin (b0665) 2020; 10
Zhang (b0560) 2016; 103
Hu (b0515) 2017; 11
Wu (b1065) 2021; 11
Timin (b0815) 2018
Kim, Emi, Tanabe (b0240) 2010; 121
Liu (b0675) 2020; 20
Zhou (b0595) 2016
Höckel, Vaupel (b0185) 2001; 93
L. Jingqiu, et al., Synergizing Upconversion Nanophotosensitizers with Hyperbaric Oxygen to Remodel the Extracellular Matrix for Enhanced Photodynamic Cancer Therapy. Acs Applied Materials & Interfaces, 2018: p. acsami.8b07090-.
Teicher (b0175) 1995; 23
Thomas, Capecchi (b0990) 1987; 51
Maeda (b0075) 2015; 91
Geng (b0910) 2021; 38
Leibacher, Henschler (b0885) 2016; 7
Chauhan (b0320) 2012; 7
Jászai, Schmidt (b0415) 2019; 8
Jin (b0690) 2020; 320
Izci (b0350) 2021; 121
Liu (b0485) 2019; 11
Zhou (b0475) 2020; 8
Yuan (b1030) 2012; 64
Shi (b0265) 2017; 17
Laplagne (b0460) 2019; 20
Vaupel, Mayer, Höckel (b0180) 2004; 381
Muz (b0170) 2015; 3
Chen (b0555) 2019; 6
Nichols, Bae (b0215) 2014; 190
Dai (b0640) 2017; 46
Kamata (b0300) 1985; 48
Maeda (b0290) 1996; 33
Martens (b1070) 2014; 9
Jf, Wi, Hmb (b0280) 2020; 157
Liu (b0600) 2018; 10
Golombek (b0255) 2018; 130
Barenholz (b0230) 2012; 160
El-Dakdouki, Puré, Huang (b0750) 2013; 5
Sindhwani (b0705) 2020; 19
Tong (b0420) 2004; 64
Kim, Faix, Schnitzer (b0720) 2017; 267
Wu, Akaike, Maeda (b0375) 1998; 58
Nywening (b0465) 2016
Yokoi (b0270) 2014; 345
Iqbal, Anwar, Afridi (b0015) 2017; 17
Lokman (b0610) 2019; 11
Nesteruk (b1015) 2015; 117
Germain (b0005) 2020; 326
Li (b0305) 2017; 1
Chen (b0890) 2001; 32
W. Zeng, et al., Hypoxia and hypoxia inducible factors in tumor metabolism. Cancer Lett, 2015. 356(2 Pt A): p. 263-7.
Graham, Unger (b0495) 2018; 13
Sakhtianchi (b0730) 2013; 201
Wong (b0535) 2017; 19
Chen, Song (b0625) 2018; 18
Greish (b0050) 2010; 624
Roy Chaudhuri (b0570) 2016; 15
Yu (b0550) 2019; 442
Islam (b0295) 2018; 17
Editor, The two directions of cancer nanomedicine. Nature Nanotechnology, 2019. 14(12): p. 1083-1083.
Ding (b0965) 2010; 464
Hubbi (b0200) 2013; 288
Madsen (b0855) 2012; 40
Shen (b1085) 2017; 12
Keramati (b0365) 2013; 11
Dong (b0590) 2019; 19
Forbes (b0930) 2010; 10
Matsumoto (b1060) 2021; 11
Kersten (b0995) 2017; 9
Quan (b1035) 2010; 12
Xu (b1055) 2018; 12
Song (b0860) 2019; 43
Ojha (b0395) 2017; 119
Ruoslahti (b0790) 2012; 24
Stylianopoulos, Munn, Jain (b0165) 2018
Jin (b0405) 2021; 10
Harrington (b1020) 2001; 7
Yang (b0785) 2018; 14
Bae, Park (b0090) 2011; 153
Heitz, Morris, Divita (b0760) 2009; 157
Wang (b0605) 2020; 113
Maeda, Matsumura (b0140) 1989; 6
Chen (b0800) 2015; 76
Yang (b0360) 2018; 182
Miao (b0685) 2018; 169
Luan (b0250) 2021; 275
Komohara (b0635) 2016; 99
Li (b0370) 2020; 36
Seo (b0315) 2018; 10
Xue (b0820) 2017; 12
Felfoul (b0940) 2016; 11
Chronopoulos (b0510) 2016; 7
Ngambenjawong, Gustafson, Pun (b0430) 2017; 114
Tang (b0025) 2019; 305
Zhou (b0740) 2019; 14
Theocharis (b0520) 2016
Cun (b0660) 2018; 10
Sica (b0470) 2006; 42
Xu (b0580) 2020; 235
Devine (b0895) 2001; 29
Maeda, Tsukigawa, Fang (b0055) 2016; 23
Kalyane (b1045) 2019; 98
Wu (b0030) 2021; 18
Yang (b0835) 2012; 23
Liu (b0935) 2012; 425
Stylianopoulos (b0645) 2013; 4
Swanton (b0225) 2012; 72
Egeblad, Nakasone, Werb (b0245) 2010; 18
Kano (b0325) 2009; 100
Pang, Braun, Ruoslahti (b0775) 2015; 1
de Lázaro, Mooney (b0710) 2020; 19
Zinger (b0540) 2019; 13
Yu, Zheng (b1050) 2015; 9
Viallard (10.1016/j.addr.2022.114449_b0425) 2017; 20
Germano (10.1016/j.addr.2022.114449_b0445) 2013; 23
Miao (10.1016/j.addr.2022.114449_b0685) 2018; 169
Bae (10.1016/j.addr.2022.114449_b0090) 2011; 153
Jf (10.1016/j.addr.2022.114449_b0280) 2020; 157
Conner (10.1016/j.addr.2022.114449_b0725) 2003; 422
Pandit (10.1016/j.addr.2022.114449_b0715) 2020; 19
Islam (10.1016/j.addr.2022.114449_b0095) 2021
Ekdawi (10.1016/j.addr.2022.114449_b0205) 2016; 11
Nagamitsu (10.1016/j.addr.2022.114449_b0285) 2009; 39
Zinger (10.1016/j.addr.2022.114449_b0540) 2019; 13
Silva (10.1016/j.addr.2022.114449_b1025) 2020; 496
Jang (10.1016/j.addr.2022.114449_b0110) 2019; 14
Gordon-Weeks (10.1016/j.addr.2022.114449_b0825) 2017; 65
Dong (10.1016/j.addr.2022.114449_b0590) 2019; 19
10.1016/j.addr.2022.114449_b0070
Dai (10.1016/j.addr.2022.114449_b0670) 2018; 28
Kadonosono (10.1016/j.addr.2022.114449_b0770) 2015; 201
Liu (10.1016/j.addr.2022.114449_b0795) 2017; 72
Liu (10.1016/j.addr.2022.114449_b0490) 2017; 13
Pangarkar (10.1016/j.addr.2022.114449_b1075) 2012; 162
Dai (10.1016/j.addr.2022.114449_b0640) 2017; 46
Tong (10.1016/j.addr.2022.114449_b0420) 2004; 64
Gestin (10.1016/j.addr.2022.114449_b0765) 2017; 1030
Yoo (10.1016/j.addr.2022.114449_b0810) 2011; 480
Sakaguchi (10.1016/j.addr.2022.114449_b0880) 2008; 133
Xu (10.1016/j.addr.2022.114449_b0580) 2020; 235
Zhou (10.1016/j.addr.2022.114449_b0740) 2019; 14
Swanton (10.1016/j.addr.2022.114449_b0225) 2012; 72
Cun (10.1016/j.addr.2022.114449_b0660) 2018; 10
Muthana (10.1016/j.addr.2022.114449_b0865) 2011; 71
Kumari (10.1016/j.addr.2022.114449_b0010) 2016; 24
Xu (10.1016/j.addr.2022.114449_b1055) 2018; 12
Lin (10.1016/j.addr.2022.114449_b0665) 2020; 10
Ruoslahti (10.1016/j.addr.2022.114449_b0790) 2012; 24
10.1016/j.addr.2022.114449_b0160
Yu (10.1016/j.addr.2022.114449_b0550) 2019; 442
Yoshida (10.1016/j.addr.2022.114449_b0545) 2018; 38
Hidalgo (10.1016/j.addr.2022.114449_b0955) 2014; 4
Wong (10.1016/j.addr.2022.114449_b0535) 2017; 19
Xu (10.1016/j.addr.2022.114449_b1080) 2014; 31
Li (10.1016/j.addr.2022.114449_b0305) 2017; 1
Fang (10.1016/j.addr.2022.114449_b0115) 2022; 12
Yeh (10.1016/j.addr.2022.114449_b0190) 2015; 33
Song (10.1016/j.addr.2022.114449_b0860) 2019; 43
Wang (10.1016/j.addr.2022.114449_b1040) 2004; 21
Kamata (10.1016/j.addr.2022.114449_b0300) 1985; 48
Song (10.1016/j.addr.2022.114449_b0335) 2016; 108
Murdoch (10.1016/j.addr.2022.114449_b0845) 2004; 104
Shen (10.1016/j.addr.2022.114449_b1085) 2017; 12
Ding (10.1016/j.addr.2022.114449_b0965) 2010; 464
Luo (10.1016/j.addr.2022.114449_b0945) 2016; 16
10.1016/j.addr.2022.114449_b0850
Maeda (10.1016/j.addr.2022.114449_b0145) 2001; 46
Ino (10.1016/j.addr.2022.114449_b0400) 2006; 6
Leibacher (10.1016/j.addr.2022.114449_b0885) 2016; 7
Jenne (10.1016/j.addr.2022.114449_b0830) 2013; 13
Lokman (10.1016/j.addr.2022.114449_b0610) 2019; 11
Roy Chaudhuri (10.1016/j.addr.2022.114449_b0570) 2016; 15
Maeda (10.1016/j.addr.2022.114449_b0055) 2016; 23
Park (10.1016/j.addr.2022.114449_b0085) 2013; 172
Chen (10.1016/j.addr.2022.114449_b0800) 2015; 76
Felfoul (10.1016/j.addr.2022.114449_b0940) 2016; 11
Zhou (10.1016/j.addr.2022.114449_b0310) 2018; 14
Lee (10.1016/j.addr.2022.114449_b0525) 2017; 263
Natfji (10.1016/j.addr.2022.114449_b0220) 2017; 106
Wu (10.1016/j.addr.2022.114449_b0375) 1998; 58
Ojha (10.1016/j.addr.2022.114449_b0395) 2017; 119
Egeblad (10.1016/j.addr.2022.114449_b0150) 2010; 22
Geng (10.1016/j.addr.2022.114449_b0910) 2021; 38
Liu (10.1016/j.addr.2022.114449_b0935) 2012; 425
Jászai (10.1016/j.addr.2022.114449_b0415) 2019; 8
Komohara (10.1016/j.addr.2022.114449_b0635) 2016; 99
Morris (10.1016/j.addr.2022.114449_b0755) 2008; 100
Heldin (10.1016/j.addr.2022.114449_b0125) 2004; 4
Martens (10.1016/j.addr.2022.114449_b1070) 2014; 9
Harrington (10.1016/j.addr.2022.114449_b1020) 2001; 7
Devine (10.1016/j.addr.2022.114449_b0895) 2001; 29
de Lázaro (10.1016/j.addr.2022.114449_b0710) 2020; 19
Thomas (10.1016/j.addr.2022.114449_b0990) 1987; 51
Quan (10.1016/j.addr.2022.114449_b1035) 2010; 12
Dobrolecki (10.1016/j.addr.2022.114449_b0960) 2016; 35
Zhou (10.1016/j.addr.2022.114449_b0595) 2016
Madsen (10.1016/j.addr.2022.114449_b0855) 2012; 40
Okada (10.1016/j.addr.2022.114449_b0950) 2018; 66
Wang (10.1016/j.addr.2022.114449_b0650) 2016; 28
Ma (10.1016/j.addr.2022.114449_b0355) 2019; 11
van der Meel (10.1016/j.addr.2022.114449_b0105) 2019; 14
Tian (10.1016/j.addr.2022.114449_b0620) 2009; 106
Seo (10.1016/j.addr.2022.114449_b0315) 2018; 10
Wu (10.1016/j.addr.2022.114449_b0030) 2021; 18
Nywening (10.1016/j.addr.2022.114449_b0465) 2016
Gratton (10.1016/j.addr.2022.114449_b0735) 2008; 105
Van Acker (10.1016/j.addr.2022.114449_b0440) 2016; 158
Tang (10.1016/j.addr.2022.114449_b0025) 2019; 305
Pober (10.1016/j.addr.2022.114449_b1005) 2014; 7
Iqbal (10.1016/j.addr.2022.114449_b0015) 2017; 17
Maeda (10.1016/j.addr.2022.114449_b0075) 2015; 91
Ji (10.1016/j.addr.2022.114449_b0575) 2015; 27
Dvorak (10.1016/j.addr.2022.114449_b1010) 2015; 3
Unzek (10.1016/j.addr.2022.114449_b0905) 2007; 16
Fu (10.1016/j.addr.2022.114449_b0435) 2020; 353
Hu (10.1016/j.addr.2022.114449_b0515) 2017; 11
Jain (10.1016/j.addr.2022.114449_b0155) 2010; 7
Ngambenjawong (10.1016/j.addr.2022.114449_b0430) 2017; 114
10.1016/j.addr.2022.114449_b0530
Yang (10.1016/j.addr.2022.114449_b0360) 2018; 182
Izci (10.1016/j.addr.2022.114449_b0350) 2021; 121
Liu (10.1016/j.addr.2022.114449_b0745) 2019; 19
Couvreur (10.1016/j.addr.2022.114449_b0020) 2019; 311–312
Kersten (10.1016/j.addr.2022.114449_b0995) 2017; 9
Maeda (10.1016/j.addr.2022.114449_b0060) 2010; 21
Park (10.1016/j.addr.2022.114449_b0330) 2016; 30
Chronopoulos (10.1016/j.addr.2022.114449_b0510) 2016; 7
Islam (10.1016/j.addr.2022.114449_b0295) 2018; 17
Yoshida (10.1016/j.addr.2022.114449_b0980) 2020; 13
Jain (10.1016/j.addr.2022.114449_b0235) 2005; 307
Barenholz (10.1016/j.addr.2022.114449_b0230) 2012; 160
Mpekris (10.1016/j.addr.2022.114449_b0565) 2017; 261
10.1016/j.addr.2022.114449_b0100
Vaupel (10.1016/j.addr.2022.114449_b0180) 2004; 381
Höckel (10.1016/j.addr.2022.114449_b0185) 2001; 93
Maeda (10.1016/j.addr.2022.114449_b0290) 1996; 33
Tang (10.1016/j.addr.2022.114449_b0615) 2019; 9
Hubbi (10.1016/j.addr.2022.114449_b0200) 2013; 288
Yokoi (10.1016/j.addr.2022.114449_b0270) 2014; 345
Egeblad (10.1016/j.addr.2022.114449_b0245) 2010; 18
Liu (10.1016/j.addr.2022.114449_b0780) 2017; 127
Yan (10.1016/j.addr.2022.114449_b0450) 2017; 36
Noguchi (10.1016/j.addr.2022.114449_b0380) 1992; 83
Golombek (10.1016/j.addr.2022.114449_b0255) 2018; 130
Shi (10.1016/j.addr.2022.114449_b0265) 2017; 17
Sica (10.1016/j.addr.2022.114449_b0470) 2006; 42
Stylianopoulos (10.1016/j.addr.2022.114449_b0645) 2013; 4
Matsumura (10.1016/j.addr.2022.114449_b0035) 1986; 46
Jin (10.1016/j.addr.2022.114449_b0680) 2018; 35
Hori (10.1016/j.addr.2022.114449_b0385) 2000; 91
Ostman (10.1016/j.addr.2022.114449_b0630) 2012; 18
Luan (10.1016/j.addr.2022.114449_b0250) 2021; 275
Forbes (10.1016/j.addr.2022.114449_b0930) 2010; 10
Zhou (10.1016/j.addr.2022.114449_b0475) 2020; 8
Chen (10.1016/j.addr.2022.114449_b0555) 2019; 6
Xiangsheng (10.1016/j.addr.2022.114449_b0695) 2019; 9
Germain (10.1016/j.addr.2022.114449_b0005) 2020; 326
Krafft (10.1016/j.addr.2022.114449_b0500) 2001; 47
Pang (10.1016/j.addr.2022.114449_b0775) 2015; 1
Boucher (10.1016/j.addr.2022.114449_b0130) 1992; 52
Kisucka (10.1016/j.addr.2022.114449_b0390) 2006; 103
Liu (10.1016/j.addr.2022.114449_b0410) 2021; 172
Sakhtianchi (10.1016/j.addr.2022.114449_b0730) 2013; 201
Muz (10.1016/j.addr.2022.114449_b0170) 2015; 3
Teicher (10.1016/j.addr.2022.114449_b0175) 1995; 23
Jacobetz (10.1016/j.addr.2022.114449_b0135) 2013; 62
Yang (10.1016/j.addr.2022.114449_b0785) 2018; 14
Stylianopoulos (10.1016/j.addr.2022.114449_b0165) 2018
Nesteruk (10.1016/j.addr.2022.114449_b1015) 2015; 117
Zangi (10.1016/j.addr.2022.114449_b0920) 2009; 27
Matsumoto (10.1016/j.addr.2022.114449_b1060) 2021; 11
Liu (10.1016/j.addr.2022.114449_b0675) 2020; 20
Kano (10.1016/j.addr.2022.114449_b0325) 2009; 100
Theocharis (10.1016/j.addr.2022.114449_b0520) 2016
Mazur (10.1016/j.addr.2022.114449_b1000) 2012; 61
Li (10.1016/j.addr.2022.114449_b0370) 2020; 36
Zhang (10.1016/j.addr.2022.114449_b0195) 2021; 13
Chimen (10.1016/j.addr.2022.114449_b0875) 2017
Pérez-Medina (10.1016/j.addr.2022.114449_b0260) 2016; 7
Akashi (10.1016/j.addr.2022.114449_b0975) 2013; 42
Gerlinger (10.1016/j.addr.2022.114449_b0210) 2012; 366
Keramati (10.1016/j.addr.2022.114449_b0365) 2013; 11
Nichols (10.1016/j.addr.2022.114449_b0215) 2014; 190
Wang (10.1016/j.addr.2022.114449_b0605) 2020; 113
Maeda (10.1016/j.addr.2022.114449_b0140) 1989; 6
Kim (10.1016/j.addr.2022.114449_b0240) 2010; 121
