Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms
[Display omitted] The Enhanced Permeability and Retention (EPR) effect has been recognized as the central paradigm in tumor-targeted delivery in the last decades. In the wake of this concept, nanotechnologies have reached phenomenal levels in research. However, clinical tumors display a poor manifes...
Uložené v:
| Vydané v: | Advanced drug delivery reviews Ročník 188; s. 114449 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier B.V
01.09.2022
|
| Predmet: | |
| ISSN: | 0169-409X, 1872-8294, 1872-8294 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | [Display omitted]
The Enhanced Permeability and Retention (EPR) effect has been recognized as the central paradigm in tumor-targeted delivery in the last decades. In the wake of this concept, nanotechnologies have reached phenomenal levels in research. However, clinical tumors display a poor manifestation of EPR effect. Factors including tumor heterogeneity, complicating tumor microenvironment, and discrepancies between laboratory models and human tumors largely contribute to poor efficiency in tumor-targeted delivery and therapeutic failure in clinical translation. In this article, approaches for evaluation of EPR effect in human tumor were overviewed as guidance to employ EPR effect for cancer treatment. Strategies to augment EPR-mediated tumoral delivery are discussed in different dimensions including enhancement of vascular permeability, depletion of tumor extracellular matrix and optimization of nanoparticle design. Besides, the recent development in alternative tumor-targeted delivery mechanisms are highlighted including transendothelial pathway, endogenous cell carriers and non-immunogenic bacteria-mediated delivery. In addition, the emerging preclinical models better reflect human tumors are introduced. Finally, more rational applications of EPR effect in other disease and field are proposed. This article elaborates on fundamental reasons for the gaps between theoretical expectation and clinical outcomes, attempting to provide some perspective directions for future development of cancer nanomedicines in this still evolving landscape. |
|---|---|
| AbstractList | The Enhanced Permeability and Retention (EPR) effect has been recognized as the central paradigm in tumor-targeted delivery in the last decades. In the wake of this concept, nanotechnologies have reached phenomenal levels in research. However, clinical tumors display a poor manifestation of EPR effect. Factors including tumor heterogeneity, complicating tumor microenvironment, and discrepancies between laboratory models and human tumors largely contribute to poor efficiency in tumor-targeted delivery and therapeutic failure in clinical translation. In this article, approaches for evaluation of EPR effect in human tumor were overviewed as guidance to employ EPR effect for cancer treatment. Strategies to augment EPR-mediated tumoral delivery are discussed in different dimensions including enhancement of vascular permeability, depletion of tumor extracellular matrix and optimization of nanoparticle design. Besides, the recent development in alternative tumor-targeted delivery mechanisms are highlighted including transendothelial pathway, endogenous cell carriers and non-immunogenic bacteria-mediated delivery. In addition, the emerging preclinical models better reflect human tumors are introduced. Finally, more rational applications of EPR effect in other disease and field are proposed. This article elaborates on fundamental reasons for the gaps between theoretical expectation and clinical outcomes, attempting to provide some perspective directions for future development of cancer nanomedicines in this still evolving landscape. [Display omitted] The Enhanced Permeability and Retention (EPR) effect has been recognized as the central paradigm in tumor-targeted delivery in the last decades. In the wake of this concept, nanotechnologies have reached phenomenal levels in research. However, clinical tumors display a poor manifestation of EPR effect. Factors including tumor heterogeneity, complicating tumor microenvironment, and discrepancies between laboratory models and human tumors largely contribute to poor efficiency in tumor-targeted delivery and therapeutic failure in clinical translation. In this article, approaches for evaluation of EPR effect in human tumor were overviewed as guidance to employ EPR effect for cancer treatment. Strategies to augment EPR-mediated tumoral delivery are discussed in different dimensions including enhancement of vascular permeability, depletion of tumor extracellular matrix and optimization of nanoparticle design. Besides, the recent development in alternative tumor-targeted delivery mechanisms are highlighted including transendothelial pathway, endogenous cell carriers and non-immunogenic bacteria-mediated delivery. In addition, the emerging preclinical models better reflect human tumors are introduced. Finally, more rational applications of EPR effect in other disease and field are proposed. This article elaborates on fundamental reasons for the gaps between theoretical expectation and clinical outcomes, attempting to provide some perspective directions for future development of cancer nanomedicines in this still evolving landscape. The Enhanced Permeability and Retention (EPR) effect has been recognized as the central paradigm in tumor-targeted delivery in the last decades. In the wake of this concept, nanotechnologies have reached phenomenal levels in research. However, clinical tumors display a poor manifestation of EPR effect. Factors including tumor heterogeneity, complicating tumor microenvironment, and discrepancies between laboratory models and human tumors largely contribute to poor efficiency in tumor-targeted delivery and therapeutic failure in clinical translation. In this article, approaches for evaluation of EPR effect in human tumor were overviewed as guidance to employ EPR effect for cancer treatment. Strategies to augment EPR-mediated tumoral delivery are discussed in different dimensions including enhancement of vascular permeability, depletion of tumor extracellular matrix and optimization of nanoparticle design. Besides, the recent development in alternative tumor-targeted delivery mechanisms are highlighted including transendothelial pathway, endogenous cell carriers and non-immunogenic bacteria-mediated delivery. In addition, the emerging preclinical models better reflect human tumors are introduced. Finally, more rational applications of EPR effect in other disease and field are proposed. This article elaborates on fundamental reasons for the gaps between theoretical expectation and clinical outcomes, attempting to provide some perspective directions for future development of cancer nanomedicines in this still evolving landscape.The Enhanced Permeability and Retention (EPR) effect has been recognized as the central paradigm in tumor-targeted delivery in the last decades. In the wake of this concept, nanotechnologies have reached phenomenal levels in research. However, clinical tumors display a poor manifestation of EPR effect. Factors including tumor heterogeneity, complicating tumor microenvironment, and discrepancies between laboratory models and human tumors largely contribute to poor efficiency in tumor-targeted delivery and therapeutic failure in clinical translation. In this article, approaches for evaluation of EPR effect in human tumor were overviewed as guidance to employ EPR effect for cancer treatment. Strategies to augment EPR-mediated tumoral delivery are discussed in different dimensions including enhancement of vascular permeability, depletion of tumor extracellular matrix and optimization of nanoparticle design. Besides, the recent development in alternative tumor-targeted delivery mechanisms are highlighted including transendothelial pathway, endogenous cell carriers and non-immunogenic bacteria-mediated delivery. In addition, the emerging preclinical models better reflect human tumors are introduced. Finally, more rational applications of EPR effect in other disease and field are proposed. This article elaborates on fundamental reasons for the gaps between theoretical expectation and clinical outcomes, attempting to provide some perspective directions for future development of cancer nanomedicines in this still evolving landscape. |