Chrastina (10.1016/j.addr.2022.114449_b0805) 2010; 47
El-Dakdouki (10.1016/j.addr.2022.114449_b0750) 2013; 5
Timin (10.1016/j.addr.2022.114449_b0815) 2018
Zhang (10.1016/j.addr.2022.114449_b0700) 2020; 14
10.1016/j.addr.2022.114449_b0275
He (10.1016/j.addr.2022.114449_b0840) 2010; 31
Yu (10.1016/j.addr.2022.114449_b1050) 2015; 9
Venditto (10.1016/j.addr.2022.114449_b0065) 2013; 65
Jin (10.1016/j.addr.2022.114449_b0690) 2020; 320
Gordon (10.1016/j.addr.2022.114449_b0985) 1980; 77
Sordi (10.1016/j.addr.2022.114449_b0900) 2009; 87
Danhier (10.1016/j.addr.2022.114449_b0120) 2016; 244
10.1016/j.addr.2022.114449_b0480
Xue (10.1016/j.addr.2022.114449_b0820) 2017; 12
Nakamizo (10.1016/j.addr.2022.114449_b0915) 2005; 65
Chen (10.1016/j.addr.2022.114449_b0890) 2001; 32
Azzopardi (10.1016/j.addr.2022.114449_b0045) 2013; 68
Holden (10.1016/j.addr.2022.114449_b0870) 2010; 5
Chen (10.1016/j.addr.2022.114449_b0625) 2018; 18
Laplagne (10.1016/j.addr.2022.114449_b0460) 2019; 20
Zhang (10.1016/j.addr.2022.114449_b0340) 2021; 15
Kalyane (10.1016/j.addr.2022.114449_b1045) 2019; 98
Liu (10.1016/j.addr.2022.114449_b0600) 2018; 10
Sindhwani (10.1016/j.addr.2022.114449_b0705) 2020; 19
Nakamura (10.1016/j.addr.2022.114449_b0080) 2015; 12
Th Ee K (10.1016/j.addr.2022.114449_b0345) 2018
Greish (10.1016/j.addr.2022.114449_b0050) 2010; 624
Wu (10.1016/j.addr.2022.114449_b1065) 2021; 11
Kim (10.1016/j.addr.2022.114449_b0720) 2017; 267
Liu (10.1016/j.addr.2022.114449_b0485) 2019; 11
Cho (10.1016/j.addr.2022.114449_b0970) 2016; 39
Chau
References_xml – volume: 4
  start-page: 998
  year: 2014
  end-page: 1013
  ident: b0955
  article-title: Patient-derived xenograft models: an emerging platform for translational cancer research
  publication-title: Cancer Discov
– volume: 27
  start-page: 1865
  year: 2015
  end-page: 1873
  ident: b0575
  article-title: Peptide assembly integration of fibroblast-targeting and cell-penetration features for enhanced antitumor drug delivery
  publication-title: Adv. Mater.
– volume: 326
  start-page: 164
  year: 2020
  end-page: 171
  ident: b0005
  article-title: Delivering the power of nanomedicine to patients today
  publication-title: J. Control. Release
– volume: 18
  start-page: 884
  year: 2010
  end-page: 901
  ident: b0245
  article-title: Tumors as organs: complex tissues that interface with the entire organism
  publication-title: Dev. Cell
– volume: 17
  start-page: 149
  year: 2017
  end-page: 159
  ident: b0015
  article-title: Targeted Drug Delivery Systems and Their Therapeutic Applications in Cancer and Immune Pathological Conditions
  publication-title: Infect Disord Drug Targets
– reference: R.K. Jain, R.K. Jain, Determinants of tumor blood flow: A review. Cancer Res 48: 2641-2658. Cancer Research, 1988. 48(10): p. 2641-2658.
– reference: Editor, The two directions of cancer nanomedicine. Nature Nanotechnology, 2019. 14(12): p. 1083-1083.
– volume: 11
  start-page: 48261
  year: 2019
  end-page: 48270
  ident: b0485
  article-title: Oxygen-Self-Supplying and HIF-1α-Inhibiting Core-Shell Nanosystem for Hypoxia-Resistant Photodynamic Therapy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 692
  year: 2017
  end-page: 700
  ident: b0820
  article-title: Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence
  publication-title: Nat Nanotechnol
– volume: 103
  start-page: 12
  year: 2016
  end-page: 21
  ident: b0560
  article-title: Cyclopamine disrupts tumor extracellular matrix and improves the distribution and efficacy of nanotherapeutics in pancreatic cancer
  publication-title: Biomaterials
– volume: 15
  start-page: 379
  year: 2018
  end-page: 395
  ident: b0655
  article-title: Particle morphology: an important factor affecting drug delivery by nanocarriers into solid tumors
  publication-title: Expert opinion on drug delivery
– volume: 7
  start-page: 653
  year: 2010
  end-page: 664
  ident: b0155
  article-title: Delivering nanomedicine to solid tumors
  publication-title: Nat Rev Clin Oncol
– volume: 12
  start-page: 8255
  year: 2018
  end-page: 8265
  ident: b1055
  article-title: Multifunctional theranostic nanoparticles derived from fruit-extracted anthocyanins with dynamic disassembly and elimination abilities
  publication-title: ACS Nano
– volume: 11
  start-page: 402
  year: 2016
  end-page: 414
  ident: b0205
  article-title: Nanomedicine and tumor heterogeneity: Concept and complex reality
  publication-title: Nano Today
– volume: 6
  start-page: 1802070
  year: 2019
  ident: b0555
  article-title: Therapeutic Remodeling of the Tumor Microenvironment Enhances Nanoparticle Delivery
  publication-title: Adv Sci (Weinh)
– volume: 23
  start-page: 173
  year: 2016
  end-page: 182
  ident: b0055
  article-title: A Retrospective 30 Years After Discovery of the Enhanced Permeability and Retention Effect of Solid Tumors: Next-Generation Chemotherapeutics and Photodynamic Therapy-Problems, Solutions, and Prospects
  publication-title: Microcirculation
– volume: 38
  start-page: 5799
  year: 2018
  end-page: 5804
  ident: b0545
  article-title: 4-Methylumbelliferone decreases the hyaluronan-rich extracellular matrix and increases the effectiveness of 5-fluorouracil
  publication-title: Anticancer Res.
– volume: 10
  start-page: 678
  year: 2018
  end-page: 691
  ident: b0315
  article-title: Analytical and functional similarity of Amgen biosimilar ABP 215 to bevacizumab
  publication-title: MAbs
– volume: 14
  start-page: 799
  year: 2019
  end-page: 809
  ident: b0740
  article-title: Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy
  publication-title: Nat Nanotechnol
– volume: 133
  start-page: 775
  year: 2008
  end-page: 787
  ident: b0880
  article-title: Regulatory T cells and immune tolerance
  publication-title: Cell
– volume: 75
  start-page: 4742
  year: 2015
  end-page: 4752
  ident: b0455
  article-title: Macrophage Blockade Using CSF1R Inhibitors Reverses the Vascular Leakage Underlying Malignant Ascites in Late-Stage Epithelial Ovarian Cancer
  publication-title: Cancer Res
– reference: A. Jasim, S. Abdelghany, K. Greish, Chapter 2 - Current Update on the Role of Enhanced Permeability and Retention Effect in Cancer Nanomedicine, in Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes, V. Mishra, et al., Editors. 2017, Academic Press. p. 62-109.
– volume: 13
  start-page: 4
  year: 2020
  ident: b0980
  article-title: Applications of patient-derived tumor xenograft models and tumor organoids
  publication-title: J Hematol Oncol
– volume: 99
  start-page: 180
  year: 2016
  end-page: 185
  ident: b0635
  article-title: Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy
  publication-title: Adv. Drug Deliv. Rev.
– volume: 7
  start-page: 12630
  year: 2016
  ident: b0510
  article-title: ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion
  publication-title: Nat Commun
– volume: 11
  start-page: 4916
  year: 2017
  end-page: 4925
  ident: b0515
  article-title: Quercetin Remodels the Tumor Microenvironment To Improve the Permeation, Retention, and Antitumor Effects of Nanoparticles
  publication-title: ACS Nano
– volume: 71
  start-page: 1805
  year: 2011
  end-page: 1815
  ident: b0865
  article-title: Use of macrophages to target therapeutic adenovirus to human prostate tumors
  publication-title: Cancer Res
– volume: 87
  start-page: S42
  year: 2009
  end-page: S45
  ident: b0900
  article-title: Mesenchymal stem cell homing capacity
  publication-title: Transplantation
– volume: 35
  start-page: 13
  year: 2018
  ident: b0680
  article-title: Optimization of Weight Ratio for DSPE-PEG/TPGS Hybrid Micelles to Improve Drug Retention and Tumor Penetration
  publication-title: Pharm Res
– volume: 14
  start-page: 1007
  year: 2019
  end-page: 1017
  ident: b0105
  article-title: Smart cancer nanomedicine
  publication-title: Nat. Nanotechnol.
– volume: 261
  start-page: 105
  year: 2017
  end-page: 112
  ident: b0565
  article-title: Sonic-hedgehog pathway inhibition normalizes desmoplastic tumor microenvironment to improve chemo- and nanotherapy
  publication-title: J Control Release
– volume: 48
  start-page: 747
  year: 1985
  end-page: 753
  ident: b0300
  article-title: A serratial protease causes vascular permeability reaction by activation of the Hageman factor-dependent pathway in guinea pigs
  publication-title: Infect Immun
– volume: 7
  start-page: 383
  year: 2012
  end-page: 388
  ident: b0320
  article-title: Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner
  publication-title: Nat. Nanotechnol.
– volume: 19
  start-page: 566
  year: 2020
  end-page: 575
  ident: b0705
  article-title: The entry of nanoparticles into solid tumours
  publication-title: Nat Mater
– volume: 7
  start-page: 11838
  year: 2016
  ident: b0260
  article-title: Nanoreporter PET predicts the efficacy of anti-cancer nanotherapy
  publication-title: Nat. Commun.
– volume: 23
  year: 2012
  ident: b0835
  article-title: Role of surface charge in cytotoxicity of charged manganese ferrite nanoparticles towards macrophages
  publication-title: Nanotechnology
– volume: 10
  start-page: 2001550
  year: 2021
  ident: b0405
  article-title: Polymeric nitric oxide delivery nanoplatforms for treating cancer, cardiovascular diseases, and infection
  publication-title: Adv. Healthcare Mater.
– volume: 91
  start-page: 3
  year: 2015
  end-page: 6
  ident: b0075
  article-title: Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity
  publication-title: Adv Drug Deliv Rev
– volume: 72
  start-page: 205
  year: 2017
  end-page: 208
  ident: b0795
  article-title: Co-administration of tLyp-1 with polymeric paclitaxel conjugates: Enhanced intratumoral accumulation and anti-tumor efficacy
  publication-title: Pharmazie
– volume: 38
  start-page: 1
  year: 2021
  end-page: 19
  ident: b0910
  article-title: Recent Advancement and Technical Challenges in Developing Small Extracellular Vesicles for Cancer Drug Delivery
  publication-title: Pharm. Res.
– volume: 11
  start-page: 941
  year: 2016
  end-page: 947
  ident: b0940
  article-title: Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 9935
  year: 2018
  end-page: 9948
  ident: b0660
  article-title: A size switchable nanoplatform for targeting the tumor microenvironment and deep tumor penetration
  publication-title: Nanoscale
– volume: 100
  start-page: 201
  year: 2008
  end-page: 217
  ident: b0755
  article-title: Cell-penetrating peptides: from molecular mechanisms to therapeutics
  publication-title: Biol Cell
– volume: 6
  start-page: 193
  year: 1989
  end-page: 210
  ident: b0140
  article-title: Tumoritropic and lymphotropic principles of macromolecular drugs
  publication-title: Crit Rev Ther Drug Carrier Syst
– volume: 19
  start-page: 478
  year: 2020
  end-page: 480
  ident: b0715
  article-title: Active transcytosis and new opportunities for cancer nanomedicine
  publication-title: Nat Mater
– volume: 36
  start-page: 6049
  year: 2017
  end-page: 6058
  ident: b0450
  article-title: Inhibition of colony stimulating factor-1 receptor abrogates microenvironment-mediated therapeutic resistance in gliomas
  publication-title: Oncogene
– volume: 117
  start-page: 125
  year: 2015
  end-page: 131
  ident: b1015
  article-title: Tumor stage, tumor site and HPV dependent correlation of perfusion CT parameters and [18F]-FDG uptake in head and neck squamous cell carcinoma
  publication-title: Radiother Oncol
– volume: 83
  start-page: 240
  year: 1992
  end-page: 243
  ident: b0380
  article-title: Enhanced tumor localization of monoclonal antibody by treatment with kininase II inhibitor and angiotensin II
  publication-title: Jpn J Cancer Res
– volume: 442
  start-page: 396
  year: 2019
  end-page: 408
  ident: b0550
  article-title: Intratumoral injection of gels containing losartan microspheres and (PLG-g-mPEG)-cisplatin nanoparticles improves drug penetration, retention and anti-tumor activity
  publication-title: Cancer Lett.