| ArticleNumber | 114449 |
| Author | Zi, Yixuan Liu, Jianping Yang, Kaiyun Zhang, Wenli He, Jianhua Wu, Zimei |
| Author_xml | – sequence: 1 givenname: Yixuan surname: Zi fullname: Zi, Yixuan organization: Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China – sequence: 2 givenname: Kaiyun surname: Yang fullname: Yang, Kaiyun organization: School of Pharmacy, University of Auckland, Private Bag 92019, Auckland, New Zealand – sequence: 3 givenname: Jianhua surname: He fullname: He, Jianhua organization: Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China – sequence: 4 givenname: Zimei surname: Wu fullname: Wu, Zimei email: z.wu@auckland.ac.nz organization: School of Pharmacy, University of Auckland, Private Bag 92019, Auckland, New Zealand – sequence: 5 givenname: Jianping surname: Liu fullname: Liu, Jianping email: jianping1293@163.com organization: Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China – sequence: 6 givenname: Wenli surname: Zhang fullname: Zhang, Wenli email: zwllz@163.com organization: Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35835353$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kTtrHDEUhYVxsNeO_4CLoDLNbCTNYyVIE4zzAENC4iKd0Eh3drXMSI6uZmH_vTWs3aQwKm6h7xw451yR8xADEHLL2Zoz3n3ar41zaS2YEGvOm6ZRZ2TF5UZUUqjmnKwKpKqGqb-X5ApxzxgXm45dkMu6lXVb3ooc_uRkMmw9IM2RQtiZYIG6NG-pg9EfIB2XD4yjdzTPU0xI-yPdmRQA0YctzTug979-UxgGsBmpCY6aMUMKJhc9zSZtIS_kBLbYe5zwPXk3mBHh5uVek8ev949336uHn99-3H15qGzddrkCB1xtQFoBfd-brlGNa13NlrBMinrolGK9akpQZyW3TDrWSsthaKEfTH1NPp5sn1L8NwNmPXm0MI4mQJxRi05x1tZKdgX98ILO_QROPyU_mXTUr1UVQJ4AmyJigkFbn0vCGEqDftSc6WUVvdfLKnpZRZ9WKVLxn_TV_U3R55MISj8HD0mj9VDGcT6VnrWL_i35M_t4p20 |
| CitedBy_id | crossref_primary_10_1021_jacs_3c01532 crossref_primary_10_1002_smll_202402648 crossref_primary_10_1016_j_jconrel_2022_12_028 crossref_primary_10_34133_bmr_0087 crossref_primary_10_1016_j_addr_2023_114707 crossref_primary_10_1016_j_omto_2023_02_001 crossref_primary_10_1016_j_cej_2024_153171 crossref_primary_10_1002_advs_202413367 crossref_primary_10_1007_s12032_025_02853_8 crossref_primary_10_1016_j_ijpharm_2023_123136 crossref_primary_10_1016_j_addr_2023_114821 crossref_primary_10_1021_acs_cgd_4c01687 crossref_primary_10_1002_adhm_202401074 crossref_primary_10_1002_tcr_202400171 crossref_primary_10_1016_j_bioadv_2023_213344 crossref_primary_10_1016_j_bbcan_2025_189261 crossref_primary_10_1021_acs_molpharmaceut_4c00856 crossref_primary_10_3390_ijms25021195 crossref_primary_10_1186_s12645_025_00314_5 crossref_primary_10_1039_D2NR06621A crossref_primary_10_1016_j_ejps_2023_106425 crossref_primary_10_1002_advs_202400297 crossref_primary_10_1016_j_cej_2025_167348 crossref_primary_10_1039_D4RA01075B crossref_primary_10_1002_cplu_202400783 crossref_primary_10_1016_j_nantod_2024_102251 crossref_primary_10_1016_j_biomaterials_2025_123311 crossref_primary_10_1080_10837450_2025_2518564 crossref_primary_10_1007_s44174_024_00179_z crossref_primary_10_3390_pharmaceutics16091128 crossref_primary_10_1080_17425247_2023_2223941 crossref_primary_10_2147_IJN_S520205 crossref_primary_10_1016_j_jconrel_2024_11_071 crossref_primary_10_2147_IJN_S377149 crossref_primary_10_3390_nano13182597 crossref_primary_10_2147_IJN_S452824 crossref_primary_10_1016_j_ijpharm_2025_125979 crossref_primary_10_1016_j_nantod_2023_101799 crossref_primary_10_1016_j_ijbiomac_2025_140830 crossref_primary_10_1007_s13346_024_01655_1 crossref_primary_10_15212_bioi_2025_0016 crossref_primary_10_1007_s11427_022_2240_6 crossref_primary_10_1016_S1875_5364_25_60851_X crossref_primary_10_1016_j_eurpolymj_2024_113282 crossref_primary_10_1016_j_apsb_2024_05_028 crossref_primary_10_1016_S1875_5364_25_60815_6 crossref_primary_10_1016_j_jconrel_2024_03_049 crossref_primary_10_1016_j_cclet_2023_108220 crossref_primary_10_3389_fbioe_2024_1403511 crossref_primary_10_1016_j_jconrel_2025_113783 crossref_primary_10_1038_s41392_024_01889_y crossref_primary_10_1080_17435889_2024_2387530 crossref_primary_10_3390_mi15050652 crossref_primary_10_1186_s40824_023_00464_w crossref_primary_10_1002_bmm2_12083 crossref_primary_10_61186_MCH_2025_1079 crossref_primary_10_1080_1061186X_2025_2522868 crossref_primary_10_1002_med_22036 crossref_primary_10_1002_anbr_202300125 crossref_primary_10_3390_pharmaceutics17060779 crossref_primary_10_1097_CM9_0000000000003703 crossref_primary_10_3390_pharmaceutics16111432 crossref_primary_10_1016_j_ijpharm_2024_124933 crossref_primary_10_1208_s12249_023_02714_5 crossref_primary_10_1016_S1875_5364_25_60910_1 crossref_primary_10_1016_j_addr_2023_115108 crossref_primary_10_1016_j_nantod_2025_102816 crossref_primary_10_1016_j_jconrel_2023_02_009 crossref_primary_10_3390_pharmaceutics17050572 crossref_primary_10_26599_NR_2025_94907030 crossref_primary_10_34133_bmr_0200 crossref_primary_10_1002_jbm_a_37939 crossref_primary_10_1016_j_ijbiomac_2025_146478 crossref_primary_10_1080_17425247_2024_2361117 crossref_primary_10_1002_cbic_202400804 crossref_primary_10_1016_j_jconrel_2025_02_066 crossref_primary_10_1016_j_biopha_2024_117693 crossref_primary_10_1016_j_ijpharm_2025_125640 crossref_primary_10_3390_ph17070919 crossref_primary_10_1080_10717544_2024_2342844 crossref_primary_10_1186_s12645_024_00257_3 crossref_primary_10_3390_biom15060895 crossref_primary_10_1007_s40820_023_01266_4 crossref_primary_10_1039_D2BM00660J crossref_primary_10_2147_IJN_S523621 crossref_primary_10_1016_j_cclet_2023_108557 crossref_primary_10_3389_fimmu_2022_1057850 crossref_primary_10_1016_j_jconrel_2023_01_022 crossref_primary_10_1002_adhm_202302902 crossref_primary_10_1021_acs_biomac_5c00763 crossref_primary_10_1002_wnan_1990 crossref_primary_10_1016_j_actbio_2023_12_026 crossref_primary_10_1016_j_eurpolymj_2025_113988 crossref_primary_10_3389_fonc_2024_1296091 crossref_primary_10_1016_j_colsurfa_2023_131788 crossref_primary_10_3390_ijms25105213 crossref_primary_10_1002_pol_20230833 crossref_primary_10_1039_D5RA00728C crossref_primary_10_1016_j_actbio_2023_03_004 crossref_primary_10_1016_j_addr_2022_114614 crossref_primary_10_1016_j_jcis_2023_06_177 crossref_primary_10_3390_ph18091288 crossref_primary_10_1016_j_jconrel_2025_114125 crossref_primary_10_3389_fbioe_2024_1436297 crossref_primary_10_1016_j_mtbio_2025_101684 crossref_primary_10_3390_jpm13030389 crossref_primary_10_1016_j_cej_2024_151072 crossref_primary_10_26599_NR_2025_94907773 crossref_primary_10_1007_s10549_025_07696_5 crossref_primary_10_1039_D4BM01121J crossref_primary_10_1016_j_addr_2023_114871 crossref_primary_10_3390_pharmaceutics17010136 crossref_primary_10_1016_j_jcis_2024_09_133 crossref_primary_10_1016_j_jsamd_2025_100977 crossref_primary_10_1016_j_matdes_2023_112232 crossref_primary_10_1016_j_ijbiomac_2023_124088 crossref_primary_10_1007_s12032_025_02660_1 crossref_primary_10_1007_s00210_025_04068_0 crossref_primary_10_3390_cancers17152466 crossref_primary_10_1002_cbdv_202300187 crossref_primary_10_3390_pharmaceutics15122770 crossref_primary_10_1080_17435889_2025_2528593 crossref_primary_10_1039_D4BM00647J crossref_primary_10_3390_ijms241210082 crossref_primary_10_1016_j_biomaterials_2024_122469 crossref_primary_10_1186_s12645_023_00244_0 crossref_primary_10_1080_17435889_2025_2535281 crossref_primary_10_1021_acs_biomac_5c00280 crossref_primary_10_1002_adma_202510293 crossref_primary_10_2174_0109298673283362231220115050 crossref_primary_10_1039_D3RA01782F crossref_primary_10_1016_j_inoche_2025_115215 crossref_primary_10_1016_j_phrs_2024_107150 crossref_primary_10_1016_j_nano_2024_102753 crossref_primary_10_1038_s41563_023_01630_0 crossref_primary_10_1007_s00210_025_04038_6 crossref_primary_10_1007_s40843_024_2858_8 crossref_primary_10_1016_j_wneu_2025_124142 crossref_primary_10_1016_j_ejphar_2024_176827 crossref_primary_10_1016_j_preme_2025_100037 crossref_primary_10_1016_j_trac_2023_117020 crossref_primary_10_1016_j_ijpharm_2024_124292 crossref_primary_10_3390_ijms26146608 |