– volume: 104
  start-page: 2224
  year: 2004
  end-page: 2234
  ident: b0845
  article-title: Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues
  publication-title: Blood
– volume: 20
  start-page: 1637
  year: 2020
  end-page: 1646
  ident: b0675
  article-title: Charge Conversional Biomimetic Nanocomplexes as a Multifunctional Platform for Boosting Orthotopic Glioblastoma RNAi Therapy
  publication-title: Nano Lett
– volume: 201
  start-page: 14
  year: 2015
  end-page: 21
  ident: b0770
  article-title: Cell penetrating peptides improve tumor delivery of cargos through neuropilin-1-dependent extravasation
  publication-title: J Control Release
– start-page: 3268
  year: 2016
  ident: b0595
  article-title: Hyaluronidase Embedded in Nanocarrier PEG Shell for Enhanced Tumor Penetration and Highly Efficient Antitumor Efficacy
  publication-title: Nano Lett.
– volume: 17
  start-page: 20
  year: 2017
  end-page: 37
  ident: b0265
  article-title: Cancer nanomedicine: progress, challenges and opportunities
  publication-title: Nat. Rev. Cancer
– volume: 267
  start-page: 15
  year: 2017
  end-page: 30
  ident: b0720
  article-title: Overcoming key biological barriers to cancer drug delivery and efficacy
  publication-title: J Control Release
– volume: 307
  start-page: 58
  year: 2005
  end-page: 62
  ident: b0235
  article-title: Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy
  publication-title: Science
– volume: 160
  start-page: 117
  year: 2012
  end-page: 134
  ident: b0230
  article-title: Doxil — The first FDA-approved nano-drug: Lessons learned
  publication-title: J. Control. Release
– volume: 345
  start-page: 48
  year: 2014
  end-page: 55
  ident: b0270
  article-title: Serum biomarkers for personalization of nanotherapeutics-based therapy in different tumor and organ microenvironments
  publication-title: Cancer Lett.
– volume: 157
  start-page: 142
  year: 2020
  end-page: 160
  ident: b0280
  article-title: Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers
  publication-title: Adv. Drug Deliv. Rev.
– volume: 10
  start-page: 43493
  year: 2018
  ident: b0600
  article-title: Collagenase-Encapsulated pH-Responsive Nanoscale Coordination Polymers for Tumor Microenvironment Modulation and Enhanced Photodynamic Nanomedicine
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 243
  year: 2001
  end-page: 254
  ident: b1020
  article-title: Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes
  publication-title: Clin Cancer Res
– volume: 9
  start-page: 8018
  year: 2019
  end-page: 8025
  ident: b0695
  article-title: Transcytosis - An effective targeting strategy that is complementary to “EPR effect” for pancreatic cancer nano drug delivery
  publication-title: Theranostics
– volume: 15
  start-page: 84
  year: 2016
  end-page: 93
  ident: b0570
  article-title: Tumor-Priming Smoothened Inhibitor Enhances Deposition and Efficacy of Cytotoxic Nanoparticles in a Pancreatic Cancer Model
  publication-title: Mol Cancer Ther
– volume: 3
  start-page: 1
  year: 2015
  end-page: 11
  ident: b1010
  article-title: Tumors: wounds that do not heal-redux
  publication-title: Cancer Immunol Res
– volume: 15
  start-page: 1186
  year: 2021
  end-page: 1198
  ident: b0340
  article-title: CC Chemokine Receptor 2-Targeting Copper Nanoparticles for Positron Emission Tomography-Guided Delivery of Gemcitabine for Pancreatic Ductal Adenocarcinoma
  publication-title: ACS Nano
– volume: 13
  start-page: 6049
  year: 2018
  end-page: 6058
  ident: b0495
  article-title: Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment
  publication-title: Int J Nanomedicine
– volume: 19
  start-page: 8010
  year: 2019
  end-page: 8020
  ident: b0745
  article-title: Transcytosis of Nanomedicine for Tumor Penetration
  publication-title: Nano Lett
– volume: 121
  start-page: 1746
  year: 2021
  end-page: 1803
  ident: b0350
  article-title: The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors
  publication-title: Chem Rev
– volume: 172
  start-page: 391
  year: 2013
  ident: b0085
  article-title: Questions on the role of the EPR effect in tumor targeting
  publication-title: J. Control. Release
– volume: 36
  start-page: 369
  year: 2020
  end-page: 374
  ident: b0370
  article-title: Thrombolytic effects of recombinant staphylokinase on coronary thrombosis in miniature pigs
  publication-title: Zhongguo Ying Yong Sheng Li Xue Za Zhi
– volume: 5
  start-page: 25
  year: 2010
  end-page: 36
  ident: b0870
  article-title: Surface engineering of macrophages with nanoparticles to generate a cell-nanoparticle hybrid vehicle for hypoxia-targeted drug delivery
  publication-title: Int J Nanomedicine
– start-page: 1700818
  year: 2018
  ident: b0815
  article-title: Cell-Based Drug Delivery and Use of Nano-and Microcarriers for Cell Functionalization
  publication-title: Adv. Healthcare Mater.
– volume: 24
  start-page: 179
  year: 2016
  end-page: 191
  ident: b0010
  article-title: Nanocarriers for cancer-targeted drug delivery
  publication-title: J Drug Target
– reference: H. Lee, et al., 64Cu-MM-302 Positron Emission Tomography Quantifies Variability of Enhanced Permeability and Retention of Nanoparticles in Relation to Treatment Response in Patients with Metastatic Breast Cancer. Clinical Cancer Research, 2017: p. clincanres.3193.2016.
– volume: 33
  start-page: 222
  year: 1996
  end-page: 230
  ident: b0290
  article-title: Bradykinin and nitric oxide in infectious disease and cancer
  publication-title: Immunopharmacology
– volume: 46
  start-page: 3830
  year: 2017
  end-page: 3852
  ident: b0640
  article-title: Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment
  publication-title: Chem Soc Rev
– volume: 381
  start-page: 335
  year: 2004
  end-page: 354
  ident: b0180
  article-title: Tumor hypoxia and malignant progression
  publication-title: Methods Enzymol
– volume: 7
  start-page: 7
  year: 2016
  ident: b0885
  article-title: Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells
  publication-title: Stem Cell Res Ther
– volume: 58
  start-page: 159
  year: 1998
  end-page: 165
  ident: b0375
  article-title: Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger
  publication-title: Cancer Res
– reference: F. Krombach, et al., Cell size of alveolar macrophages: an interspecies comparison. Environ Health Perspect. 105 Suppl 5(Suppl 5) (1997) 1261-3.
– volume: 10
  start-page: 785
  year: 2010
  end-page: 794
  ident: b0930
  article-title: Engineering the perfect (bacterial) cancer therapy
  publication-title: Nat. Rev. Cancer
– volume: 127
  start-page: 2007
  year: 2017
  end-page: 2018
  ident: b0780
  article-title: Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer
  publication-title: J Clin Invest
– volume: 12
  start-page: 95
  year: 2022
  ident: b0115
  article-title: EPR Effect-Based Tumor Targeted Nanomedicine: A Promising Approach for Controlling Cancer
  publication-title: Journal of Personalized Medicine
– volume: 106
  start-page: 3179
  year: 2017
  end-page: 3187
  ident: b0220
  article-title: Parameters Affecting the Enhanced Permeability and Retention Effect: The Need for Patient Selection
  publication-title: J Pharm Sci
– volume: 28
  start-page: 7340
  year: 2016
  end-page: 7364
  ident: b0650
  article-title: Hierarchical Targeting Strategy for Enhanced Tumor Tissue Accumulation/Retention and Cellular Internalization
  publication-title: Adv Mater
– volume: 42
  start-page: 1275
  year: 2013
  end-page: 1282
  ident: b0975
  article-title: Histological advantages of the tumor graft: a murine model involving transplantation of human pancreatic cancer tissue fragments
  publication-title: Pancreas
– volume: 31
  start-page: 3657
  year: 2010
  end-page: 3666
  ident: b0840
  article-title: Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles
  publication-title: Biomaterials
– volume: 13
  start-page: 169
  year: 2013
  end-page: 180
  ident: b0830
  article-title: Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps
  publication-title: Cell Host Microbe
– volume: 64
  start-page: 1205
  year: 2012
  end-page: 1219
  ident: b1030
  article-title: Development of macromolecular prodrug for rheumatoid arthritis
  publication-title: Adv. Drug Deliv. Rev.
– volume: 47
  start-page: 531
  year: 2010
  end-page: 543
  ident: b0805
  article-title: Lung vascular targeting using antibody to aminopeptidase P: CT-SPECT imaging, biodistribution and pharmacokinetic analysis
  publication-title: J Vasc Res
– volume: 105
  start-page: 11613
  year: 2008
  end-page: 11618
  ident: b0735
  article-title: The effect of particle design on cellular internalization pathways
  publication-title: Proc. Natl. Acad. Sci.
– start-page: 651
  year: 2016
  end-page: 662
  ident: b0465
  article-title: Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial
  publication-title: Lancet Oncol.
– volume: 20
  start-page: 409
  year: 2017
  end-page: 426
  ident: b0425
  article-title: Tumor angiogenesis and vascular normalization: alternative therapeutic targets
  publication-title: Angiogenesis
– volume: 33
  start-page: 1505
  year: 2015
  end-page: 1508
  ident: b0190
  article-title: Targeting tumor hypoxia with hypoxia-activated prodrugs
  publication-title: J Clin Oncol
– volume: 172
  start-page: 80
  year: 2021
  end-page: 103
  ident: b0410
  article-title: Tumor microenvironment remodeling-based penetration strategies to amplify nanodrug accessibility to tumor parenchyma
  publication-title: Adv Drug Deliv Rev
– volume: 19
  start-page: 486
  year: 2020
  end-page: 487
  ident: b0710
  article-title: A nanoparticle's pathway into tumours
  publication-title: Nat Mater
– volume: 169
  start-page: 313
  year: 2018
  end-page: 320
  ident: b0685
  article-title: Charge reversible and biodegradable nanocarriers showing dual pH-/reduction-sensitive disintegration for rapid site-specific drug delivery
  publication-title: Colloids Surf., B
– volume: 62
  start-page: 112
  year: 2013
  end-page: 120
  ident: b0135
  article-title: Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer
  publication-title: Gut
– volume: 61
  start-page: 1488
  year: 2012
  end-page: 1500
  ident: b1000
  article-title: Genetically engineered mouse models of pancreatic cancer: unravelling tumour biology and progressing translational oncology
  publication-title: Gut
– volume: 64
  start-page: 3731
  year: 2004
  end-page: 3736
  ident: b0420
  article-title: Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors
  publication-title: Cancer Res.
– volume: 91
  start-page: 261
  year: 2000
  end-page: 269
  ident: b0385
  article-title: Tumor-selective blood flow decrease induced by an angiotensin converting enzyme inhibitor, temocapril hydrochloride
  publication-title: Jpn J Cancer Res
– volume: 106
  start-page: 4254
  year: 2009
  end-page: 4259
  ident: b0620
  article-title: Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis
  publication-title: Proc Natl Acad Sci U S A
– volume: 65
  start-page: 3307
  year: 2005
  end-page: 3318
  ident: b0915
  article-title: Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas
  publication-title: Cancer Res
– volume: 422
  start-page: 37
  year: 2003
  end-page: 44
  ident: b0725
  article-title: Regulated portals of entry into the cell
  publication-title: Nature
– volume: 6
  start-page: 243
  year: 2006
  end-page: 255
  ident: b0400
  article-title: Manipulating the angiotensin system – new approaches to the treatment of solid tumours
  publication-title: Expert Opin. Biol. Ther.
– volume: 288
  start-page: 20768
  year: 2013
  end-page: 20775
  ident: b0200
  article-title: Sirtuin-7 inhibits the activity of hypoxia-inducible factors
  publication-title: J. Biol. Chem.
– volume: 4
  start-page: 806
  year: 2004
  end-page: 813
  ident: b0125
  article-title: High interstitial fluid pressure - an obstacle in cancer therapy
  publication-title: Nat Rev Cancer
– volume: 9
  start-page: 344
  year: 2014
  end-page: 364
  ident: b1070
  article-title: Intracellular delivery of nanomaterials: How to catch endosomal escape in the act
  publication-title: Nano Today
– volume: 18
  start-page: 1332
  year: 2012
  end-page: 1334
  ident: b0630
  article-title: The tumor microenvironment controls drug sensitivity
  publication-title: Nat. Med.
– volume: 275
  year: 2021
  ident: b0250
  article-title: Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation
  publication-title: Biomaterials
– volume: 130
  start-page: 17
  year: 2018
  end-page: 38
  ident: b0255
  article-title: Tumor targeting via EPR: Strategies to enhance patient responses
  publication-title: Adv Drug Deliv Rev
– volume: 114
  start-page: 206
  year: 2017
  end-page: 221
  ident: b0430
  article-title: Progress in tumor-associated macrophage (TAM)-targeted therapeutics
  publication-title: Adv Drug Deliv Rev
– volume: 66
  start-page: 225
  year: 2018
  end-page: 230
  ident: b0950
  article-title: Establishment of a Patient-Derived Tumor Xenograft Model and Application for Precision Cancer Medicine
  publication-title: Chem Pharm Bull (Tokyo)
– volume: 14
  start-page: 1801694
  year: 2018
  ident: b0310
  article-title: Perfluorocarbon Nanoparticles Mediated Platelet Blocking Disrupt Vascular Barriers to Improve the Efficacy of Oxygen-Sensitive Antitumor Drugs
  publication-title: Small
– volume: 9
  start-page: 615
  year: 2019
  end-page: 624
  ident: b0615
  article-title: Depletion of collagen by losartan to improve tumor accumulation and therapeutic efficacy of photodynamic nanoplatforms
  publication-title: Drug Deliv Transl Res
– volume: 1
  year: 2015
  ident: b0775
  article-title: Neuropilin-1 and heparan sulfate proteoglycans cooperate in cellular uptake of nanoparticles functionalized by cationic cell-penetrating peptides
  publication-title: Sci Adv
– volume: 5
  start-page: 3904
  year: 2013
  end-page: 3911
  ident: b0750
  article-title: Development of drug loaded nanoparticles for tumor targeting. Part 2: Enhancement of tumor penetration through receptor mediated transcytosis in 3D tumor models
  publication-title: Nanoscale
– volume: 464
  start-page: 999
  year: 2010
  end-page: 1005
  ident: b0965
  article-title: Genome remodelling in a basal-like breast cancer metastasis and xenograft
  publication-title: Nature
– volume: 624
  start-page: 25
  year: 2010
  end-page: 37
  ident: b0050
  article-title: Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting
  publication-title: Methods Mol Biol
– volume: 2018
  start-page: 3647
  year: 1950
  ident: b0585
  article-title: Tumor Tolerance-Promoting Function of Regulatory T Cells Is Optimized by CD28, but Strictly Dependent on Calcineurin
  publication-title: Journal of immunology (Baltimore, Md.