| Cites_doi | 10.1016/j.biomaterials.2016.06.048 10.1007/s11095-017-2340-y 10.1016/j.colsurfb.2018.05.026 10.1093/jac/dks379 10.1158/0008-5472.CAN-04-0074 10.1016/j.addr.2010.04.009 10.1016/j.canlet.2013.11.015 10.1016/S0169-409X(01)00107-7 10.1111/j.1349-7006.1992.tb00093.x 10.1016/j.cell.2008.05.009 10.3390/cancers11081187 10.1038/nnano.2012.45 10.1002/smll.201701621 10.1021/acsnano.0c02110 10.3390/jpm11111160 10.1074/jbc.M113.476903 10.1038/s41565-019-0597-5 10.1038/s41565-019-0485-z 10.1016/j.bbrc.2012.07.150 10.1021/acsami.8b19840 10.1016/j.addr.2017.04.010 10.1016/j.jconrel.2017.02.035 10.1021/acsnano.9b02395 10.1038/nrc2934 10.1073/pnas.251543698 10.1023/B:PHAM.0000045232.18134.e9 10.1002/adhm.202001550 10.1158/0008-5472.CAN-04-1874 10.1016/j.xphs.2017.06.019 10.1073/pnas.0510412103 10.1007/s13346-018-00610-1 10.1016/j.addr.2012.09.038 10.1016/j.addr.2020.06.005 10.1038/nature01451 10.21873/anticanres.12919 10.1016/j.addr.2021.02.019 10.1007/s10456-017-9562-9 10.1038/nnano.2016.137 10.1021/acs.nanolett.9b04683 10.1016/j.devcel.2010.05.012 10.1016/j.msec.2019.01.066 10.1007/s10555-016-9653-x 10.1016/j.chom.2013.01.005 10.1159/000313880 10.1038/s41563-020-0672-1 10.1016/j.apsb.2020.10.009 10.1016/j.pharmthera.2015.11.008 10.1016/j.biomaterials.2020.119769 10.1016/j.ccell.2016.10.018 10.4155/tde.13.8 10.1016/j.ccr.2013.01.008 10.1016/j.cellimm.2020.104119 10.1016/S1470-2045(16)00078-4 10.1016/B978-0-12-809717-5.00002-6 10.1021/acs.molpharmaceut.1c00036 10.1158/1535-7163.MCT-15-0602 10.3390/ijms20194719 10.1016/j.jconrel.2017.06.022 10.1126/science.1104819 10.1038/s41563-020-0669-9 10.1126/sciadv.1500821 10.1021/acsnano.5b01320 10.1016/j.jtbi.2020.110229 10.3109/1061186X.2015.1051049 10.3390/cancers13123070 10.1039/c3nr90022c 10.1002/adma.201200454 10.3390/jpm12010095 10.1021/acsami.9b18112 10.1016/j.radonc.2015.09.026 10.1016/j.nantod.2016.06.006 10.2174/1871526517666170606102623 10.1158/2326-6066.CIR-14-0209 10.1016/j.addr.2015.11.001 10.1021/acs.nanolett.6b00820 10.1016/j.biomaterials.2010.01.065 10.1038/s41573-018-0004-1 10.1002/adfm.201707249 10.1016/j.addr.2018.07.007 10.1021/acsami.8b17684 10.1093/jnci/93.4.266 10.1158/0008-5472.CAN-12-2217 10.3727/096368907783338271 10.1002/adma.201404715 10.14348/molcells.2016.2350 10.1002/stem.217 10.1517/14712598.6.3.243 10.1073/pnas.0813203106 10.3390/cells8091102 10.1007/978-1-4939-6931-9_6 10.1038/onc.2017.261 10.1158/1535-7163.MCT-18-0696 10.1038/s41551-017-0115-8 10.7150/thno.38587 10.1021/acs.nanolett.6b00262 10.1101/cshperspect.a016345 10.1016/j.jconrel.2018.05.002 10.1016/j.addr.2015.01.002 10.1016/j.addr.2015.11.009 10.1039/C8NR00640G 10.1073/pnas.77.12.7380 10.1038/nm.2938 10.1007/978-1-60761-609-2_3 10.1002/smll.201801694 10.1016/0162-3109(96)00063-X 10.1016/j.jconrel.2011.06.001 10.1248/cpb.c17-00789 10.1038/s41565-019-0494-y 10.1016/0092-8674(87)90646-5 10.1016/j.jconrel.2016.11.015 10.1088/0957-4484/23/50/505702 10.2147/IJN.S132780 10.1186/s13045-019-0829-z 10.1016/j.canlet.2018.11.011 10.1016/j.jconrel.2020.01.040 10.1042/BC20070116 10.1016/j.ceb.2010.08.015 10.1007/s11912-017-0608-3 10.1021/acsnano.0c08185 10.1038/nature10632 10.1016/j.jconrel.2019.10.020 10.1038/nrc.2016.108 10.1289/ehp.97105s51261 10.1016/j.ejca.2006.01.003 10.1038/ncomms11838 10.1182/blood-2004-03-1109 10.1073/pnas.0801763105 10.1039/D0TB00649A 10.1007/978-3-319-66095-0_11 10.1038/nrclinonc.2010.139 10.1021/acs.chemrev.0c00779 10.1021/acsnano.8b03525 10.1016/j.biomaterials.2018.08.004 10.1038/nature08989 10.1016/j.addr.2012.03.006 10.1016/j.nantod.2014.04.011 10.15252/emmm.201606857 10.1166/jbn.2018.2592 10.3390/jpm11080825 10.1136/gutjnl-2012-302529 10.1200/JCO.2014.60.0759 10.1111/j.1349-7006.2008.01003.x 10.1158/0008-5472.CAN-14-3373 10.1080/17425247.2018.1420051 10.1002/adhm.201700818 10.1093/jjco/hyp074 10.1039/C6CS00592F 10.1097/TP.0b013e3181a28533 10.1186/ar3130 10.1111/j.1476-5381.2009.00057.x 10.1016/S0076-6879(04)81023-1 10.1136/gutjnl-2011-300756 10.1002/advs.201802070 10.1080/19420862.2018.1452580 10.1016/S0301-472X(00)00635-4 10.1016/j.jconrel.2017.09.016 10.1517/17425247.2014.955011 10.1021/acs.nanolett.9b03211 10.1007/s11095-014-1353-z 10.1161/01.STR.32.4.1005 10.1128/iai.48.3.747-753.1985 10.1016/j.canlet.2014.01.032 10.1038/s41565-019-0567-y 10.1002/hep.29088 10.2147/HP.S93413 10.3109/10731199509117955 10.1016/j.msec.2020.111004 10.1038/nrc1456 10.1097/MPA.0b013e318296f866 10.1016/j.jconrel.2020.07.007 10.1016/j.biomaterials.2021.120910 10.1186/s13287-015-0271-2 10.1111/j.1349-7006.2000.tb00940.x 10.1002/adma.201601498 10.1056/NEJMoa1113205 10.1038/nnano.2017.54 10.1016/j.jconrel.2012.05.022 10.1021/acsnano.7b01522 10.1111/micc.12228 10.1158/2159-8290.CD-14-0001 10.1016/j.jconrel.2014.03.057 10.1039/C8NJ05877F 10.1172/JCI92284 10.1159/000455154 10.1021/bc100070g 10.1016/j.biomaterials.2016.09.001 10.1038/s41563-019-0566-2 10.1016/j.jconrel.2013.10.001 10.1021/acs.nanolett.8b04236 10.1016/j.jconrel.2019.05.018 10.1016/j.jconrel.2015.01.011 10.1073/pnas.1818357116 10.1158/0008-5472.CAN-10-2349 10.1016/S0169-409X(00)00134-4 10.2147/IJN.S140462 10.1158/1078-0432.CCR-16-3193 10.1016/j.cis.2013.10.013 10.1007/s00280-015-2833-5 10.2174/187152571103140120103816 10.1016/j.jconrel.2012.03.020 10.1016/j.addr.2017.07.007 10.1038/ncomms12630 10.1007/s10439-011-0415-1 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.addr.2022.114449 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1872-8294 |
| ExternalDocumentID | 35835353 10_1016_j_addr_2022_114449 S0169409X22003398 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATCM AAXUO ABFNM ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ABZDS ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC C45 CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMT HVGLF HX~ HZ~ IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SPT SSP SSU SSZ T5K TEORI WUQ Y6R ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c356t-ede197e8c2ebbba6494d5d3014440823f6990b94016dc81c08d058c1ef5ebfa3 |
| ISICitedReferencesCount | 172 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000853367300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0169-409X 1872-8294 |
| IngestDate | Sun Sep 28 07:14:54 EDT 2025 Wed Feb 19 02:26:28 EST 2025 Sat Nov 29 07:24:21 EST 2025 Tue Nov 18 21:36:26 EST 2025 Fri Feb 23 02:40:41 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Clinical translation Transendothelial pathway independent of EPR effect Nanomedicine Preclinical models EPR effect |
| Language | English |
| License | Copyright © 2022 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c356t-ede197e8c2ebbba6494d5d3014440823f6990b94016dc81c08d058c1ef5ebfa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 35835353 |
| PQID | 2691053986 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2691053986 pubmed_primary_35835353 crossref_citationtrail_10_1016_j_addr_2022_114449 crossref_primary_10_1016_j_addr_2022_114449 elsevier_sciencedirect_doi_10_1016_j_addr_2022_114449 |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 20220901 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Advanced drug delivery reviews |
| PublicationTitleAlternate | Adv Drug Deliv Rev |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Heldin (b0125) 2004; 4 Couvreur (b0020) 2019; 311–312 Okada, Vaeteewoottacharn, Kariya (b0950) 2018; 66 Fu (b0435) 2020; 353 Liu (b0410) 2021; 172 Dobrolecki (b0960) 2016; 35 Yan (b0450) 2017; 36 Sordi (b0900) 2009; 87 Fang, Nakamura, Maeda (b0040) 2011; 63 Xiangsheng (b0695) 2019; 9 Th Ee K (b0345) 2018 Conner, Schmid (b0725) 2003; 422 Nakamizo (b0915) 2005; 65 Hidalgo (b0955) 2014; 4 Zangi (b0920) 2009; 27 Jenne (b0830) 2013; 13 Unzek (b0905) 2007; 16 Ekdawi, Jaffray, Allen (b0205) 2016; 11 Boucher, Jain (b0130) 1992; 52 Sakaguchi (b0880) 2008; 133 Maeda (b0060) 2010; 21 He (b0840) 2010; 31 Jin (b0680) 2018; 35 Van Acker (b0440) 2016; 158 Yeh, Kim (b0190) 2015; 33 Muthana (b0865) 2011; 71 Azzopardi, Ferguson, Thomas (b0045) 2013; 68 Jang, Sengupta (b0110) 2019; 14 Ostman (b0630) 2012; 18 Marangoni (b0585) 1950; 2018 Ma (b0355) 2019; 11 Liu (b0745) 2019; 19 Pangarkar, Dinh, Mitragotri (b1075) 2012; 162 Yoo (b0810) 2011; 480 Pober, Sessa (b1005) 2014; 7 H. Lee, et al., 64Cu-MM-302 Positron Emission Tomography Quantifies Variability of Enhanced Permeability and Retention of Nanoparticles in Relation to Treatment Response in Patients with Metastatic Breast Cancer. Clinical Cancer Research, 2017: p. clincanres.3193.2016. Krafft (b0500) 2001; 47 Cho (b0970) 2016; 39 Gordon (b0985) 1980; 77 Holden (b0870) 2010; 5 Chrastina (b0805) 2010; 47 Venditto, Szoka (b0065) 2013; 65 Pérez-Medina (b0260) 2016; 7 Nakamura, Fang, Maeda (b0080) 2015; 12 Natfji (b0220) 2017; 106 Song (b0335) 2016; 108 A. Jasim, S. Abdelghany, K. Greish, Chapter 2 - Current Update on the Role of Enhanced Permeability and Retention Effect in Cancer Nanomedicine, in Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes, V. Mishra, et al., Editors. 