– volume: 65
  start-page: 80
  year: 2013
  end-page: 88
  ident: b0065
  article-title: Cancer nanomedicines: So many papers and so few drugs!
  publication-title: Adv. Drug Deliv. Rev.
– volume: 100
  start-page: 173
  year: 2009
  end-page: 180
  ident: b0325
  article-title: Comparison of the effects of the kinase inhibitors imatinib, sorafenib, and transforming growth factor-β receptor inhibitor on extravasation of nanoparticles from neovasculature
  publication-title: Cancer Sci.
– volume: 10
  start-page: 2348
  year: 2020
  end-page: 2361
  ident: b0665
  article-title: GSH-responsive SN38 dimer-loaded shape-transformable nanoparticles with iRGD for enhancing chemo-photodynamic therapy
  publication-title: Acta Pharmaceutica Sinica B
– volume: 116
  start-page: 2210
  year: 2019
  end-page: 2219
  ident: b0505
  article-title: Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma
  publication-title: Proc Natl Acad Sci U S A
– volume: 42
  start-page: 717
  year: 2006
  end-page: 727
  ident: b0470
  article-title: Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy
  publication-title: Eur J Cancer
– volume: 21
  start-page: 797
  year: 2010
  end-page: 802
  ident: b0060
  article-title: Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects
  publication-title: Bioconjug Chem
– volume: 20
  start-page: 4719
  year: 2019
  ident: b0460
  article-title: Latest Advances in Targeting the Tumor Microenvironment for Tumor Suppression
  publication-title: Int. J. Mol. Sci.
– volume: 39
  start-page: 77
  year: 2016
  end-page: 86
  ident: b0970
  article-title: An Integrative Approach to Precision Cancer Medicine Using Patient-Derived Xenografts
  publication-title: Mol Cells
– volume: 11
  start-page: 825
  year: 2021
  ident: b1060
  article-title: A critical review of radiation therapy: From particle beam therapy (Proton, Carbon, and BNCT) to beyond
  publication-title: Journal of Personalized Medicine
– volume: 40
  start-page: 507
  year: 2012
  end-page: 515
  ident: b0855
  article-title: Macrophages as cell-based delivery systems for nanoshells in photothermal therapy
  publication-title: Ann Biomed Eng
– volume: 157
  start-page: 195
  year: 2009
  end-page: 206
  ident: b0760
  article-title: Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics
  publication-title: Br J Pharmacol
– volume: 98
  start-page: 1252
  year: 2019
  end-page: 1276
  ident: b1045
  article-title: Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer
  publication-title: Mater Sci Eng C Mater Biol Appl
– volume: 46
  start-page: 169
  year: 2001
  end-page: 185
  ident: b0145
  article-title: SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy
  publication-title: Adv Drug Deliv Rev
– volume: 47
  start-page: 209
  year: 2001
  end-page: 228
  ident: b0500
  article-title: Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research
  publication-title: Adv Drug Deliv Rev
– volume: 63
  start-page: 136
  year: 2011
  end-page: 151
  ident: b0040
  article-title: The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect
  publication-title: Adv Drug Deliv Rev
– volume: 14
  start-page: 7170
  year: 2020
  end-page: 7180
  ident: b0700
  article-title: Peptide-Based Nanoparticles Mimic Fibrillogenesis of Laminin in Tumor Vessels for Precise Embolization
  publication-title: ACS Nano
– volume: 19
  start-page: 997
  year: 2019
  end-page: 1008
  ident: b0590
  article-title: Enhanced Drug Delivery by Nanoscale Integration of a Nitric Oxide Donor To Induce Tumor Collagen Depletion
  publication-title: Nano Lett
– volume: 235
  year: 2020
  ident: b0580
  article-title: Nano-puerarin regulates tumor microenvironment and facilitates chemo- and immunotherapy in murine triple negative breast cancer model
  publication-title: Biomaterials
– volume: 43
  start-page: 1838
  year: 2019
  end-page: 1843
  ident: b0860
  article-title: Macrophage-engulfed MoS2 for active targeted photothermal therapy
  publication-title: New J. Chem.
– volume: 32
  start-page: 1005
  year: 2001
  end-page: 1011
  ident: b0890
  article-title: Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats
  publication-title: Stroke
– volume: 12
  start-page: 4085
  year: 2017
  end-page: 4109
  ident: b1085
  article-title: High drug-loading nanomedicines: Progress, current status, and prospects
  publication-title: Int. J. Nanomed.
– volume: 98
  start-page: 15155
  year: 2001
  end-page: 15160
  ident: b0925
  article-title: Combination bacteriolytic therapy for the treatment of experimental tumors
  publication-title: PNAS
– volume: 108
  start-page: 44
  year: 2016
  end-page: 56
  ident: b0335
  article-title: Development of a multi-target peptide for potentiating chemotherapy by modulating tumor microenvironment
  publication-title: Biomaterials
– volume: 263
  start-page: 68
  year: 2017
  end-page: 78
  ident: b0525
  article-title: Extracellular matrix remodeling in vivo for enhancing tumor-targeting efficiency of nanoparticle drug carriers using the pulsed high intensity focused ultrasound
  publication-title: J Control Release
– volume: 28
  start-page: 1707249
  year: 2018
  ident: b0670
  article-title: Size/Charge Changeable Acidity-Responsive Micelleplex for Photodynamic-Improved PD-L1 Immunotherapy with Enhanced Tumor Penetration
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 667
  year: 2017
  end-page: 679
  ident: b0305
  article-title: Nanoparticle-mediated local depletion of tumour-associated platelets disrupts vascular barriers and augments drug accumulation in tumours
  publication-title: Nat. Biomed. Eng.
– volume: 72
  start-page: 4875
  year: 2012
  end-page: 4882
  ident: b0225
  article-title: Intratumor heterogeneity: evolution through space and time
  publication-title: Cancer Res.
– volume: 31
  start-page: 2583
  year: 2014
  end-page: 2592
  ident: b1080
  article-title: Development of High-Content Gemcitabine PEGylated Liposomes and Their Cytotoxicity on Drug-Resistant Pancreatic Tumour Cells
  publication-title: Pharm Res
– volume: 46
  start-page: 6387
  year: 1986
  end-page: 6392
  ident: b0035
  article-title: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs
  publication-title: Cancer Res
– volume: 30
  start-page: 953
  year: 2016
  end-page: 967
  ident: b0330
  article-title: Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment
  publication-title: Cancer Cell
– volume: 14
  start-page: 1396
  year: 2018
  end-page: 1408
  ident: b0785
  article-title: iRGD-Mediated and Enzyme-Induced Precise Targeting and Retention of Gold Nanoparticles for the Enhanced Imaging and Treatment of Breast Cancer
  publication-title: J Biomed Nanotechnol
– volume: 9
  start-page: 6655
  year: 2015
  end-page: 6674
  ident: b1050
  article-title: Clearance pathways and tumor targeting of imaging nanoparticles
  publication-title: ACS Nano
– volume: 496
  year: 2020
  ident: b1025
  article-title: Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability
  publication-title: J Theor Biol
– volume: 52
  start-page: 5110
  year: 1992
  end-page: 5114
  ident: b0130
  article-title: Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse
  publication-title: Cancer Res
– start-page: 73
  year: 2017
  end-page: 84
  ident: b0875
  article-title: Introduction: T Cell Trafficking in Inflammation and Immunity
  publication-title: Methods Mol Biol
– reference: W. Zeng, et al., Hypoxia and hypoxia inducible factors in tumor metabolism. Cancer Lett, 2015. 356(2 Pt A): p. 263-7.
– volume: 13
  start-page: 3070
  year: 2021
  ident: b0195
  article-title: Perspectives on hypoxia signaling in tumor stroma
  publication-title: Cancers
– volume: 65
  start-page: 1920
  year: 2017
  end-page: 1935
  ident: b0825
  article-title: Neutrophils promote hepatic metastasis growth through fibroblast growth factor 2-dependent angiogenesis in mice
  publication-title: Hepatology
– volume: 8
  start-page: 1102
  year: 2019
  ident: b0415
  article-title: Trends and Challenges in Tumor Anti-Angiogenic Therapies
  publication-title: Cells
– volume: 23
  start-page: 395
  year: 1995
  end-page: 405
  ident: b0175
  article-title: An overview on oxygen carriers in cancer therapy
  publication-title: Artif Cells Blood Substit Immobil Biotechnol
– volume: 201
  start-page: 18
  year: 2013
  end-page: 29
  ident: b0730
  article-title: Exocytosis of nanoparticles from cells: role in cellular retention and toxicity
  publication-title: Adv. Colloid Interface Sci.
– volume: 76
  start-page: 699
  year: 2015
  end-page: 712
  ident: b0800
  article-title: Albumin-bound nanoparticle (nab) paclitaxel exhibits enhanced paclitaxel tissue distribution and tumor penetration
  publication-title: Cancer Chemother Pharmacol
– volume: 29
  start-page: 244
  year: 2001
  end-page: 255
  ident: b0895
  article-title: Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion
  publication-title: Exp Hematol
– volume: 7
  year: 2014
  ident: b1005
  article-title: Inflammation and the blood microvascular system
  publication-title: Cold Spring Harb Perspect Biol
– volume: 244
  start-page: 108
  year: 2016
  end-page: 121
  ident: b0120
  article-title: To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?
  publication-title: J Control Release
– volume: 13
  start-page: 161
  year: 2017
  ident: b0490
  article-title: Dual-Stage Light Amplified Photodynamic Therapy against Hypoxic Tumor Based on an O2 Self-Sufficient Nanoplatform
  publication-title: Small
– volume: 11
  start-page: 1160
  year: 2021
  ident: b1065
  article-title: Improved In Vivo Delivery of Small RNA Based on the Calcium Phosphate Method
  publication-title: Journal of personalized medicine
– volume: 18
  start-page: 2039
  year: 2021
  end-page: 2052
  ident: b0030
  article-title: Morphology/Interstitial Fluid Pressure-Tunable Nanopomegranate Designed by Alteration of Membrane Fluidity under Tumor Enzyme and PEGylation
  publication-title: Mol. Pharm.
– volume: 182
  start-page: 145
  year: 2018
  end-page: 156
  ident: b0360
  article-title: Hypoxic tumor therapy by hemoglobin-mediated drug delivery and reversal of hypoxia-induced chemoresistance
  publication-title: Biomaterials
– volume: 11
  start-page: 1187
  year: 2019
  ident: b0610
  article-title: 4-Methylumbelliferone inhibits cancer stem cell activation and overcomes chemoresistance in ovarian cancer
  publication-title: Cancers
– volume: 8
  start-page: 6765
  year: 2020
  end-page: 6781
  ident: b0475
  article-title: Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy
  publication-title: J Mater Chem B
– volume: 19
  start-page: 1
  year: 2017
  end-page: 9
  ident: b0535
  article-title: Targeting the tumor stroma: the biology and clinical development of pegylated recombinant human hyaluronidase (PEGPH20)
  publication-title: Current oncology reports
– volume: 22
  start-page: 697
  year: 2010
  end-page: 706
  ident: b0150
  article-title: Dynamic interplay between the collagen scaffold and tumor evolution
  publication-title: Curr Opin Cell Biol
– volume: 3
  start-page: 83
  year: 2015
  end-page: 92
  ident: b0170
  article-title: The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy
  publication-title: Hypoxia (Auckl)
– volume: 51
  start-page: 503
  year: 1987
  end-page: 512
  ident: b0990
  article-title: Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells
  publication-title: Cell
– volume: 23
  start-page: 249
  year: 2013
  end-page: 262
  ident: b0445
  article-title: Role of macrophage targeting in the antitumor activity of trabectedin
  publication-title: Cancer Cell
– volume: 113
  year: 2020
  ident: b0605
  article-title: pH-sensitive bromelain nanoparticles by ortho ester crosslinkage for enhanced doxorubicin penetration in solid tumor
  publication-title: Mater. Sci. Eng., C
– volume: 13
  start-page: 11008
  year: 2019
  end-page: 11021
  ident: b0540
  article-title: Collagenase Nanoparticles Enhance the Penetration of Drugs into Pancreatic Tumors
  publication-title: ACS Nano
– volume: 68
  start-page: 257
  year: 2013
  end-page: 274
  ident: b0045
  article-title: The enhanced permeability retention effect: a new paradigm for drug targeting in infection
  publication-title: J Antimicrob Chemother
– volume: 153
  start-page: 198
  year: 2011
  end-page: 205
  ident: b0090
  article-title: Targeted drug delivery to tumors: Myths, reality and possibility
  publication-title: J. Control. Release
– volume: 190
  start-page: 451
  year: 2014
  end-page: 464
  ident: b0215
  article-title: EPR: Evidence and fallacy
  publication-title: J Control Release
– reference: L. Jingqiu, et al., Synergizing Upconversion Nanophotosensitizers with Hyperbaric Oxygen to Remodel the Extracellular Matrix for Enhanced Photodynamic Cancer Therapy. Acs Applied Materials & Interfaces, 2018: p. acsami.8b07090-.
– volume: 311–312
  start-page: 319
  year: 2019
  end-page: 321
  ident: b0020
  article-title: Nanomedicine: From where are we coming and where are we going?
  publication-title: J. Control. Release
– volume: 119
  start-page: 44
  year: 2017
  end-page: 60
  ident: b0395
  article-title: Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors
  publication-title: Adv. Drug Deliv. Rev.
– start-page: 1
  year: 2021
  end-page: 14
  ident: b0095
  article-title: Factors affecting the dynamics and heterogeneity of the EPR effect: pathophysiological and pathoanatomic features, drug formulations and physicochemical factors
  publication-title: Expert Opinion on Drug Delivery
– volume: 18
  year: 2018
  ident: b0625
  article-title: Turning foes to friends: targeting cancer-associated fibroblasts
  publication-title: Nat. Rev. Drug Discovery
– start-page: 258
  year: 2018
  ident: b0165
  article-title: Reengineering the Tumor Vasculature: Improving Drug Delivery and Efficacy. Trends
  publication-title: Cancer
– volume: 17
  start-page: 2643
  year: 2018
  end-page: 2653
  ident: b0295
  article-title: Augmentation of the Enhanced Permeability and Retention Effect with Nitric Oxide-Generating Agents Improves the Therapeutic Effects of Nanomedicines
  publication-title: Mol. Cancer Ther.