2017, Academic Press. p. 62-109. Nagamitsu, Greish, Maeda (b0285) 2009; 39 F. Krombach, et al., Cell size of alveolar macrophages: an interspecies comparison. Environ Health Perspect. 105 Suppl 5(Suppl 5) (1997) 1261-3. Mazur, Siveke (b1000) 2012; 61 Mpekris (b0565) 2017; 261 Zhang (b0700) 2020; 14 Noguchi (b0380) 1992; 83 Zhang, Coleman, Brekken (b0195) 2021; 13 Tang (b0615) 2019; 9 Murdoch, Giannoudis, Lewis (b0845) 2004; 104 Islam, Maeda, Fang (b0095) 2021 Park (b0330) 2016; 30 Liu (b0795) 2017; 72 Lee (b0525) 2017; 263 Silva (b1025) 2020; 496 Tian (b0620) 2009; 106 van der Meel (b0105) 2019; 14 Moughon (b0455) 2015; 75 Dai (b0670) 2018; 28 Gratton (b0735) 2008; 105 Akashi (b0975) 2013; 42 Liu (b0490) 2017; 13 Jacobetz (b0135) 2013; 62 Luo (b0945) 2016; 16 Wang, Huang, Chen (b0650) 2016; 28 Danhier (b0120) 2016; 244 Wang (b0655) 2018; 15 Gestin, Dowaidar, Langel (b0765) 2017; 1030 Yoshida (b0980) 2020; 13 Park (b0085) 2013; 172 R.K. Jain, R.K. Jain, Determinants of tumor blood flow: A review. Cancer Res 48: 2641-2658. Cancer Research, 1988. 48(10): p. 2641-2658. Kadonosono (b0770) 2015; 201 Jain (b0235) 2005; 307 Hori (b0385) 2000; 91 Wang (b1040) 2004; 21 Zhou (b0310) 2018; 14 Kisucka (b0390) 2006; 103 Zhao (b0505) 2019; 116 Jain, Stylianopoulos (b0155) 2010; 7 Yoshida (b0545) 2018; 38 Dang (b0925) 2001; 98 Matsumura, Maeda (b0035) 1986; 46 Morris (b0755) 2008; 100 Egeblad, Rasch, Weaver (b0150) 2010; 22 Gerlinger (b0210) 2012; 366 Pandit, Dutta, Nie (b0715) 2020; 19 Ino (b0400) 2006; 6 Fang (b0115) 2022; 12 Liu (b0780) 2017; 127 Gordon-Weeks (b0825) 2017; 65 Chimen, Apta, Mcgettrick (b0875) 2017 Xu (b1080) 2014; 31 Viallard, Larrivée (b0425) 2017; 20 Dvorak (b1010) 2015; 3 Kumari, Ghosh, Biswas (b0010) 2016; 24 Maeda (b0145) 2001; 46 Zhang (b0340) 2021; 15 Ji (b0575) 2015; 27 Germano (b0445) 2013; 23 Lin (b0665) 2020; 10 Zhang (b0560) 2016; 103 Hu (b0515) 2017; 11 Wu (b1065) 2021; 11 Timin (b0815) 2018 Kim, Emi, Tanabe (b0240) 2010; 121 Liu (b0675) 2020; 20 Zhou (b0595) 2016 Höckel, Vaupel (b0185) 2001; 93 L. Jingqiu, et al., Synergizing Upconversion Nanophotosensitizers with Hyperbaric Oxygen to Remodel the Extracellular Matrix for Enhanced Photodynamic Cancer Therapy. Acs Applied Materials & Interfaces, 2018: p. acsami.8b07090-. Teicher (b0175) 1995; 23 Thomas, Capecchi (b0990) 1987; 51 Maeda (b0075) 2015; 91 Geng (b0910) 2021; 38 Leibacher, Henschler (b0885) 2016; 7 Chauhan (b0320) 2012; 7 Jászai, Schmidt (b0415) 2019; 8 Jin (b0690) 2020; 320 Izci (b0350) 2021; 121 Liu (b0485) 2019; 11 Zhou (b0475) 2020; 8 Yuan (b1030) 2012; 64 Shi (b0265) 2017; 17 Laplagne (b0460) 2019; 20 Vaupel, Mayer, Höckel (b0180) 2004; 381 Muz (b0170) 2015; 3 Chen (b0555) 2019; 6 Nichols, Bae (b0215) 2014; 190 Dai (b0640) 2017; 46 Kamata (b0300) 1985; 48 Maeda (b0290) 1996; 33 Martens (b1070) 2014; 9 Jf, Wi, Hmb (b0280) 2020; 157 Liu (b0600) 2018; 10 Golombek (b0255) 2018; 130 Barenholz (b0230) 2012; 160 El-Dakdouki, Puré, Huang (b0750) 2013; 5 Sindhwani (b0705) 2020; 19 Tong (b0420) 2004; 64 Kim, Faix, Schnitzer (b0720) 2017; 267 Wu, Akaike, Maeda (b0375) 1998; 58 Nywening (b0465) 2016 Yokoi (b0270) 2014; 345 Iqbal, Anwar, Afridi (b0015) 2017; 17 Lokman (b0610) 2019; 11 Nesteruk (b1015) 2015; 117 Germain (b0005) 2020; 326 Li (b0305) 2017; 1 Chen (b0890) 2001; 32 W. Zeng, et al., Hypoxia and hypoxia inducible factors in tumor metabolism. Cancer Lett, 2015. 356(2 Pt A): p. 263-7. Graham, Unger (b0495) 2018; 13 Sakhtianchi (b0730) 2013; 201 Wong (b0535) 2017; 19 Chen, Song (b0625) 2018; 18 Greish (b0050) 2010; 624 Roy Chaudhuri (b0570) 2016; 15 Yu (b0550) 2019; 442 Islam (b0295) 2018; 17 Editor, The two directions of cancer nanomedicine. Nature Nanotechnology, 2019. 14(12): p. 1083-1083. Ding (b0965) 2010; 464 Hubbi (b0200) 2013; 288 Madsen (b0855) 2012; 40 Shen (b1085) 2017; 12 Keramati (b0365) 2013; 11 Dong (b0590) 2019; 19 Forbes (b0930) 2010; 10 Matsumoto (b1060) 2021; 11 Kersten (b0995) 2017; 9 Quan (b1035) 2010; 12 Xu (b1055) 2018; 12 Song (b0860) 2019; 43 Ojha (b0395) 2017; 119 Ruoslahti (b0790) 2012; 24 Stylianopoulos, Munn, Jain (b0165) 2018 Jin (b0405) 2021; 10 Harrington (b1020) 2001; 7 Yang (b0785) 2018; 14 Bae, Park (b0090) 2011; 153 Heitz, Morris, Divita (b0760) 2009; 157 Wang (b0605) 2020; 113 Maeda, Matsumura (b0140) 1989; 6 Chen (b0800) 2015; 76 Yang (b0360) 2018; 182 Miao (b0685) 2018; 169 Luan (b0250) 2021; 275 Komohara (b0635) 2016; 99 Li (b0370) 2020; 36 Seo (b0315) 2018; 10 Xue (b0820) 2017; 12 Felfoul (b0940) 2016; 11 Chronopoulos (b0510) 2016; 7 Ngambenjawong, Gustafson, Pun (b0430) 2017; 114 Tang (b0025) 2019; 305 Zhou (b0740) 2019; 14 Theocharis (b0520) 2016 Cun (b0660) 2018; 10 Sica (b0470) 2006; 42 Xu (b0580) 2020; 235 Devine (b0895) 2001; 29 Maeda, Tsukigawa, Fang (b0055) 2016; 23 Kalyane (b1045) 2019; 98 Wu (b0030) 2021; 18 Yang (b0835) 2012; 23 Liu (b0935) 2012; 425 Stylianopoulos (b0645) 2013; 4 Swanton (b0225) 2012; 72 Egeblad, Nakasone, Werb (b0245) 2010; 18 Kano (b0325) 2009; 100 Pang, Braun, Ruoslahti (b0775) 2015; 1 de Lázaro, Mooney (b0710) 2020; 19 Zinger (b0540) 2019; 13 Yu, Zheng (b1050) 2015; 9 Viallard (10.1016/j.addr.2022.114449_b0425) 2017; 20 Germano (10.1016/j.addr.2022.114449_b0445) 2013; 23 Miao (10.1016/j.addr.2022.114449_b0685) 2018; 169 Bae (10.1016/j.addr.2022.114449_b0090) 2011; 153 Jf (10.1016/j.addr.2022.114449_b0280) 2020; 157 Conner (10.1016/j.addr.2022.114449_b0725) 2003; 422 Pandit (10.1016/j.addr.2022.114449_b0715) 2020; 19 Islam (10.1016/j.addr.2022.114449_b0095) 2021 Ekdawi (10.1016/j.addr.2022.114449_b0205) 2016; 11 Nagamitsu (10.1016/j.addr.2022.114449_b0285) 2009; 39 Zinger (10.1016/j.addr.2022.114449_b0540) 2019; 13 Silva (10.1016/j.addr.2022.114449_b1025) 2020; 496 Jang (10.1016/j.addr.2022.114449_b0110) 2019; 14 Gordon-Weeks (10.1016/j.addr.2022.114449_b0825) 2017; 65 Dong (10.1016/j.addr.2022.114449_b0590) 2019; 19 10.1016/j.addr.2022.114449_b0070 Dai (10.1016/j.addr.2022.114449_b0670) 2018; 28 Kadonosono (10.1016/j.addr.2022.114449_b0770) 2015; 201 Liu (10.1016/j.addr.2022.114449_b0795) 2017; 72 Liu (10.1016/j.addr.2022.114449_b0490) 2017; 13 Pangarkar (10.1016/j.addr.2022.114449_b1075) 2012; 162 Dai (10.1016/j.addr.2022.114449_b0640) 2017; 46 Tong (10.1016/j.addr.2022.114449_b0420) 2004; 64 Gestin (10.1016/j.addr.2022.114449_b0765) 2017; 1030 Yoo (10.1016/j.addr.2022.114449_b0810) 2011; 480 Sakaguchi (10.1016/j.addr.2022.114449_b0880) 2008; 133 Xu (10.1016/j.addr.2022.114449_b0580) 2020; 235 Zhou (10.1016/j.addr.2022.114449_b0740) 2019; 14 Swanton (10.1016/j.addr.2022.114449_b0225) 2012; 72 Cun (10.1016/j.addr.2022.114449_b0660) 2018; 10 Muthana (10.1016/j.addr.2022.114449_b0865) 2011; 71 Kumari (10.1016/j.addr.2022.114449_b0010) 2016; 24 Xu (10.1016/j.addr.2022.114449_b1055) 2018; 12 Lin (10.1016/j.addr.2022.114449_b0665) 2020; 10 Ruoslahti (10.1016/j.addr.2022.114449_b0790) 2012; 24 10.1016/j.addr.2022.114449_b0160 Yu (10.1016/j.addr.2022.114449_b0550) 2019; 442 Yoshida (10.1016/j.addr.2022.114449_b0545) 2018; 38 Hidalgo (10.1016/j.addr.2022.114449_b0955) 2014; 4 Wong (10.1016/j.addr.2022.114449_b0535) 2017; 19 Xu (10.1016/j.addr.2022.114449_b1080) 2014; 31 Li (10.1016/j.addr.2022.114449_b0305) 2017; 1 Fang (10.1016/j.addr.2022.114449_b0115) 2022; 12 Yeh (10.1016/j.addr.2022.114449_b0190) 2015; 33 Song (10.1016/j.addr.2022.114449_b0860) 2019; 43 Wang (10.1016/j.addr.2022.114449_b1040) 2004; 21 Kamata (10.1016/j.addr.2022.114449_b0300) 1985; 48 Song (10.1016/j.addr.2022.114449_b0335) 2016; 108 Murdoch (10.1016/j.addr.2022.114449_b0845) 2004; 104 Shen (10.1016/j.addr.2022.114449_b1085) 2017; 12 Ding (10.1016/j.addr.2022.114449_b0965) 2010; 464 Luo (10.1016/j.addr.2022.114449_b0945) 2016; 16 10.1016/j.addr.2022.114449_b0850 Maeda (10.1016/j.addr.2022.114449_b0145) 2001; 46 Ino (10.1016/j.addr.2022.114449_b0400) 2006; 6 Leibacher (10.1016/j.addr.2022.114449_b0885) 2016; 7 Jenne (10.1016/j.addr.2022.114449_b0830) 2013; 13 Lokman (10.1016/j.addr.2022.114449_b0610) 2019; 11 Roy Chaudhuri (10.1016/j.addr.2022.114449_b0570) 2016; 15 Maeda (10.1016/j.addr.2022.114449_b0055) 2016; 23 Park (10.1016/j.addr.2022.114449_b0085) 2013; 172 Chen (10.1016/j.addr.2022.114449_b0800) 2015; 76 Felfoul (10.1016/j.addr.2022.114449_b0940) 2016; 11 Zhou (10.1016/j.addr.2022.114449_b0310) 2018; 14 Lee (10.1016/j.addr.2022.114449_b0525) 2017; 263 Natfji (10.1016/j.addr.2022.114449_b0220) 2017; 106 Wu (10.1016/j.addr.2022.114449_b0375) 1998; 58 Ojha (10.1016/j.addr.2022.114449_b0395) 2017; 119 Egeblad (10.1016/j.addr.2022.114449_b0150) 2010; 22 Geng (10.1016/j.addr.2022.114449_b0910) 2021; 38 Liu (10.1016/j.addr.2022.114449_b0935) 2012; 425 Jászai (10.1016/j.addr.2022.114449_b0415) 2019; 8 Komohara (10.1016/j.addr.2022.114449_b0635) 2016; 99 Morris (10.1016/j.addr.2022.114449_b0755) 2008; 100 Heldin (10.1016/j.addr.2022.114449_b0125) 2004; 4 Martens (10.1016/j.addr.2022.114449_b1070) 2014; 9 Harrington (10.1016/j.addr.2022.114449_b1020) 2001; 7 Devine (10.1016/j.addr.2022.114449_b0895) 2001; 29 de Lázaro (10.1016/j.addr.2022.114449_b0710) 2020; 19 Thomas (10.1016/j.addr.2022.114449_b0990) 1987; 51 Quan (10.1016/j.addr.2022.114449_b1035) 2010; 12 Dobrolecki (10.1016/j.addr.2022.114449_b0960) 2016; 35 Zhou (10.1016/j.addr.2022.114449_b0595) 2016 Madsen (10.1016/j.addr.2022.114449_b0855) 2012; 40 Okada (10.1016/j.addr.2022.114449_b0950) 2018; 66 Wang (10.1016/j.addr.2022.114449_b0650) 2016; 28 Ma (10.1016/j.addr.2022.114449_b0355) 2019; 11 van der Meel (10.1016/j.addr.2022.114449_b0105) 2019; 14 Tian (10.1016/j.addr.2022.114449_b0620) 2009; 106 Seo (10.1016/j.addr.2022.114449_b0315) 2018; 10 Wu (10.1016/j.addr.2022.114449_b0030) 2021; 18 Nywening (10.1016/j.addr.2022.114449_b0465) 2016 Gratton (10.1016/j.addr.2022.114449_b0735) 2008; 105 Van Acker (10.1016/j.addr.2022.114449_b0440) 2016; 158 Tang (10.1016/j.addr.2022.114449_b0025) 2019; 305 Pober (10.1016/j.addr.2022.114449_b1005) 2014; 7 Iqbal (10.1016/j.addr.2022.114449_b0015) 2017; 17 Maeda (10.1016/j.addr.2022.114449_b0075) 2015; 91 Ji (10.1016/j.addr.2022.114449_b0575) 2015; 27 Dvorak (10.1016/j.addr.2022.114449_b1010) 2015; 3 Unzek (10.1016/j.addr.2022.114449_b0905) 2007; 16 Fu (10.1016/j.addr.2022.114449_b0435) 2020; 353 Hu (10.1016/j.addr.2022.114449_b0515) 2017; 11 Jain (10.1016/j.addr.2022.114449_b0155) 2010; 7 Ngambenjawong (10.1016/j.addr.2022.114449_b0430) 2017; 114 10.1016/j.addr.2022.114449_b0530 Yang (10.1016/j.addr.2022.114449_b0360) 2018; 182 Izci (10.1016/j.addr.2022.114449_b0350) 2021; 121 Liu (10.1016/j.addr.2022.114449_b0745) 2019; 19 Couvreur (10.1016/j.addr.2022.114449_b0020) 2019; 311–312 Kersten (10.1016/j.addr.2022.114449_b0995) 2017; 9 Maeda (10.1016/j.addr.2022.114449_b0060) 2010; 21 Park (10.1016/j.addr.2022.114449_b0330) 2016; 30 Chronopoulos (10.1016/j.addr.2022.114449_b0510) 2016; 7 Islam (10.1016/j.addr.2022.114449_b0295) 2018; 17 Yoshida (10.1016/j.addr.2022.114449_b0980) 2020; 13 Jain (10.1016/j.addr.2022.114449_b0235) 2005; 307 Barenholz (10.1016/j.addr.2022.114449_b0230) 2012; 160 Mpekris (10.1016/j.addr.2022.114449_b0565) 2017; 261 10.1016/j.addr.2022.114449_b0100 Vaupel (10.1016/j.addr.2022.114449_b0180) 2004; 381 Höckel (10.1016/j.addr.2022.114449_b0185) 2001; 93 Maeda (10.1016/j.addr.2022.114449_b0290) 1996; 33 Tang (10.1016/j.addr.2022.114449_b0615) 2019; 9 Hubbi (10.1016/j.addr.2022.114449_b0200) 2013; 288 Yokoi (10.1016/j.addr.2022.114449_b0270) 2014; 345 Egeblad (10.1016/j.addr.2022.114449_b0245) 2010; 18 Liu (10.1016/j.addr.2022.114449_b0780) 2017; 127 Yan (10.1016/j.addr.2022.114449_b0450) 2017; 36 Noguchi (10.1016/j.addr.2022.114449_b0380) 1992; 83 Golombek (10.1016/j.addr.2022.114449_b0255) 2018; 130 Shi (10.1016/j.addr.2022.114449_b0265) 2017; 17 Sica (10.1016/j.addr.2022.114449_b0470) 2006; 42 Stylianopoulos (10.1016/j.addr.2022.114449_b0645) 2013; 4 Matsumura (10.1016/j.addr.2022.114449_b0035) 1986; 46 Jin (10.1016/j.addr.2022.114449_b0680) 2018; 35 Hori (10.1016/j.addr.2022.114449_b0385) 2000; 91 Ostman (10.1016/j.addr.2022.114449_b0630) 2012; 18 Luan (10.1016/j.addr.2022.114449_b0250) 2021; 275 Forbes (10.1016/j.addr.2022.114449_b0930) 2010; 10 Zhou (10.1016/j.addr.2022.114449_b0475) 2020; 8 Chen (10.1016/j.addr.2022.114449_b0555) 2019; 6 Xiangsheng (10.1016/j.addr.2022.114449_b0695) 2019; 9 Germain (10.1016/j.addr.2022.114449_b0005) 2020; 326 Krafft (10.1016/j.addr.2022.114449_b0500) 2001; 47 Pang (10.1016/j.addr.2022.114449_b0775) 2015; 1 Boucher (10.1016/j.addr.2022.114449_b0130) 1992; 52 Kisucka (10.1016/j.addr.2022.114449_b0390) 2006; 103 Liu (10.1016/j.addr.2022.114449_b0410) 2021; 172 Sakhtianchi (10.1016/j.addr.2022.114449_b0730) 2013; 201 Muz (10.1016/j.addr.2022.114449_b0170) 2015; 3 Teicher (10.1016/j.addr.2022.114449_b0175) 1995; 23 Jacobetz (10.1016/j.addr.2022.114449_b0135) 2013; 62 Yang (10.1016/j.addr.2022.114449_b0785) 2018; 14 Stylianopoulos (10.1016/j.addr.2022.114449_b0165) 2018 Nesteruk (10.1016/j.addr.2022.114449_b1015) 2015; 117 Zangi (10.1016/j.addr.2022.114449_b0920) 2009; 27 Matsumoto (10.1016/j.addr.2022.114449_b1060) 2021; 11 Liu (10.1016/j.addr.2022.114449_b0675) 2020; 20 Kano (10.1016/j.addr.2022.114449_b0325) 2009; 100 Theocharis (10.1016/j.addr.2022.114449_b0520) 2016 Mazur (10.1016/j.addr.2022.114449_b1000) 2012; 61 Li (10.1016/j.addr.2022.114449_b0370) 2020; 36 Zhang (10.1016/j.addr.2022.114449_b0195) 2021; 13 Chimen (10.1016/j.addr.2022.114449_b0875) 2017 Pérez-Medina (10.1016/j.addr.2022.114449_b0260) 2016; 7 Akashi (10.1016/j.addr.2022.114449_b0975) 2013; 42 Gerlinger (10.1016/j.addr.2022.114449_b0210) 2012; 366 Keramati (10.1016/j.addr.2022.114449_b0365) 2013; 11 Nichols (10.1016/j.addr.2022.114449_b0215) 2014; 190 Wang (10.1016/j.addr.2022.114449_b0605) 2020; 113 Maeda (10.1016/j.addr.2022.114449_b0140) 1989; 6 Kim (10.1016/j.addr.2022.114449_b0240) 2010; 121 Chrastina (10.1016/j.addr.2022.114449_b0805) 2010; 47 El-Dakdouki (10.1016/j.addr.2022.114449_b0750) 2013; 5 Timin (10.1016/j.addr.2022.114449_b0815) 2018 Zhang (10.1016/j.addr.2022.114449_b0700) 2020; 14 10.1016/j.addr.2022.114449_b0275 He (10.1016/j.addr.2022.114449_b0840) 2010; 31 Yu (10.1016/j.addr.2022.114449_b1050) 2015; 9 Venditto (10.1016/j.addr.2022.114449_b0065) 2013; 65 Jin (10.1016/j.addr.2022.114449_b0690) 2020; 320 Gordon (10.1016/j.addr.2022.114449_b0985) 1980; 77 Sordi (10.1016/j.addr.2022.114449_b0900) 2009; 87 Danhier (10.1016/j.addr.2022.114449_b0120) 2016; 244 10.1016/j.addr.2022.114449_b0480 Xue (10.1016/j.addr.2022.114449_b0820) 2017; 12 Nakamizo (10.1016/j.addr.2022.114449_b0915) 2005; 65 Chen (10.1016/j.addr.2022.114449_b0890) 2001; 32 Azzopardi (10.1016/j.addr.2022.114449_b0045) 2013; 68 Holden (10.1016/j.addr.2022.114449_b0870) 2010; 5 Chen (10.1016/j.addr.2022.114449_b0625) 2018; 18 Laplagne (10.1016/j.addr.2022.114449_b0460) 2019; 20 Zhang (10.1016/j.addr.2022.114449_b0340) 2021; 15 Kalyane (10.1016/j.addr.2022.114449_b1045) 2019; 98 Liu (10.1016/j.addr.2022.114449_b0600) 2018; 10 Sindhwani (10.1016/j.addr.2022.114449_b0705) 2020; 19 Nakamura (10.1016/j.addr.2022.114449_b0080) 2015; 12 Th Ee K (10.1016/j.addr.2022.114449_b0345) 2018 Greish (10.1016/j.addr.2022.114449_b0050) 2010; 624 Wu (10.1016/j.addr.2022.114449_b1065) 2021; 11 Kim (10.1016/j.addr.2022.114449_b0720) 2017; 267 Liu (10.1016/j.addr.2022.114449_b0485) 2019; 11 Cho (10.1016/j.addr.2022.114449_b0970) 2016; 39 Chau |