– volume: 425
  start-page: 769
  year: 2012
  end-page: 774
  ident: b0935
  article-title: Bacteria-mediated in vivo delivery of quantum dots into solid tumor
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 366
  start-page: 883
  year: 2012
  end-page: 892
  ident: b0210
  article-title: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing
  publication-title: N Engl J Med
– volume: 103
  start-page: 855
  year: 2006
  end-page: 860
  ident: b0390
  article-title: Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 39
  start-page: 756
  year: 2009
  end-page: 766
  ident: b0285
  article-title: Elevating blood pressure as a strategy to increase tumor-targeted delivery of macromolecular drug SMANCS: cases of advanced solid tumors
  publication-title: Jpn J Clin Oncol
– volume: 320
  start-page: 142
  year: 2020
  end-page: 158
  ident: b0690
  article-title: Size-adaptable and ligand (biotin)-sheddable nanocarriers equipped with avidin scavenging technology for deep tumor penetration and reduced toxicity
  publication-title: J. Control. Release
– volume: 158
  start-page: 24
  year: 2016
  end-page: 40
  ident: b0440
  article-title: Bisphosphonates for cancer treatment: Mechanisms of action and lessons from clinical trials
  publication-title: Pharmacol Ther
– volume: 16
  start-page: 879
  year: 2007
  end-page: 886
  ident: b0905
  article-title: SDF-1 recruits cardiac stem cell-like cells that depolarize in vivo
  publication-title: Cell Transplant
– volume: 77
  start-page: 7380
  year: 1980
  end-page: 7384
  ident: b0985
  article-title: Genetic transformation of mouse embryos by microinjection of purified DNA
  publication-title: Proc Natl Acad Sci U S A
– volume: 93
  start-page: 266
  year: 2001
  end-page: 276
  ident: b0185
  article-title: Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects
  publication-title: J Natl Cancer Inst
– volume: 24
  start-page: 3747
  year: 2012
  end-page: 3756
  ident: b0790
  article-title: Peptides as targeting elements and tissue penetration devices for nanoparticles
  publication-title: Adv Mater
– volume: 21
  start-page: 1741
  year: 2004
  end-page: 1749
  ident: b1040
  article-title: The arthrotropism of macromolecules in adjuvant-induced arthritis rat model: a preliminary study
  publication-title: Pharm. Res.
– volume: 11
  start-page: 218
  year: 2013
  end-page: 229
  ident: b0365
  article-title: Towards a superior streptokinase for fibrinolytic therapy of vascular thrombosis
  publication-title: Cardiovasc Hematol Agents Med Chem
– start-page: 25
  year: 2018
  ident: b0345
  article-title: Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors
  publication-title: Journal of Controlled Release Official Journal of the Controlled Release Society
– volume: 353
  year: 2020
  ident: b0435
  article-title: The roles of tumor-associated macrophages in tumor angiogenesis and metastasis
  publication-title: Cell Immunol
– start-page: 4
  year: 2016
  end-page: 27
  ident: b0520
  article-title: Extracellular matrix structure
  publication-title: Adv Drug Deliv Rev
– volume: 12
  start-page: 1
  year: 2010
  end-page: 10
  ident: b1035
  article-title: Development of a macromolecular prodrug for the treatment of inflammatory arthritis: mechanisms involved in arthrotropism and sustained therapeutic efficacy
  publication-title: Arthritis research & therapy
– volume: 4
  start-page: 421
  year: 2013
  end-page: 423
  ident: b0645
  article-title: EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors
  publication-title: Ther Deliv
– volume: 27
  start-page: 2865
  year: 2009
  end-page: 2874
  ident: b0920
  article-title: Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells
  publication-title: Stem Cells
– volume: 11
  start-page: 7731
  year: 2019
  end-page: 7742
  ident: b0355
  article-title: An Oxygen Self-sufficient Fluorinated Nanoplatform for Relieved Tumor Hypoxia and Enhanced Photodynamic Therapy of Cancers
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 137
  year: 2017
  end-page: 153
  ident: b0995
  article-title: Genetically engineered mouse models in oncology research and cancer medicine
  publication-title: EMBO Mol Med
– volume: 305
  start-page: 89
  year: 2019
  end-page: 100
  ident: b0025
  article-title: Can intracellular drug delivery using hyaluronic acid functionalised pH-sensitive liposomes overcome gemcitabine resistance in pancreatic cancer?
  publication-title: J. Control. Release
– volume: 16
  start-page: 3493
  year: 2016
  end-page: 3499
  ident: b0945
  article-title: Bacteria-Mediated Hypoxia-Specific Delivery of Nanoparticles for Tumors Imaging and Therapy
  publication-title: Nano Lett.
– volume: 121
  start-page: 1
  year: 2010
  end-page: 14
  ident: b0240
  article-title: Cancer immunoediting from immune surveillance to immune escape
  publication-title: Insect Science
– volume: 35
  start-page: 547
  year: 2016
  end-page: 573
  ident: b0960
  article-title: Patient-derived xenograft (PDX) models in basic and translational breast cancer research
  publication-title: Cancer Metastasis Rev
– volume: 162
  start-page: 76
  year: 2012
  end-page: 83
  ident: b1075
  article-title: Endocytic pathway rapidly delivers internalized molecules to lysosomes: an analysis of vesicle trafficking, clustering and mass transfer
  publication-title: Journal of Controlled Release Official Journal of the Controlled Release Society
– volume: 14
  start-page: 731
  year: 2019
  end-page: 732
  ident: b0110
  article-title: Transcellular transfer of nanomedicine
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 53
  year: 2015
  end-page: 64
  ident: b0080
  article-title: Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls
  publication-title: Expert Opin Drug Deliv
– volume: 480
  start-page: 109
  year: 2011
  end-page: 112
  ident: b0810
  article-title: Lyn is a redox sensor that mediates leukocyte wound attraction in vivo
  publication-title: Nature
– volume: 1030
  start-page: 255
  year: 2017
  end-page: 264
  ident: b0765
  article-title: Uptake Mechanism of Cell-Penetrating Peptides
  publication-title: Adv Exp Med Biol
– volume: 103
  start-page: 12
  year: 2016
  ident: 10.1016/j.addr.2022.114449_b0560
  article-title: Cyclopamine disrupts tumor extracellular matrix and improves the distribution and efficacy of nanotherapeutics in pancreatic cancer
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.06.048
– volume: 35
  start-page: 13
  issue: 1
  year: 2018
  ident: 10.1016/j.addr.2022.114449_b0680
  article-title: Optimization of Weight Ratio for DSPE-PEG/TPGS Hybrid Micelles to Improve Drug Retention and Tumor Penetration
  publication-title: Pharm Res
  doi: 10.1007/s11095-017-2340-y
– volume: 169
  start-page: 313
  year: 2018
  ident: 10.1016/j.addr.2022.114449_b0685
  article-title: Charge reversible and biodegradable nanocarriers showing dual pH-/reduction-sensitive disintegration for rapid site-specific drug delivery
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2018.05.026
– volume: 68
  start-page: 257
  issue: 2
  year: 2013
  ident: 10.1016/j.addr.2022.114449_b0045
  article-title: The enhanced permeability retention effect: a new paradigm for drug targeting in infection
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dks379
– volume: 64
  start-page: 3731
  issue: 11
  year: 2004
  ident: 10.1016/j.addr.2022.114449_b0420
  article-title: Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-0074
– volume: 63
  start-page: 136
  issue: 3
  year: 2011
  ident: 10.1016/j.addr.2022.114449_b0040
  article-title: The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2010.04.009
– volume: 6
  start-page: 193
  issue: 3
  year: 1989
  ident: 10.1016/j.addr.2022.114449_b0140
  article-title: Tumoritropic and lymphotropic principles of macromolecular drugs
  publication-title: Crit Rev Ther Drug Carrier Syst
– volume: 7
  start-page: 243
  issue: 2
  year: 2001
  ident: 10.1016/j.addr.2022.114449_b1020
  article-title: Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes
  publication-title: Clin Cancer Res
– volume: 345
  start-page: 48
  issue: 1
  year: 2014
  ident: 10.1016/j.addr.2022.114449_b0270
  article-title: Serum biomarkers for personalization of nanotherapeutics-based therapy in different tumor and organ microenvironments
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2013.11.015
– volume: 47
  start-page: 209
  issue: 2–3
  year: 2001
  ident: 10.1016/j.addr.2022.114449_b0500
  article-title: Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/S0169-409X(01)00107-7
– volume: 83
  start-page: 240
  issue: 3
  year: 1992
  ident: 10.1016/j.addr.2022.114449_b0380
  article-title: Enhanced tumor localization of monoclonal antibody by treatment with kininase II inhibitor and angiotensin II
  publication-title: Jpn J Cancer Res
  doi: 10.1111/j.1349-7006.1992.tb00093.x
– volume: 133
  start-page: 775
  issue: 5
  year: 2008
  ident: 10.1016/j.addr.2022.114449_b0880
  article-title: Regulatory T cells and immune tolerance
  publication-title: Cell
  doi: 10.1016/j.cell.2008.05.009
– volume: 11
  start-page: 1187
  issue: 8
  year: 2019
  ident: 10.1016/j.addr.2022.114449_b0610
  article-title: 4-Methylumbelliferone inhibits cancer stem cell activation and overcomes chemoresistance in ovarian cancer
  publication-title: Cancers
  doi: 10.3390/cancers11081187
– volume: 121
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.addr.2022.114449_b0240
  article-title: Cancer immunoediting from immune surveillance to immune escape
  publication-title: Insect Science
– volume: 7
  start-page: 383
  issue: 6
  year: 2012
  ident: 10.1016/j.addr.2022.114449_b0320
  article-title: Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.45
– volume: 13
  start-page: 161
  issue: 37
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0490
  article-title: Dual-Stage Light Amplified Photodynamic Therapy against Hypoxic Tumor Based on an O2 Self-Sufficient Nanoplatform
  publication-title: Small
  doi: 10.1002/smll.201701621
– volume: 14
  start-page: 7170
  issue: 6
  year: 2020
  ident: 10.1016/j.addr.2022.114449_b0700
  article-title: Peptide-Based Nanoparticles Mimic Fibrillogenesis of Laminin in Tumor Vessels for Precise Embolization
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c02110
– volume: 11
  start-page: 1160
  issue: 11
  year: 2021
  ident: 10.1016/j.addr.2022.114449_b1065
  article-title: Improved In Vivo Delivery of Small RNA Based on the Calcium Phosphate Method
  publication-title: Journal of personalized medicine
  doi: 10.3390/jpm11111160
– volume: 288
  start-page: 20768
  issue: 29
  year: 2013
  ident: 10.1016/j.addr.2022.114449_b0200
  article-title: Sirtuin-7 inhibits the activity of hypoxia-inducible factors
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.476903
– ident: 10.1016/j.addr.2022.114449_b0100
  doi: 10.1038/s41565-019-0597-5
– volume: 14
  start-page: 799
  issue: 8
  year: 2019
  ident: 10.1016/j.addr.2022.114449_b0740
  article-title: Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy
  publication-title: Nat Nanotechnol
  doi: 10.1038/s41565-019-0485-z
– volume: 425
  start-page: 769
  issue: 4
  year: 2012
  ident: 10.1016/j.addr.2022.114449_b0935
  article-title: Bacteria-mediated in vivo delivery of quantum dots into solid tumor
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2012.07.150
– volume: 11
  start-page: 7731
  issue: 8
  year: 2019
  ident: 10.1016/j.addr.2022.114449_b0355
  article-title: An Oxygen Self-sufficient Fluorinated Nanoplatform for Relieved Tumor Hypoxia and Enhanced Photodynamic Therapy of Cancers
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b19840
– volume: 114
  start-page: 206
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0430
  article-title: Progress in tumor-associated macrophage (TAM)-targeted therapeutics
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2017.04.010
– volume: 263
  start-page: 68
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0525
  article-title: Extracellular matrix remodeling in vivo for enhancing tumor-targeting efficiency of nanoparticle drug carriers using the pulsed high intensity focused ultrasound
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2017.02.035
– volume: 13
  start-page: 11008
  issue: 10
  year: 2019
  ident: 10.1016/j.addr.2022.114449_b0540
  article-title: Collagenase Nanoparticles Enhance the Penetration of Drugs into Pancreatic Tumors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b02395
– volume: 10
  start-page: 785
  issue: 11
  year: 2010
  ident: 10.1016/j.addr.2022.114449_b0930
  article-title: Engineering the perfect (bacterial) cancer therapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2934
– volume: 98
  start-page: 15155
  issue: 26
  year: 2001
  ident: 10.1016/j.addr.2022.114449_b0925
  article-title: Combination bacteriolytic therapy for the treatment of experimental tumors
  publication-title: PNAS
  doi: 10.1073/pnas.251543698
– volume: 21
  start-page: 1741
  issue: 10
  year: 2004
  ident: 10.1016/j.addr.2022.114449_b1040
  article-title: The arthrotropism of macromolecules in adjuvant-induced arthritis rat model: a preliminary study
  publication-title: Pharm. Res.
  doi: 10.1023/B:PHAM.0000045232.18134.e9
– volume: 10
  start-page: 2001550
  issue: 3
  year: 2021
  ident: 10.1016/j.addr.2022.114449_b0405
  article-title: Polymeric nitric oxide delivery nanoplatforms for treating cancer, cardiovascular diseases, and infection
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.202001550
– volume: 65
  start-page: 3307
  issue: 8
  year: 2005
  ident: 10.1016/j.addr.2022.114449_b0915
  article-title: Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-04-1874
– volume: 106
  start-page: 3179
  issue: 11
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0220
  article-title: Parameters Affecting the Enhanced Permeability and Retention Effect: The Need for Patient Selection
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2017.06.019
– volume: 103
  start-page: 855
  issue: 4
  year: 2006
  ident: 10.1016/j.addr.2022.114449_b0390
  article-title: Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0510412103
– volume: 9
  start-page: 615
  issue: 3
  year: 2019
  ident: 10.1016/j.addr.2022.114449_b0615
  article-title: Depletion of collagen by losartan to improve tumor accumulation and therapeutic efficacy of photodynamic nanoplatforms
  publication-title: Drug Deliv Transl Res
  doi: 10.1007/s13346-018-00610-1
– volume: 65
  start-page: 80
  issue: 1
  year: 2013
  ident: 10.1016/j.addr.2022.114449_b0065
  article-title: Cancer nanomedicines: So many papers and so few drugs!