| References_xml | – volume: 4 start-page: 998 year: 2014 end-page: 1013 ident: b0955 article-title: Patient-derived xenograft models: an emerging platform for translational cancer research publication-title: Cancer Discov – volume: 27 start-page: 1865 year: 2015 end-page: 1873 ident: b0575 article-title: Peptide assembly integration of fibroblast-targeting and cell-penetration features for enhanced antitumor drug delivery publication-title: Adv. Mater. – volume: 326 start-page: 164 year: 2020 end-page: 171 ident: b0005 article-title: Delivering the power of nanomedicine to patients today publication-title: J. Control. Release – volume: 18 start-page: 884 year: 2010 end-page: 901 ident: b0245 article-title: Tumors as organs: complex tissues that interface with the entire organism publication-title: Dev. Cell – volume: 17 start-page: 149 year: 2017 end-page: 159 ident: b0015 article-title: Targeted Drug Delivery Systems and Their Therapeutic Applications in Cancer and Immune Pathological Conditions publication-title: Infect Disord Drug Targets – reference: R.K. Jain, R.K. Jain, Determinants of tumor blood flow: A review. Cancer Res 48: 2641-2658. Cancer Research, 1988. 48(10): p. 2641-2658. – reference: Editor, The two directions of cancer nanomedicine. Nature Nanotechnology, 2019. 14(12): p. 1083-1083. – volume: 11 start-page: 48261 year: 2019 end-page: 48270 ident: b0485 article-title: Oxygen-Self-Supplying and HIF-1α-Inhibiting Core-Shell Nanosystem for Hypoxia-Resistant Photodynamic Therapy publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 692 year: 2017 end-page: 700 ident: b0820 article-title: Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence publication-title: Nat Nanotechnol – volume: 103 start-page: 12 year: 2016 end-page: 21 ident: b0560 article-title: Cyclopamine disrupts tumor extracellular matrix and improves the distribution and efficacy of nanotherapeutics in pancreatic cancer publication-title: Biomaterials – volume: 15 start-page: 379 year: 2018 end-page: 395 ident: b0655 article-title: Particle morphology: an important factor affecting drug delivery by nanocarriers into solid tumors publication-title: Expert opinion on drug delivery – volume: 7 start-page: 653 year: 2010 end-page: 664 ident: b0155 article-title: Delivering nanomedicine to solid tumors publication-title: Nat Rev Clin Oncol – volume: 12 start-page: 8255 year: 2018 end-page: 8265 ident: b1055 article-title: Multifunctional theranostic nanoparticles derived from fruit-extracted anthocyanins with dynamic disassembly and elimination abilities publication-title: ACS Nano – volume: 11 start-page: 402 year: 2016 end-page: 414 ident: b0205 article-title: Nanomedicine and tumor heterogeneity: Concept and complex reality publication-title: Nano Today – volume: 6 start-page: 1802070 year: 2019 ident: b0555 article-title: Therapeutic Remodeling of the Tumor Microenvironment Enhances Nanoparticle Delivery publication-title: Adv Sci (Weinh) – volume: 23 start-page: 173 year: 2016 end-page: 182 ident: b0055 article-title: A Retrospective 30 Years After Discovery of the Enhanced Permeability and Retention Effect of Solid Tumors: Next-Generation Chemotherapeutics and Photodynamic Therapy-Problems, Solutions, and Prospects publication-title: Microcirculation – volume: 38 start-page: 5799 year: 2018 end-page: 5804 ident: b0545 article-title: 4-Methylumbelliferone decreases the hyaluronan-rich extracellular matrix and increases the effectiveness of 5-fluorouracil publication-title: Anticancer Res. – volume: 10 start-page: 678 year: 2018 end-page: 691 ident: b0315 article-title: Analytical and functional similarity of Amgen biosimilar ABP 215 to bevacizumab publication-title: MAbs – volume: 14 start-page: 799 year: 2019 end-page: 809 ident: b0740 article-title: Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy publication-title: Nat Nanotechnol – volume: 133 start-page: 775 year: 2008 end-page: 787 ident: b0880 article-title: Regulatory T cells and immune tolerance publication-title: Cell – volume: 75 start-page: 4742 year: 2015 end-page: 4752 ident: b0455 article-title: Macrophage Blockade Using CSF1R Inhibitors Reverses the Vascular Leakage Underlying Malignant Ascites in Late-Stage Epithelial Ovarian Cancer publication-title: Cancer Res – reference: A. Jasim, S. Abdelghany, K. Greish, Chapter 2 - Current Update on the Role of Enhanced Permeability and Retention Effect in Cancer Nanomedicine, in Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes, V. Mishra, et al., Editors. 2017, Academic Press. p. 62-109. – volume: 13 start-page: 4 year: 2020 ident: b0980 article-title: Applications of patient-derived tumor xenograft models and tumor organoids publication-title: J Hematol Oncol – volume: 99 start-page: 180 year: 2016 end-page: 185 ident: b0635 article-title: Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy publication-title: Adv. Drug Deliv. Rev. – volume: 7 start-page: 12630 year: 2016 ident: b0510 article-title: ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion publication-title: Nat Commun – volume: 11 start-page: 4916 year: 2017 end-page: 4925 ident: b0515 article-title: Quercetin Remodels the Tumor Microenvironment To Improve the Permeation, Retention, and Antitumor Effects of Nanoparticles publication-title: ACS Nano – volume: 71 start-page: 1805 year: 2011 end-page: 1815 ident: b0865 article-title: Use of macrophages to target therapeutic adenovirus to human prostate tumors publication-title: Cancer Res – volume: 87 start-page: S42 year: 2009 end-page: S45 ident: b0900 article-title: Mesenchymal stem cell homing capacity publication-title: Transplantation – volume: 35 start-page: 13 year: 2018 ident: b0680 article-title: Optimization of Weight Ratio for DSPE-PEG/TPGS Hybrid Micelles to Improve Drug Retention and Tumor Penetration publication-title: Pharm Res – volume: 14 start-page: 1007 year: 2019 end-page: 1017 ident: b0105 article-title: Smart cancer nanomedicine publication-title: Nat. Nanotechnol. – volume: 261 start-page: 105 year: 2017 end-page: 112 ident: b0565 article-title: Sonic-hedgehog pathway inhibition normalizes desmoplastic tumor microenvironment to improve chemo- and nanotherapy publication-title: J Control Release – volume: 48 start-page: 747 year: 1985 end-page: 753 ident: b0300 article-title: A serratial protease causes vascular permeability reaction by activation of the Hageman factor-dependent pathway in guinea pigs publication-title: Infect Immun – volume: 7 start-page: 383 year: 2012 end-page: 388 ident: b0320 article-title: Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner publication-title: Nat. Nanotechnol. – volume: 19 start-page: 566 year: 2020 end-page: 575 ident: b0705 article-title: The entry of nanoparticles into solid tumours publication-title: Nat Mater – volume: 7 start-page: 11838 year: 2016 ident: b0260 article-title: Nanoreporter PET predicts the efficacy of anti-cancer nanotherapy publication-title: Nat. Commun. – volume: 23 year: 2012 ident: b0835 article-title: Role of surface charge in cytotoxicity of charged manganese ferrite nanoparticles towards macrophages publication-title: Nanotechnology – volume: 10 start-page: 2001550 year: 2021 ident: b0405 article-title: Polymeric nitric oxide delivery nanoplatforms for treating cancer, cardiovascular diseases, and infection publication-title: Adv. Healthcare Mater. – volume: 91 start-page: 3 year: 2015 end-page: 6 ident: b0075 article-title: Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity publication-title: Adv Drug Deliv Rev – volume: 72 start-page: 205 year: 2017 end-page: 208 ident: b0795 article-title: Co-administration of tLyp-1 with polymeric paclitaxel conjugates: Enhanced intratumoral accumulation and anti-tumor efficacy publication-title: Pharmazie – volume: 38 start-page: 1 year: 2021 end-page: 19 ident: b0910 article-title: Recent Advancement and Technical Challenges in Developing Small Extracellular Vesicles for Cancer Drug Delivery publication-title: Pharm. Res. – volume: 11 start-page: 941 year: 2016 end-page: 947 ident: b0940 article-title: Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions publication-title: Nat. Nanotechnol. – volume: 10 start-page: 9935 year: 2018 end-page: 9948 ident: b0660 article-title: A size switchable nanoplatform for targeting the tumor microenvironment and deep tumor penetration publication-title: Nanoscale – volume: 100 start-page: 201 year: 2008 end-page: 217 ident: b0755 article-title: Cell-penetrating peptides: from molecular mechanisms to therapeutics publication-title: Biol Cell – volume: 6 start-page: 193 year: 1989 end-page: 210 ident: b0140 article-title: Tumoritropic and lymphotropic principles of macromolecular drugs publication-title: Crit Rev Ther Drug Carrier Syst – volume: 19 start-page: 478 year: 2020 end-page: 480 ident: b0715 article-title: Active transcytosis and new opportunities for cancer nanomedicine publication-title: Nat Mater – volume: 36 start-page: 6049 year: 2017 end-page: 6058 ident: b0450 article-title: Inhibition