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.09.038
– volume: 157
  start-page: 142
  year: 2020
  ident: 10.1016/j.addr.2022.114449_b0280
  article-title: Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2020.06.005
– volume: 422
  start-page: 37
  issue: 6927
  year: 2003
  ident: 10.1016/j.addr.2022.114449_b0725
  article-title: Regulated portals of entry into the cell
  publication-title: Nature
  doi: 10.1038/nature01451
– volume: 52
  start-page: 5110
  issue: 18
  year: 1992
  ident: 10.1016/j.addr.2022.114449_b0130
  article-title: Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse
  publication-title: Cancer Res
– volume: 38
  start-page: 5799
  issue: 10
  year: 2018
  ident: 10.1016/j.addr.2022.114449_b0545
  article-title: 4-Methylumbelliferone decreases the hyaluronan-rich extracellular matrix and increases the effectiveness of 5-fluorouracil
  publication-title: Anticancer Res.
  doi: 10.21873/anticanres.12919
– volume: 172
  start-page: 80
  year: 2021
  ident: 10.1016/j.addr.2022.114449_b0410
  article-title: Tumor microenvironment remodeling-based penetration strategies to amplify nanodrug accessibility to tumor parenchyma
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2021.02.019
– volume: 20
  start-page: 409
  issue: 4
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0425
  article-title: Tumor angiogenesis and vascular normalization: alternative therapeutic targets
  publication-title: Angiogenesis
  doi: 10.1007/s10456-017-9562-9
– volume: 11
  start-page: 941
  issue: 11
  year: 2016
  ident: 10.1016/j.addr.2022.114449_b0940
  article-title: Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.137
– volume: 20
  start-page: 1637
  issue: 3
  year: 2020
  ident: 10.1016/j.addr.2022.114449_b0675
  article-title: Charge Conversional Biomimetic Nanocomplexes as a Multifunctional Platform for Boosting Orthotopic Glioblastoma RNAi Therapy
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.9b04683
– volume: 18
  start-page: 884
  issue: 6
  year: 2010
  ident: 10.1016/j.addr.2022.114449_b0245
  article-title: Tumors as organs: complex tissues that interface with the entire organism
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2010.05.012
– volume: 98
  start-page: 1252
  year: 2019
  ident: 10.1016/j.addr.2022.114449_b1045
  article-title: Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer
  publication-title: Mater Sci Eng C Mater Biol Appl
  doi: 10.1016/j.msec.2019.01.066
– volume: 35
  start-page: 547
  issue: 4
  year: 2016
  ident: 10.1016/j.addr.2022.114449_b0960
  article-title: Patient-derived xenograft (PDX) models in basic and translational breast cancer research
  publication-title: Cancer Metastasis Rev
  doi: 10.1007/s10555-016-9653-x
– volume: 13
  start-page: 169
  issue: 2
  year: 2013
  ident: 10.1016/j.addr.2022.114449_b0830
  article-title: Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.01.005
– volume: 47
  start-page: 531
  issue: 6
  year: 2010
  ident: 10.1016/j.addr.2022.114449_b0805
  article-title: Lung vascular targeting using antibody to aminopeptidase P: CT-SPECT imaging, biodistribution and pharmacokinetic analysis
  publication-title: J Vasc Res
  doi: 10.1159/000313880
– volume: 19
  start-page: 478
  issue: 5
  year: 2020
  ident: 10.1016/j.addr.2022.114449_b0715
  article-title: Active transcytosis and new opportunities for cancer nanomedicine
  publication-title: Nat Mater
  doi: 10.1038/s41563-020-0672-1
– volume: 10
  start-page: 2348
  issue: 12
  year: 2020
  ident: 10.1016/j.addr.2022.114449_b0665
  article-title: GSH-responsive SN38 dimer-loaded shape-transformable nanoparticles with iRGD for enhancing chemo-photodynamic therapy
  publication-title: Acta Pharmaceutica Sinica B
  doi: 10.1016/j.apsb.2020.10.009
– volume: 158
  start-page: 24
  year: 2016
  ident: 10.1016/j.addr.2022.114449_b0440
  article-title: Bisphosphonates for cancer treatment: Mechanisms of action and lessons from clinical trials
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2015.11.008
– volume: 235
  year: 2020
  ident: 10.1016/j.addr.2022.114449_b0580
  article-title: Nano-puerarin regulates tumor microenvironment and facilitates chemo- and immunotherapy in murine triple negative breast cancer model
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.119769
– volume: 30
  start-page: 953
  issue: 6
  year: 2016
  ident: 10.1016/j.addr.2022.114449_b0330
  article-title: Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.10.018
– volume: 4
  start-page: 421
  issue: 4
  year: 2013
  ident: 10.1016/j.addr.2022.114449_b0645
  article-title: EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors
  publication-title: Ther Deliv
  doi: 10.4155/tde.13.8
– volume: 23
  start-page: 249
  issue: 2
  year: 2013
  ident: 10.1016/j.addr.2022.114449_b0445
  article-title: Role of macrophage targeting in the antitumor activity of trabectedin
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.01.008
– volume: 353
  year: 2020
  ident: 10.1016/j.addr.2022.114449_b0435
  article-title: The roles of tumor-associated macrophages in tumor angiogenesis and metastasis
  publication-title: Cell Immunol
  doi: 10.1016/j.cellimm.2020.104119
– start-page: 651
  year: 2016
  ident: 10.1016/j.addr.2022.114449_b0465
  article-title: Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(16)00078-4
– ident: 10.1016/j.addr.2022.114449_b0070
  doi: 10.1016/B978-0-12-809717-5.00002-6
– volume: 18
  start-page: 2039
  issue: 5
  year: 2021
  ident: 10.1016/j.addr.2022.114449_b0030
  article-title: Morphology/Interstitial Fluid Pressure-Tunable Nanopomegranate Designed by Alteration of Membrane Fluidity under Tumor Enzyme and PEGylation
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.1c00036
– volume: 15
  start-page: 84
  issue: 1
  year: 2016
  ident: 10.1016/j.addr.2022.114449_b0570
  article-title: Tumor-Priming Smoothened Inhibitor Enhances Deposition and Efficacy of Cytotoxic Nanoparticles in a Pancreatic Cancer Model
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-15-0602
– volume: 20
  start-page: 4719
  issue: 19
  year: 2019
  ident: 10.1016/j.addr.2022.114449_b0460
  article-title: Latest Advances in Targeting the Tumor Microenvironment for Tumor Suppression
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20194719
– volume: 261
  start-page: 105
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0565
  article-title: Sonic-hedgehog pathway inhibition normalizes desmoplastic tumor microenvironment to improve chemo- and nanotherapy
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2017.06.022
– volume: 307
  start-page: 58
  issue: 5706
  year: 2005
  ident: 10.1016/j.addr.2022.114449_b0235
  article-title: Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy
  publication-title: Science
  doi: 10.1126/science.1104819
– volume: 19
  start-page: 486
  issue: 5
  year: 2020
  ident: 10.1016/j.addr.2022.114449_b0710
  article-title: A nanoparticle's pathway into tumours
  publication-title: Nat Mater
  doi: 10.1038/s41563-020-0669-9
– volume: 1
  issue: 10
  year: 2015
  ident: 10.1016/j.addr.2022.114449_b0775
  article-title: Neuropilin-1 and heparan sulfate proteoglycans cooperate in cellular uptake of nanoparticles functionalized by cationic cell-penetrating peptides
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1500821
– volume: 9
  start-page: 6655
  issue: 7
  year: 2015
  ident: 10.1016/j.addr.2022.114449_b1050
  article-title: Clearance pathways and tumor targeting of imaging nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01320
– volume: 496
  year: 2020
  ident: 10.1016/j.addr.2022.114449_b1025
  article-title: Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2020.110229
– volume: 24
  start-page: 179
  issue: 3
  year: 2016
  ident: 10.1016/j.addr.2022.114449_b0010
  article-title: Nanocarriers for cancer-targeted drug delivery
  publication-title: J Drug Target
  doi: 10.3109/1061186X.2015.1051049
– volume: 13
  start-page: 3070
  issue: 12
  year: 2021
  ident: 10.1016/j.addr.2022.114449_b0195
  article-title: Perspectives on hypoxia signaling in tumor stroma
  publication-title: Cancers
  doi: 10.3390/cancers13123070
– volume: 5
  start-page: 3904
  issue: 9
  year: 2013
  ident: 10.1016/j.addr.2022.114449_b0750
  article-title: Development of drug loaded nanoparticles for tumor targeting. Part 2: Enhancement of tumor penetration through receptor mediated transcytosis in 3D tumor models
  publication-title: Nanoscale
  doi: 10.1039/c3nr90022c
– volume: 24
  start-page: 3747
  issue: 28
  year: 2012
  ident: 10.1016/j.addr.2022.114449_b0790
  article-title: Peptides as targeting elements and tissue penetration devices for nanoparticles
  publication-title: Adv Mater
  doi: 10.1002/adma.201200454
– volume: 12
  start-page: 95
  issue: 1
  year: 2022
  ident: 10.1016/j.addr.2022.114449_b0115
  article-title: EPR Effect-Based Tumor Targeted Nanomedicine: A Promising Approach for Controlling Cancer
  publication-title: Journal of Personalized Medicine
  doi: 10.3390/jpm12010095
– volume: 11
  start-page: 48261
  issue: 51
  year: 2019
  ident: 10.1016/j.addr.2022.114449_b0485
  article-title: Oxygen-Self-Supplying and HIF-1α-Inhibiting Core-Shell Nanosystem for Hypoxia-Resistant Photodynamic Therapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b18112
– volume: 36
  start-page: 369
  issue: 4
  year: 2020
  ident: 10.1016/j.addr.2022.114449_b0370
  article-title: Thrombolytic effects of recombinant staphylokinase on coronary thrombosis in miniature pigs
  publication-title: Zhongguo Ying Yong Sheng Li Xue Za Zhi
– volume: 117
  start-page: 125
  issue: 1
  year: 2015
  ident: 10.1016/j.addr.2022.114449_b1015
  article-title: Tumor stage, tumor site and HPV dependent correlation of perfusion CT parameters and [18F]-FDG uptake in head and neck squamous cell carcinoma
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2015.09.026
– volume: 11
  start-page: 402
  issue: 4
  year: 2016
  ident: 10.1016/j.addr.2022.114449_b0205
  article-title: Nanomedicine and tumor heterogeneity: Concept and complex reality
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2016.06.006
– volume: 17
  start-page: 149
  issue: 3
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0015
  article-title: Targeted Drug Delivery Systems and Their Therapeutic Applications in Cancer and Immune Pathological Conditions
  publication-title: Infect Disord Drug Targets
  doi: 10.2174/1871526517666170606102623
– volume: 3
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.addr.2022.114449_b1010
  article-title: Tumors: wounds that do not heal-redux
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-14-0209
– start-page: 4
  year: 2016
  ident: 10.1016/j.addr.2022.114449_b0520
  article-title: Extracellular matrix structure
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2015.11.001
– start-page: 3268
  year: 2016
  ident: 10.1016/j.addr.2022.114449_b0595
  article-title: Hyaluronidase Embedded in Nanocarrier PEG Shell for Enhanced Tumor Penetration and Highly Efficient Antitumor Efficacy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00820
– volume: 31
  start-page: 3657
  issue: 13
  year: 2010
  ident: 10.1016/j.addr.2022.114449_b0840
  article-title: Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.01.065
– volume: 18
  issue: 2
  year: 2018
  ident: 10.1016/j.addr.2022.114449_b0625
  article-title: Turning foes to friends: targeting cancer-associated fibroblasts
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/s41573-018-0004-1
– volume: 28
  start-page: 1707249
  year: 2018
  ident: 10.1016/j.addr.2022.114449_b0670
  article-title: Size/Charge Changeable Acidity-Responsive Micelleplex for Photodynamic-Improved PD-L1 Immunotherapy with Enhanced Tumor Penetration
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707249
– volume: 130
  start-page: 17
  year: 2018
  ident: 10.1016/j.addr.2022.114449_b0255
  article-title: Tumor targeting via EPR: Strategies to enhance patient responses
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2018.07.007
– volume: 10
  start-page: 43493
  issue: 50
  year: 2018
  ident: 10.1016/j.addr.2022.114449_b0600
  article-title: Collagenase-Encapsulated pH-Responsive Nanoscale Coordination Polymers for Tumor Microenvironment Modulation and Enhanced Photodynamic Nanomedicine
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b17684
– volume: 93
  start-page: 266
  issue: 4
  year: 2001
  ident: 10.1016/j.addr.2022.114449_b0185
  article-title: Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/93.4.266
– volume: 72
  start-page: 4875
  issue: 19
  year: 2012
  ident: 10.1016/j.addr.2022.114449_b0225
  article-title: Intratumor heterogeneity: evolution through space and time
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-2217
– start-page: 1
  year: 2021
  ident: 10.1016/j.addr.2022.114449_b0095
  article-title: Factors affecting the dynamics and heterogeneity of the EPR effect: pathophysiological and pathoanatomic features, drug formulations and physicochemical factors
  publication-title: Expert Opinion on Drug Delivery
– volume: 16
  start-page: 879
  issue: 9
  year: 2007
  ident: 10.1016/j.addr.2022.114449_b0905
  article-title: SDF-1 recruits cardiac stem cell-like cells that depolarize in vivo
  publication-title: Cell Transplant
  doi: 10.3727/096368907783338271
– volume: 27
  start-page: 1865
  issue: 11
  year: 2015
  ident: 10.1016/j.addr.2022.114449_b0575
  article-title: Peptide assembly integration of fibroblast-targeting and cell-penetration features for enhanced antitumor drug delivery
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404715
– volume: 39
  start-page: 77
  issue: 2
  year: 2016
  ident: 10.1016/j.addr.2022.114449_b0970
  article-title: An Integrative Approach to Precision Cancer Medicine Using Patient-Derived Xenografts
  publication-title: Mol Cells
  doi: 10.14348/molcells.2016.2350
– volume: 27
  start-page: 2865
  issue: 11
  year: 2009
  ident: 10.1016/j.addr.2022.114449_b0920
  article-title: Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells
  publication-title: Stem Cells
  doi: 10.1002/stem.217
– volume: 6
  start-page: 243
  issue: 3
  year: 2006
  ident: 10.1016/j.addr.2022.114449_b0400
  article-title: Manipulating the angiotensin system – new approaches to the treatment of solid tumours
  publication-title: Expert Opin. Biol. Ther.
  doi: 10.1517/14712598.6.3.243
– volume: 106
  start-page: 4254
  issue: 11
  year: 2009
  ident: 10.1016/j.addr.2022.114449_b0620
  article-title: Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0813203106
– volume: 8
  start-page: 1102
  issue: 9
  year: 2019
  ident: 10.1016/j.addr.2022.114449_b0415
  article-title: Trends and Challenges in Tumor Anti-Angiogenic Therapies
  publication-title: Cells
  doi: 10.3390/cells8091102
– start-page: 73
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0875
  article-title: Introduction: T Cell Trafficking in Inflammation and Immunity
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-4939-6931-9_6
– volume: 36
  start-page: 6049
  issue: 43
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0450
  article-title: Inhibition of colony stimulating factor-1 receptor abrogates microenvironment-mediated therapeutic resistance in gliomas
  publication-title: Oncogene
  doi: 10.1038/onc.2017.261
– ident: 10.1016/j.addr.2022.114449_b0160
– volume: 17
  start-page: 2643
  issue: 12
  year: 2018
  ident: 10.1016/j.addr.2022.114449_b0295
  article-title: Augmentation of the Enhanced Permeability and Retention Effect with Nitric Oxide-Generating Agents Improves the Therapeutic Effects of Nanomedicines
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-18-0696
– volume: 1
  start-page: 667
  issue: 8
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0305
  article-title: Nanoparticle-mediated local depletion of tumour-associated platelets disrupts vascular barriers and augments drug accumulation in tumours
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-017-0115-8
– volume: 9
  start-page: 8018
  issue: 26
  year: 2019
  ident: 10.1016/j.addr.2022.114449_b0695
  article-title: Transcytosis - An effective targeting strategy that is complementary to “EPR effect” for pancreatic cancer nano drug delivery
  publication-title: Theranostics
  doi: 10.7150/thno.38587
– volume: 16
  start-page: 3493
  issue: 6
  year: 2016
  ident: 10.1016/j.addr.2022.114449_b0945
  article-title: Bacteria-Mediated Hypoxia-Specific Delivery of Nanoparticles for Tumors Imaging and Therapy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00262
– volume: 7
  issue: 1
  year: 2014
  ident: 10.1016/j.addr.2022.114449_b1005
  article-title: Inflammation and the blood microvascular system
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a016345
– start-page: 25
  year: 2018
  ident: 10.1016/j.addr.2022.114449_b0345
  article-title: Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors
  publication-title: Journal of Controlled Release Official Journal of the Controlled Release Society
  doi: 10.1016/j.jconrel.2018.05.002
– volume: 91
  start-page: 3
  year: 2015
  ident: 10.1016/j.addr.2022.114449_b0075
  article-title: Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2015.01.002
– volume: 99
  start-page: 180
  issue: Pt B
  year: 2016
  ident: 10.1016/j.addr.2022.114449_b0635
  article-title: Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2015.11.009
– ident: 10.1016/j.addr.2022.114449_b0530
– volume: 10
  start-page: 9935
  issue: 21
  year: 2018
  ident: 10.1016/j.addr.2022.114449_b0660
  article-title: A size switchable nanoplatform for targeting the tumor microenvironment and deep tumor penetration
  publication-title: Nanoscale
  doi: 10.1039/C8NR00640G
– volume: 77
  start-page: 7380
  issue: 12
  year: 1980
  ident: 10.1016/j.addr.2022.114449_b0985
  article-title: Genetic transformation of mouse embryos by microinjection of purified DNA
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.77.12.7380
– volume: 18
  start-page: 1332
  issue: 9
  year: 2012
  ident: 10.1016/j.addr.2022.114449_b0630
  article-title: The tumor microenvironment controls drug sensitivity
  publication-title: Nat. Med.
  doi: 10.1038/nm.2938
– volume: 624
  start-page: 25
  year: 2010
  ident: 10.1016/j.addr.2022.114449_b0050
  article-title: Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-60761-609-2_3
– volume: 14
  start-page: 1801694
  issue: 45
  year: 2018
  ident: 10.1016/j.addr.2022.114449_b0310
  article-title: Perfluorocarbon Nanoparticles Mediated Platelet Blocking Disrupt Vascular Barriers to Improve the Efficacy of Oxygen-Sensitive Antitumor Drugs
  publication-title: Small
  doi: 10.1002/smll.201801694
– volume: 33
  start-page: 222
  issue: 1–3
  year: 1996
  ident: 10.1016/j.addr.2022.114449_b0290
  article-title: Bradykinin and nitric oxide in infectious disease and cancer
  publication-title: Immunopharmacology
  doi: 10.1016/0162-3109(96)00063-X
– volume: 153
  start-page: 198
  issue: 3
  year: 2011
  ident: 10.1016/j.addr.2022.114449_b0090
  article-title: Targeted drug delivery to tumors: Myths, reality and possibility
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2011.06.001
– volume: 66
  start-page: 225
  issue: 3
  year: 2018
  ident: 10.1016/j.addr.2022.114449_b0950
  article-title: Establishment of a Patient-Derived Tumor Xenograft Model and Application for Precision Cancer Medicine
  publication-title: Chem Pharm Bull (Tokyo)
  doi: 10.1248/cpb.c17-00789
– volume: 14
  start-page: 731
  issue: 8
  year: 2019
  ident: 10.1016/j.addr.2022.114449_b0110
  article-title: Transcellular transfer of nanomedicine
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0494-y
– volume: 51
  start-page: 503
  issue: 3
  year: 1987
  ident: 10.1016/j.addr.2022.114449_b0990
  article-title: Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells
  publication-title: Cell
  doi: 10.1016/0092-8674(87)90646-5
– volume: 244
  start-page: 108
  issue: Pt A
  year: 2016
  ident: 10.1016/j.addr.2022.114449_b0120
  article-title: To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2016.11.015
– volume: 23
  issue: 50
  year: 2012
  ident: 10.1016/j.addr.2022.114449_b0835
  article-title: Role of surface charge in cytotoxicity of charged manganese ferrite nanoparticles towards macrophages
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/50/505702
– volume: 12
  start-page: 4085
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b1085
  article-title: High drug-loading nanomedicines: Progress, current status, and prospects
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S132780
– volume: 13
  start-page: 4
  issue: 1
  year: 2020
  ident: 10.1016/j.addr.2022.114449_b0980
  article-title: Applications of patient-derived tumor xenograft models and tumor organoids
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-019-0829-z
– volume: 442
  start-page: 396
  year: 2019
  ident: 10.1016/j.addr.2022.114449_b0550
  article-title: Intratumoral injection of gels containing losartan microspheres and (PLG-g-mPEG)-cisplatin nanoparticles improves drug penetration, retention and anti-tumor activity
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2018.11.011
– volume: 320
  start-page: 142
  year: 2020
  ident: 10.1016/j.addr.2022.114449_b0690
  article-title: Size-adaptable and ligand (biotin)-sheddable nanocarriers equipped with avidin scavenging technology for deep tumor penetration and reduced toxicity
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.01.040
– volume: 100
  start-page: 201
  issue: 4
  year: 2008
  ident: 10.1016/j.addr.2022.114449_b0755
  article-title: Cell-penetrating peptides: from molecular mechanisms to therapeutics
  publication-title: Biol Cell
  doi: 10.1042/BC20070116
– volume: 22
  start-page: 697
  issue: 5
  year: 2010
  ident: 10.1016/j.addr.2022.114449_b0150
  article-title: Dynamic interplay between the collagen scaffold and tumor evolution
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2010.08.015
– volume: 19
  start-page: 1
  issue: 7
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0535
  article-title: Targeting the tumor stroma: the biology and clinical development of pegylated recombinant human hyaluronidase (PEGPH20)
  publication-title: Current oncology reports
  doi: 10.1007/s11912-017-0608-3
– volume: 15
  start-page: 1186
  issue: 1
  year: 2021
  ident: 10.1016/j.addr.2022.114449_b0340
  article-title: CC Chemokine Receptor 2-Targeting Copper Nanoparticles for Positron Emission Tomography-Guided Delivery of Gemcitabine for Pancreatic Ductal Adenocarcinoma
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c08185
– volume: 480
  start-page: 109
  issue: 7375
  year: 2011
  ident: 10.1016/j.addr.2022.114449_b0810
  article-title: Lyn is a redox sensor that mediates leukocyte wound attraction in vivo
  publication-title: Nature
  doi: 10.1038/nature10632
– volume: 311–312
  start-page: 319
  year: 2019
  ident: 10.1016/j.addr.2022.114449_b0020
  article-title: Nanomedicine: From where are we coming and where are we going?
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2019.10.020
– volume: 17
  start-page: 20
  issue: 1
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0265
  article-title: Cancer nanomedicine: progress, challenges and opportunities
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2016.108
– ident: 10.1016/j.addr.2022.114449_b0850
  doi: 10.1289/ehp.97105s51261
– volume: 42
  start-page: 717
  issue: 6
  year: 2006
  ident: 10.1016/j.addr.2022.114449_b0470
  article-title: Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2006.01.003
– volume: 7
  start-page: 11838
  year: 2016
  ident: 10.1016/j.addr.2022.114449_b0260
  article-title: Nanoreporter PET predicts the efficacy of anti-cancer nanotherapy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11838
– volume: 104
  start-page: 2224
  issue: 8
  year: 2004
  ident: 10.1016/j.addr.2022.114449_b0845
  article-title: Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues
  publication-title: Blood
  doi: 10.1182/blood-2004-03-1109
– volume: 105
  start-page: 11613
  issue: 33
  year: 2008
  ident: 10.1016/j.addr.2022.114449_b0735
  article-title: The effect of particle design on cellular internalization pathways
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0801763105
– volume: 8
  start-page: 6765
  issue: 31
  year: 2020
  ident: 10.1016/j.addr.2022.114449_b0475
  article-title: Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy
  publication-title: J Mater Chem B
  doi: 10.1039/D0TB00649A
– volume: 1030
  start-page: 255
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0765
  article-title: Uptake Mechanism of Cell-Penetrating Peptides
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-3-319-66095-0_11
– volume: 7
  start-page: 653
  issue: 11
  year: 2010
  ident: 10.1016/j.addr.2022.114449_b0155
  article-title: Delivering nanomedicine to solid tumors
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2010.139
– volume: 121
  start-page: 1746
  issue: 3
  year: 2021
  ident: 10.1016/j.addr.2022.114449_b0350
  article-title: The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.0c00779
– volume: 12
  start-page: 8255
  issue: 8
  year: 2018
  ident: 10.1016/j.addr.2022.114449_b1055
  article-title: Multifunctional theranostic nanoparticles derived from fruit-extracted anthocyanins with dynamic disassembly and elimination abilities
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03525
– volume: 182
  start-page: 145
  year: 2018
  ident: 10.1016/j.addr.2022.114449_b0360
  article-title: Hypoxic tumor therapy by hemoglobin-mediated drug delivery and reversal of hypoxia-induced chemoresistance
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.08.004
– volume: 58
  start-page: 159
  issue: 1
  year: 1998
  ident: 10.1016/j.addr.2022.114449_b0375
  article-title: Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger
  publication-title: Cancer Res
– volume: 464
  start-page: 999
  issue: 7291
  year: 2010
  ident: 10.1016/j.addr.2022.114449_b0965
  article-title: Genome remodelling in a basal-like breast cancer metastasis and xenograft
  publication-title: Nature
  doi: 10.1038/nature08989
– volume: 64
  start-page: 1205
  issue: 12
  year: 2012
  ident: 10.1016/j.addr.2022.114449_b1030
  article-title: Development of macromolecular prodrug for rheumatoid arthritis
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.03.006
– volume: 9
  start-page: 344
  issue: 3
  year: 2014
  ident: 10.1016/j.addr.2022.114449_b1070
  article-title: Intracellular delivery of nanomaterials: How to catch endosomal escape in the act
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2014.04.011
– volume: 9
  start-page: 137
  issue: 2
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0995
  article-title: Genetically engineered mouse models in oncology research and cancer medicine
  publication-title: EMBO Mol Med
  doi: 10.15252/emmm.201606857
– volume: 14
  start-page: 1396
  issue: 8
  year: 2018
  ident: 10.1016/j.addr.2022.114449_b0785
  article-title: iRGD-Mediated and Enzyme-Induced Precise Targeting and Retention of Gold Nanoparticles for the Enhanced Imaging and Treatment of Breast Cancer
  publication-title: J Biomed Nanotechnol
  doi: 10.1166/jbn.2018.2592
– volume: 11
  start-page: 825
  issue: 8
  year: 2021
  ident: 10.1016/j.addr.2022.114449_b1060
  article-title: A critical review of radiation therapy: From particle beam therapy (Proton, Carbon, and BNCT) to beyond
  publication-title: Journal of Personalized Medicine
  doi: 10.3390/jpm11080825
– volume: 62
  start-page: 112
  issue: 1
  year: 2013
  ident: 10.1016/j.addr.2022.114449_b0135
  article-title: Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer
  publication-title: Gut
  doi: 10.1136/gutjnl-2012-302529
– volume: 33
  start-page: 1505
  issue: 13
  year: 2015
  ident: 10.1016/j.addr.2022.114449_b0190
  article-title: Targeting tumor hypoxia with hypoxia-activated prodrugs
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2014.60.0759
– volume: 2018
  start-page: 3647
  year: 1950
  ident: 10.1016/j.addr.2022.114449_b0585
  article-title: Tumor Tolerance-Promoting Function of Regulatory T Cells Is Optimized by CD28, but Strictly Dependent on Calcineurin
  publication-title: Journal of immunology (Baltimore, Md.
– volume: 100
  start-page: 173
  issue: 1
  year: 2009
  ident: 10.1016/j.addr.2022.114449_b0325
  article-title: Comparison of the effects of the kinase inhibitors imatinib, sorafenib, and transforming growth factor-β receptor inhibitor on extravasation of nanoparticles from neovasculature
  publication-title: Cancer Sci.
  doi: 10.1111/j.1349-7006.2008.01003.x
– volume: 75
  start-page: 4742
  issue: 22
  year: 2015
  ident: 10.1016/j.addr.2022.114449_b0455
  article-title: Macrophage Blockade Using CSF1R Inhibitors Reverses the Vascular Leakage Underlying Malignant Ascites in Late-Stage Epithelial Ovarian Cancer
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-3373
– volume: 15
  start-page: 379
  issue: 4
  year: 2018
  ident: 10.1016/j.addr.2022.114449_b0655
  article-title: Particle morphology: an important factor affecting drug delivery by nanocarriers into solid tumors
  publication-title: Expert opinion on drug delivery
  doi: 10.1080/17425247.2018.1420051
– start-page: 1700818
  year: 2018
  ident: 10.1016/j.addr.2022.114449_b0815
  article-title: Cell-Based Drug Delivery and Use of Nano-and Microcarriers for Cell Functionalization
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201700818
– volume: 39
  start-page: 756
  issue: 11
  year: 2009
  ident: 10.1016/j.addr.2022.114449_b0285
  article-title: Elevating blood pressure as a strategy to increase tumor-targeted delivery of macromolecular drug SMANCS: cases of advanced solid tumors
  publication-title: Jpn J Clin Oncol
  doi: 10.1093/jjco/hyp074
– volume: 46
  start-page: 3830
  issue: 12
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0640
  article-title: Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment
  publication-title: Chem Soc Rev
  doi: 10.1039/C6CS00592F
– volume: 87
  start-page: S42
  issue: 9 Suppl
  year: 2009
  ident: 10.1016/j.addr.2022.114449_b0900
  article-title: Mesenchymal stem cell homing capacity
  publication-title: Transplantation
  doi: 10.1097/TP.0b013e3181a28533
– volume: 12
  start-page: 1
  issue: 5
  year: 2010
  ident: 10.1016/j.addr.2022.114449_b1035
  article-title: Development of a macromolecular prodrug for the treatment of inflammatory arthritis: mechanisms involved in arthrotropism and sustained therapeutic efficacy
  publication-title: Arthritis research & therapy
  doi: 10.1186/ar3130
– volume: 157
  start-page: 195
  issue: 2
  year: 2009
  ident: 10.1016/j.addr.2022.114449_b0760
  article-title: Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics
  publication-title: Br J Pharmacol
  doi: 10.1111/j.1476-5381.2009.00057.x
– volume: 381
  start-page: 335
  year: 2004
  ident: 10.1016/j.addr.2022.114449_b0180
  article-title: Tumor hypoxia and malignant progression
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(04)81023-1
– volume: 61
  start-page: 1488
  issue: 10
  year: 2012
  ident: 10.1016/j.addr.2022.114449_b1000
  article-title: Genetically engineered mouse models of pancreatic cancer: unravelling tumour biology and progressing translational oncology
  publication-title: Gut
  doi: 10.1136/gutjnl-2011-300756
– volume: 6
  start-page: 1802070
  issue: 5
  year: 2019
  ident: 10.1016/j.addr.2022.114449_b0555
  article-title: Therapeutic Remodeling of the Tumor Microenvironment Enhances Nanoparticle Delivery
  publication-title: Adv Sci (Weinh)
  doi: 10.1002/advs.201802070
– volume: 10
  start-page: 678
  issue: 4
  year: 2018
  ident: 10.1016/j.addr.2022.114449_b0315
  article-title: Analytical and functional similarity of Amgen biosimilar ABP 215 to bevacizumab
  publication-title: MAbs
  doi: 10.1080/19420862.2018.1452580
– volume: 29
  start-page: 244
  issue: 2
  year: 2001
  ident: 10.1016/j.addr.2022.114449_b0895
  article-title: Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion
  publication-title: Exp Hematol
  doi: 10.1016/S0301-472X(00)00635-4
– volume: 267
  start-page: 15
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0720
  article-title: Overcoming key biological barriers to cancer drug delivery and efficacy
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2017.09.016
– volume: 12
  start-page: 53
  issue: 1
  year: 2015
  ident: 10.1016/j.addr.2022.114449_b0080
  article-title: Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls
  publication-title: Expert Opin Drug Deliv
  doi: 10.1517/17425247.2014.955011
– start-page: 258
  year: 2018
  ident: 10.1016/j.addr.2022.114449_b0165
  article-title: Reengineering the Tumor Vasculature: Improving Drug Delivery and Efficacy. Trends
  publication-title: Cancer
– volume: 19
  start-page: 8010
  issue: 11
  year: 2019
  ident: 10.1016/j.addr.2022.114449_b0745
  article-title: Transcytosis of Nanomedicine for Tumor Penetration
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.9b03211
– volume: 31
  start-page: 2583
  issue: 10
  year: 2014
  ident: 10.1016/j.addr.2022.114449_b1080
  article-title: Development of High-Content Gemcitabine PEGylated Liposomes and Their Cytotoxicity on Drug-Resistant Pancreatic Tumour Cells
  publication-title: Pharm Res
  doi: 10.1007/s11095-014-1353-z
– volume: 32
  start-page: 1005
  issue: 4
  year: 2001
  ident: 10.1016/j.addr.2022.114449_b0890
  article-title: Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats
  publication-title: Stroke
  doi: 10.1161/01.STR.32.4.1005
– volume: 48
  start-page: 747
  issue: 3
  year: 1985
  ident: 10.1016/j.addr.2022.114449_b0300
  article-title: A serratial protease causes vascular permeability reaction by activation of the Hageman factor-dependent pathway in guinea pigs
  publication-title: Infect Immun
  doi: 10.1128/iai.48.3.747-753.1985
– ident: 10.1016/j.addr.2022.114449_b0480
  doi: 10.1016/j.canlet.2014.01.032
– volume: 14
  start-page: 1007
  issue: 11
  year: 2019
  ident: 10.1016/j.addr.2022.114449_b0105
  article-title: Smart cancer nanomedicine
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0567-y
– volume: 65
  start-page: 1920
  issue: 6
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0825
  article-title: Neutrophils promote hepatic metastasis growth through fibroblast growth factor 2-dependent angiogenesis in mice
  publication-title: Hepatology
  doi: 10.1002/hep.29088
– volume: 3
  start-page: 83
  year: 2015
  ident: 10.1016/j.addr.2022.114449_b0170
  article-title: The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy
  publication-title: Hypoxia (Auckl)
  doi: 10.2147/HP.S93413
– volume: 23
  start-page: 395
  issue: 3
  year: 1995
  ident: 10.1016/j.addr.2022.114449_b0175
  article-title: An overview on oxygen carriers in cancer therapy
  publication-title: Artif Cells Blood Substit Immobil Biotechnol
  doi: 10.3109/10731199509117955
– volume: 113
  year: 2020
  ident: 10.1016/j.addr.2022.114449_b0605
  article-title: pH-sensitive bromelain nanoparticles by ortho ester crosslinkage for enhanced doxorubicin penetration in solid tumor
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2020.111004
– volume: 4
  start-page: 806
  issue: 10
  year: 2004
  ident: 10.1016/j.addr.2022.114449_b0125
  article-title: High interstitial fluid pressure - an obstacle in cancer therapy
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1456
– volume: 42
  start-page: 1275
  issue: 8
  year: 2013
  ident: 10.1016/j.addr.2022.114449_b0975
  article-title: Histological advantages of the tumor graft: a murine model involving transplantation of human pancreatic cancer tissue fragments
  publication-title: Pancreas
  doi: 10.1097/MPA.0b013e318296f866
– volume: 326
  start-page: 164
  year: 2020
  ident: 10.1016/j.addr.2022.114449_b0005
  article-title: Delivering the power of nanomedicine to patients today
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.07.007
– volume: 275
  year: 2021
  ident: 10.1016/j.addr.2022.114449_b0250
  article-title: Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.120910
– volume: 7
  start-page: 7
  year: 2016
  ident: 10.1016/j.addr.2022.114449_b0885
  article-title: Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-015-0271-2
– volume: 91
  start-page: 261
  issue: 2
  year: 2000
  ident: 10.1016/j.addr.2022.114449_b0385
  article-title: Tumor-selective blood flow decrease induced by an angiotensin converting enzyme inhibitor, temocapril hydrochloride
  publication-title: Jpn J Cancer Res
  doi: 10.1111/j.1349-7006.2000.tb00940.x
– volume: 46
  start-page: 6387
  issue: 12 Pt 1
  year: 1986
  ident: 10.1016/j.addr.2022.114449_b0035
  article-title: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs
  publication-title: Cancer Res
– volume: 28
  start-page: 7340
  issue: 34
  year: 2016
  ident: 10.1016/j.addr.2022.114449_b0650
  article-title: Hierarchical Targeting Strategy for Enhanced Tumor Tissue Accumulation/Retention and Cellular Internalization
  publication-title: Adv Mater
  doi: 10.1002/adma.201601498
– volume: 366
  start-page: 883
  issue: 10
  year: 2012
  ident: 10.1016/j.addr.2022.114449_b0210
  article-title: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1113205
– volume: 12
  start-page: 692
  issue: 7
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0820
  article-title: Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2017.54
– volume: 162
  start-page: 76
  issue: 1
  year: 2012
  ident: 10.1016/j.addr.2022.114449_b1075
  article-title: Endocytic pathway rapidly delivers internalized molecules to lysosomes: an analysis of vesicle trafficking, clustering and mass transfer
  publication-title: Journal of Controlled Release Official Journal of the Controlled Release Society
  doi: 10.1016/j.jconrel.2012.05.022
– volume: 11
  start-page: 4916
  issue: 5
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0515
  article-title: Quercetin Remodels the Tumor Microenvironment To Improve the Permeation, Retention, and Antitumor Effects of Nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01522
– volume: 23
  start-page: 173
  issue: 3
  year: 2016
  ident: 10.1016/j.addr.2022.114449_b0055
  article-title: A Retrospective 30 Years After Discovery of the Enhanced Permeability and Retention Effect of Solid Tumors: Next-Generation Chemotherapeutics and Photodynamic Therapy-Problems, Solutions, and Prospects
  publication-title: Microcirculation
  doi: 10.1111/micc.12228
– volume: 4
  start-page: 998
  issue: 9
  year: 2014
  ident: 10.1016/j.addr.2022.114449_b0955
  article-title: Patient-derived xenograft models: an emerging platform for translational cancer research
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-14-0001
– volume: 190
  start-page: 451
  year: 2014
  ident: 10.1016/j.addr.2022.114449_b0215
  article-title: EPR: Evidence and fallacy
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2014.03.057
– volume: 43
  start-page: 1838
  issue: 4
  year: 2019
  ident: 10.1016/j.addr.2022.114449_b0860
  article-title: Macrophage-engulfed MoS2 for active targeted photothermal therapy
  publication-title: New J. Chem.
  doi: 10.1039/C8NJ05877F
– volume: 127
  start-page: 2007
  issue: 5
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0780
  article-title: Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer
  publication-title: J Clin Invest
  doi: 10.1172/JCI92284
– volume: 72
  start-page: 205
  issue: 4
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0795
  article-title: Co-administration of tLyp-1 with polymeric paclitaxel conjugates: Enhanced intratumoral accumulation and anti-tumor efficacy
  publication-title: Pharmazie
  doi: 10.1159/000455154
– volume: 21
  start-page: 797
  issue: 5
  year: 2010
  ident: 10.1016/j.addr.2022.114449_b0060
  article-title: Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects
  publication-title: Bioconjug Chem
  doi: 10.1021/bc100070g
– volume: 108
  start-page: 44
  year: 2016
  ident: 10.1016/j.addr.2022.114449_b0335
  article-title: Development of a multi-target peptide for potentiating chemotherapy by modulating tumor microenvironment
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.09.001
– volume: 19
  start-page: 566
  issue: 5
  year: 2020
  ident: 10.1016/j.addr.2022.114449_b0705
  article-title: The entry of nanoparticles into solid tumours
  publication-title: Nat Mater
  doi: 10.1038/s41563-019-0566-2
– volume: 172
  start-page: 391
  issue: 1
  year: 2013
  ident: 10.1016/j.addr.2022.114449_b0085
  article-title: Questions on the role of the EPR effect in tumor targeting
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2013.10.001
– volume: 19
  start-page: 997
  issue: 2
  year: 2019
  ident: 10.1016/j.addr.2022.114449_b0590
  article-title: Enhanced Drug Delivery by Nanoscale Integration of a Nitric Oxide Donor To Induce Tumor Collagen Depletion
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.8b04236
– volume: 305
  start-page: 89
  year: 2019
  ident: 10.1016/j.addr.2022.114449_b0025
  article-title: Can intracellular drug delivery using hyaluronic acid functionalised pH-sensitive liposomes overcome gemcitabine resistance in pancreatic cancer?
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2019.05.018
– volume: 201
  start-page: 14
  year: 2015
  ident: 10.1016/j.addr.2022.114449_b0770
  article-title: Cell penetrating peptides improve tumor delivery of cargos through neuropilin-1-dependent extravasation
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2015.01.011
– volume: 116
  start-page: 2210
  issue: 6
  year: 2019
  ident: 10.1016/j.addr.2022.114449_b0505
  article-title: Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1818357116
– volume: 38
  start-page: 1
  issue: 6
  year: 2021
  ident: 10.1016/j.addr.2022.114449_b0910
  article-title: Recent Advancement and Technical Challenges in Developing Small Extracellular Vesicles for Cancer Drug Delivery
  publication-title: Pharm. Res.
– volume: 71
  start-page: 1805
  issue: 5
  year: 2011
  ident: 10.1016/j.addr.2022.114449_b0865
  article-title: Use of macrophages to target therapeutic adenovirus to human prostate tumors
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-10-2349
– volume: 46
  start-page: 169
  issue: 1–3
  year: 2001
  ident: 10.1016/j.addr.2022.114449_b0145
  article-title: SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/S0169-409X(00)00134-4
– volume: 5
  start-page: 25
  year: 2010
  ident: 10.1016/j.addr.2022.114449_b0870
  article-title: Surface engineering of macrophages with nanoparticles to generate a cell-nanoparticle hybrid vehicle for hypoxia-targeted drug delivery
  publication-title: Int J Nanomedicine
– volume: 13
  start-page: 6049
  year: 2018
  ident: 10.1016/j.addr.2022.114449_b0495
  article-title: Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment
  publication-title: Int J Nanomedicine
  doi: 10.2147/IJN.S140462
– ident: 10.1016/j.addr.2022.114449_b0275
  doi: 10.1158/1078-0432.CCR-16-3193
– volume: 201
  start-page: 18
  year: 2013
  ident: 10.1016/j.addr.2022.114449_b0730
  article-title: Exocytosis of nanoparticles from cells: role in cellular retention and toxicity
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2013.10.013
– volume: 76
  start-page: 699
  issue: 4
  year: 2015
  ident: 10.1016/j.addr.2022.114449_b0800
  article-title: Albumin-bound nanoparticle (nab) paclitaxel exhibits enhanced paclitaxel tissue distribution and tumor penetration
  publication-title: Cancer Chemother Pharmacol
  doi: 10.1007/s00280-015-2833-5
– volume: 11
  start-page: 218
  issue: 3
  year: 2013
  ident: 10.1016/j.addr.2022.114449_b0365
  article-title: Towards a superior streptokinase for fibrinolytic therapy of vascular thrombosis
  publication-title: Cardiovasc Hematol Agents Med Chem
  doi: 10.2174/187152571103140120103816
– volume: 160
  start-page: 117
  issue: 2
  year: 2012
  ident: 10.1016/j.addr.2022.114449_b0230
  article-title: Doxil — The first FDA-approved nano-drug: Lessons learned
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2012.03.020
– volume: 119
  start-page: 44
  year: 2017
  ident: 10.1016/j.addr.2022.114449_b0395
  article-title: Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2017.07.007
– volume: 7
  start-page: 12630
  year: 2016
  ident: 10.1016/j.addr.2022.114449_b0510
  article-title: ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion
  publication-title: Nat Commun
  doi: 10.1038/ncomms12630
– volume: 40
  start-page: 507
  issue: 2
  year: 2012
  ident: 10.1016/j.addr.2022.114449_b0855
  article-title: Macrophages as cell-based delivery systems for nanoshells in photothermal therapy
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-011-0415-1
SSID ssj0012760
Score 2.68899
SecondaryResourceType review_article
Snippet [Display omitted] The Enhanced Permeability and Retention (EPR) effect has been recognized as the central paradigm in tumor-targeted delivery in the last...
The Enhanced Permeability and Retention (EPR) effect has been recognized as the central paradigm in tumor-targeted delivery in the last decades. In the wake of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 114449
SubjectTerms Antineoplastic Agents
Clinical translation
Drug Delivery Systems - methods
EPR effect
Humans
independent of EPR effect
Nanomedicine
Nanomedicine - methods
Nanoparticles
Neoplasms - therapy
Permeability
Preclinical models
Transendothelial pathway
Tumor Microenvironment
Title Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms
URI https://dx.doi.org/10.1016/j.addr.2022.114449
https://www.ncbi.nlm.nih.gov/pubmed/35835353
https://www.proquest.com/docview/2691053986
Volume 188
WOSCitedRecordID wos000853367300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-8294
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012760
  issn: 0169-409X
  databaseCode: AIEXJ
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9owFLZou0l7mbbuxi6VJ0280CBytfNYTVTdhhiaMok-WXFiSioIDAiCX7G_vOPYTui2Vt3DhBQhk5CI7-P4HPuc7yD0gVDf4bHwrNiG2ATm27EFboRrgavrxDbpck-UhcJ9MhjQ0SgcNho_TS3MZkrynG634eK_Qg1jALYsnf0HuKsvhQF4D6DDEWCH472AN3qzSrtB5JOyKCBdFlftVExlGkbpcMJDZGl7Xcxktx3wQSfxUlo9Uz3VG36rcj1KPdepXjnciLbKHpdnzoQsHM5WWvLcqNmavIKbN9XCp9VSdZlHcJlti5qgl3r1-kuc7Ypq9EKt8wORJ0U9ixTlvko2E9n-ygUEvSY1yxhbSsAaO6rJcUf8Zayy0HTPxkIE5ymZ0z_Mv1qJuO6A0ZZar47TqU--qbU9-MrOv_f7LOqNotbihyXbkMntet2T5QAdOcQPwUwenX3qjT5XG1MOUYXn5jF1HZZKGfz9trf5OrfFMqVPEz1Bj3Uwgs8UiZ6ihsiP0UPVnnR3jFpDpWu-O8VRXaa3OsUtPKwVz3fP0KbmHF7PseYclvBjA7_8oOQcVpzDfIdrzmHgHAbOYc05DJzDe5zDFedwzbnnKDrvRR8vLN3Qw0pcP1hbIhV2SARNHME5jwMv9FI_LYN62ffcHQfgG_EQQv4gTaiddGna9Wlii7Ev-Dh2X6DDfJ6LVwgHXipTBsBbd4VHuMsTOxBOCtPLOOCEh01km1-eJVrsXvZcmTKT1XjNJFpMosUUWk3Urq5ZKKmXO8_2DaBMO6vKCWVAxjuve2_QZ2DJ5fZcnIt5sWJOAK6774Y0aKKXihbVc7g-RErwen2Pq9-gR_W_7S06XC8L8Q49SDbrbLU8QQdkRE80rX8BlCHMRA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategies+to+enhance+drug+delivery+to+solid+tumors+by+harnessing+the+EPR+effects+and+alternative+targeting+mechanisms&rft.jtitle=Advanced+drug+delivery+reviews&rft.au=Zi%2C+Yixuan&rft.au=Yang%2C+Kaiyun&rft.au=He%2C+Jianhua&rft.au=Wu%2C+Zimei&rft.date=2022-09-01&rft.issn=1872-8294&rft.eissn=1872-8294&rft.volume=188&rft.spage=114449&rft_id=info:doi/10.1016%2Fj.addr.2022.114449&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-409X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-409X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-409X&client=summon