of colony stimulating factor-1 receptor abrogates microenvironment-mediated therapeutic resistance in gliomas publication-title: Oncogene – volume: 117 start-page: 125 year: 2015 end-page: 131 ident: b1015 article-title: Tumor stage, tumor site and HPV dependent correlation of perfusion CT parameters and [18F]-FDG uptake in head and neck squamous cell carcinoma publication-title: Radiother Oncol – volume: 83 start-page: 240 year: 1992 end-page: 243 ident: b0380 article-title: Enhanced tumor localization of monoclonal antibody by treatment with kininase II inhibitor and angiotensin II publication-title: Jpn J Cancer Res – volume: 442 start-page: 396 year: 2019 end-page: 408 ident: b0550 article-title: Intratumoral injection of gels containing losartan microspheres and (PLG-g-mPEG)-cisplatin nanoparticles improves drug penetration, retention and anti-tumor activity publication-title: Cancer Lett. – volume: 104 start-page: 2224 year: 2004 end-page: 2234 ident: b0845 article-title: Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues publication-title: Blood – volume: 20 start-page: 1637 year: 2020 end-page: 1646 ident: b0675 article-title: Charge Conversional Biomimetic Nanocomplexes as a Multifunctional Platform for Boosting Orthotopic Glioblastoma RNAi Therapy publication-title: Nano Lett – volume: 201 start-page: 14 year: 2015 end-page: 21 ident: b0770 article-title: Cell penetrating peptides improve tumor delivery of cargos through neuropilin-1-dependent extravasation publication-title: J Control Release – start-page: 3268 year: 2016 ident: b0595 article-title: Hyaluronidase Embedded in Nanocarrier PEG Shell for Enhanced Tumor Penetration and Highly Efficient Antitumor Efficacy publication-title: Nano Lett. – volume: 17 start-page: 20 year: 2017 end-page: 37 ident: b0265 article-title: Cancer nanomedicine: progress, challenges and opportunities publication-title: Nat. Rev. Cancer – volume: 267 start-page: 15 year: 2017 end-page: 30 ident: b0720 article-title: Overcoming key biological barriers to cancer drug delivery and efficacy publication-title: J Control Release – volume: 307 start-page: 58 year: 2005 end-page: 62 ident: b0235 article-title: Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy publication-title: Science – volume: 160 start-page: 117 year: 2012 end-page: 134 ident: b0230 article-title: Doxil — The first FDA-approved nano-drug: Lessons learned publication-title: J. Control. Release – volume: 345 start-page: 48 year: 2014 end-page: 55 ident: b0270 article-title: Serum biomarkers for personalization of nanotherapeutics-based therapy in different tumor and organ microenvironments publication-title: Cancer Lett. – volume: 157 start-page: 142 year: 2020 end-page: 160 ident: b0280 article-title: Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers publication-title: Adv. Drug Deliv. Rev. – volume: 10 start-page: 43493 year: 2018 ident: b0600 article-title: Collagenase-Encapsulated pH-Responsive Nanoscale Coordination Polymers for Tumor Microenvironment Modulation and Enhanced Photodynamic Nanomedicine publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 243 year: 2001 end-page: 254 ident: b1020 article-title: Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes publication-title: Clin Cancer Res – volume: 9 start-page: 8018 year: 2019 end-page: 8025 ident: b0695 article-title: Transcytosis - An effective targeting strategy that is complementary to “EPR effect” for pancreatic cancer nano drug delivery publication-title: Theranostics – volume: 15 start-page: 84 year: 2016 end-page: 93 ident: b0570 article-title: Tumor-Priming Smoothened Inhibitor Enhances Deposition and Efficacy of Cytotoxic Nanoparticles in a Pancreatic Cancer Model publication-title: Mol Cancer Ther – volume: 3 start-page: 1 year: 2015 end-page: 11 ident: b1010 article-title: Tumors: wounds that do not heal-redux publication-title: Cancer Immunol Res – volume: 15 start-page: 1186 year: 2021 end-page: 1198 ident: b0340 article-title: CC Chemokine Receptor 2-Targeting Copper Nanoparticles for Positron Emission Tomography-Guided Delivery of Gemcitabine for Pancreatic Ductal Adenocarcinoma publication-title: ACS Nano – volume: 13 start-page: 6049 year: 2018 end-page: 6058 ident: b0495 article-title: Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment publication-title: Int J Nanomedicine – volume: 19 start-page: 8010 year: 2019 end-page: 8020 ident: b0745 article-title: Transcytosis of Nanomedicine for Tumor Penetration publication-title: Nano Lett – volume: 121 start-page: 1746 year: 2021 end-page: 1803 ident: b0350 article-title: The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors publication-title: Chem Rev – volume: 172 start-page: 391 year: 2013 ident: b0085 article-title: Questions on the role of the EPR effect in tumor targeting publication-title: J. Control. Release – volume: 36 start-page: 369 year: 2020 end-page: 374 ident: b0370 article-title: Thrombolytic effects of recombinant staphylokinase on coronary thrombosis in miniature pigs publication-title: Zhongguo Ying Yong Sheng Li Xue Za Zhi – volume: 5 start-page: 25 year: 2010 end-page: 36 ident: b0870 article-title: Surface engineering of macrophages with nanoparticles to generate a cell-nanoparticle hybrid vehicle for hypoxia-targeted drug delivery publication-title: Int J Nanomedicine – start-page: 1700818 year: 2018 ident: b0815 article-title: Cell-Based Drug Delivery and Use of Nano-and Microcarriers for Cell Functionalization publication-title: Adv. Healthcare Mater. – volume: 24 start-page: 179 year: 2016 end-page: 191 ident: b0010 article-title: Nanocarriers for cancer-targeted drug delivery publication-title: J Drug Target – reference: H. Lee, et al., 64Cu-MM-302 Positron Emission Tomography Quantifies Variability of Enhanced Permeability and Retention of Nanoparticles in Relation to Treatment Response in Patients with Metastatic Breast Cancer. Clinical Cancer Research, 2017: p. clincanres.3193.2016. – volume: 33 start-page: 222 year: 1996 end-page: 230 ident: b0290 article-title: Bradykinin and nitric oxide in infectious disease and cancer publication-title: Immunopharmacology – volume: 46 start-page: 3830 year: 2017 end-page: 3852 ident: b0640 article-title: Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment publication-title: Chem Soc Rev – volume: 381 start-page: 335 year: 2004 end-page: 354 ident: b0180 article-title: Tumor hypoxia and malignant progression publication-title: Methods Enzymol – volume: 7 start-page: 7 year: 2016 ident: b0885 article-title: Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells publication-title: Stem Cell Res Ther – volume: 58 start-page: 159 year: 1998 end-page: 165 ident: b0375 article-title: Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger publication-title: Cancer Res – reference: F. Krombach, et al., Cell size of alveolar macrophages: an interspecies comparison. Environ Health Perspect. 105 Suppl 5(Suppl 5) (1997) 1261-3. – volume: 10 start-page: 785 year: 2010 end-page: 794 ident: b0930 article-title: Engineering the perfect (bacterial) cancer therapy publication-title: Nat. Rev. Cancer – volume: 127 start-page: 2007 year: 2017 end-page: 2018 ident: b0780 article-title: Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer publication-title: J Clin Invest – volume: 12 start-page: 95 year: 2022 ident: b0115 article-title: EPR Effect-Based Tumor Targeted Nanomedicine: A Promising Approach for Controlling Cancer publication-title: Journal of Personalized Medicine – volume: 106 start-page: 3179 year: 2017 end-page: 3187 ident: b0220 article-title: Parameters Affecting the Enhanced Permeability and Retention Effect: The Need for Patient Selection publication-title: J Pharm Sci – volume: 28 start-page: 7340 year: 2016 end-page: 7364 ident: b0650 article-title: Hierarchical Targeting Strategy for Enhanced Tumor Tissue Accumulation/Retention and Cellular Internalization publication-title: Adv Mater – volume: 42 start-page: 1275 year: 2013 end-page: 1282 ident: b0975 article-title: Histological advantages of the tumor graft: a murine model involving transplantation of human pancreatic cancer tissue fragments publication-title: Pancreas – volume: 31 start-page: 3657 year: 2010 end-page: 3666 ident: b0840 article-title: Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles publication-title: Biomaterials – volume: 13 start-page: 169 year: 2013 end-page: 180 ident: b0830 article-title: Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps publication-title: Cell Host Microbe – volume: 64 start-page: 1205 year: 2012 end-page: 1219 ident: b1030 article-title: Development of macromolecular prodrug for rheumatoid arthritis publication-title: Adv. Drug Deliv. Rev. – volume: 47 start-page: 531 year: 2010 end-page: 543 ident: b0805 article-title: Lung vascular targeting using antibody to aminopeptidase P: CT-SPECT imaging, biodistribution and pharmacokinetic analysis publication-title: J Vasc Res – volume: 105 start-page: 11613 year: 2008 end-page: 11618 ident: b0735 article-title: The effect of particle design on cellular internalization pathways publication-title: Proc. Natl. Acad. Sci. – start-page: 651 year: 2016 end-page: 662 ident: b0465 article-title: Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial publication-title: Lancet Oncol. – volume: 20 start-page: 409 year: 2017 end-page: 426 ident: b0425 article-title: Tumor angiogenesis and vascular normalization: alternative therapeutic targets publication-title: Angiogenesis – volume: 33 start-page: 1505 year: 2015 end-page: 1508 ident: b0190 article-title: Targeting tumor hypoxia with hypoxia-activated prodrugs publication-title: J Clin Oncol – volume: 172 start-page: 80 year: 2021 end-page: 103 ident: b0410 article-title: Tumor microenvironment remodeling-based penetration strategies to amplify nanodrug accessibility to tumor parenchyma publication-title: Adv Drug Deliv Rev – volume: 19 start-page: 486 year: 2020 end-page: 487 ident: b0710 article-title: A nanoparticle's pathway into tumours publication-title: Nat Mater – volume: 169 start-page: 313 year: 2018 end-page: 320 ident: b0685 article-title: Charge reversible and biodegradable nanocarriers showing dual pH-/reduction-sensitive disintegration for rapid site-specific drug delivery publication-title: Colloids Surf., B – volume: 62 start-page: 112 year: 2013 end-page: 120 ident: b0135 article-title: Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer publication-title: Gut – volume: 61 start-page: 1488 year: 2012 end-page: 1500 ident: b1000 article-title: Genetically engineered mouse models of pancreatic cancer: unravelling tumour biology and progressing translational oncology publication-title: Gut – volume: 64 start-page: 3731 year: 2004 end-page: 3736 ident: b0420 article-title: Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors publication-title: Cancer Res. – volume: 91 start-page: 261 year: 2000 end-page: 269 ident: b0385 article-title: Tumor-selective blood flow decrease induced by an angiotensin converting enzyme inhibitor, temocapril hydrochloride publication-title: Jpn J Cancer Res – volume: 106 start-page: 4254 year: 2009 end-page: 4259 ident: b0620 article-title: Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis publication-title: Proc Natl Acad Sci U S A – volume: 65 start-page: 3307 year: 2005 end-page: 3318 ident: b0915 article-title: Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas publication-title: Cancer Res – volume: 422 start-page: 37 year: 2003 end-page: 44 ident: b0725 article-title: Regulated portals of entry into the cell publication-title: Nature – volume: 6 start-page: 243 year: 2006 end-page: 255 ident: b0400 article-title: Manipulating the angiotensin system – new approaches to the treatment of solid tumours publication-title: Expert Opin. Biol. Ther. – volume: 288 start-page: 20768 year: 2013 end-page: 20775 ident: b0200 article-title: Sirtuin-7 inhibits the activity of hypoxia-inducible factors publication-title: J. Biol. Chem. – volume: 4 start-page: 806 year: 2004 end-page: 813 ident: b0125 article-title: High interstitial fluid pressure - an obstacle in cancer therapy publication-title: Nat Rev Cancer – volume: 9 start-page: 344 year: 2014 end-page: 364 ident: b1070 article-title: Intracellular delivery of nanomaterials: How to catch endosomal escape in the act publication-title: Nano Today – volume: 18 start-page: 1332 year: 2012 end-page: 1334 ident: b0630 article-title: The tumor microenvironment controls drug sensitivity publication-title: Nat. Med. – volume: 275 year: 2021 ident: b0250 article-title: Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation publication-title: Biomaterials – volume: 130 start-page: 17 year: 2018 end-page: 38 ident: b0255 article-title: Tumor targeting via EPR: Strategies to enhance patient responses publication-title: Adv Drug Deliv Rev – volume: 114 start-page: 206 year: 2017 end-page: 221 ident: b0430 article-title: Progress in tumor-associated macrophage (TAM)-targeted therapeutics publication-title: Adv Drug Deliv Rev – volume: 66 start-page: 225 year: 2018 end-page: 230 ident: b0950 article-title: Establishment of a Patient-Derived Tumor Xenograft Model and Application for Precision Cancer Medicine publication-title: Chem Pharm Bull (Tokyo) – volume: 14 start-page: 1801694 year: 2018 ident: b0310 article-title: Perfluorocarbon Nanoparticles Mediated Platelet Blocking Disrupt Vascular Barriers to Improve the Efficacy of Oxygen-Sensitive Antitumor Drugs publication-title: Small – volume: 9 start-page: 615 year: 2019 end-page: 624 ident: b0615 article-title: Depletion of collagen by losartan to improve tumor accumulation and therapeutic efficacy of photodynamic nanoplatforms publication-title: Drug Deliv Transl Res – volume: 1 year: 2015 ident: b0775 article-title: Neuropilin-1 and heparan sulfate proteoglycans cooperate in cellular uptake of nanoparticles functionalized by cationic cell-penetrating peptides publication-title: Sci Adv – volume: 5 start-page: 3904 year: 2013 end-page: 3911 ident: b0750 article-title: Development of drug loaded nanoparticles for tumor targeting. Part 2: Enhancement of tumor penetration through receptor mediated transcytosis in 3D tumor models publication-title: Nanoscale – volume: 464 start-page: 999 year: 2010 end-page: 1005 ident: b0965 article-title: Genome remodelling in a basal-like breast cancer metastasis and xenograft publication-title: Nature – volume: 624 start-page: 25 year: 2010 end-page: 37 ident: b0050 article-title: Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting publication-title: Methods Mol Biol – volume: 2018 start-page: 3647 year: 1950 ident: b0585 article-title: Tumor Tolerance-Promoting Function of Regulatory T Cells Is Optimized by CD28, but Strictly Dependent on Calcineurin publication-title: Journal of immunology (Baltimore, Md. – volume: 65 start-page: 80 year: 2013 end-page: 88 ident: b0065 article-title: Cancer nanomedicines: So many papers and so few drugs! publication-title: Adv. Drug Deliv. Rev. – volume: 100 start-page: 173 year: 2009 end-page: 180 ident: b0325 article-title: Comparison of the effects of the kinase inhibitors imatinib, sorafenib, and transforming growth factor-β receptor inhibitor on extravasation of nanoparticles from neovasculature publication-title: Cancer Sci. – volume: 10 start-page: 2348 year: 2020 end-page: 2361 ident: b0665 article-title: GSH-responsive SN38 dimer-loaded shape-transformable nanoparticles with iRGD for enhancing chemo-photodynamic therapy publication-title: Acta Pharmaceutica Sinica B – volume: 116 start-page: 2210 year: 2019 end-page: 2219 ident: b0505 article-title: Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma publication-title: Proc Natl Acad Sci U S A – volume: 42 start-page: 717 year: 2006 end-page: 727 ident: b0470 article-title: Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy publication-title: Eur J Cancer – volume: 21 start-page: 797 year: 2010 end-page: 802 ident: b0060 article-title: Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects publication-title: Bioconjug Chem – volume: 20 start-page: 4719 year: 2019 ident: b0460 article-title: Latest Advances in Targeting the Tumor Microenvironment for Tumor Suppression publication-title: Int. J. Mol. Sci. – volume: 39 start-page: 77 year: 2016 end-page: 86 ident: b0970 article-title: An Integrative Approach to Precision Cancer Medicine Using Patient-Derived Xenografts publication-title: Mol Cells – volume: 11 start-page: 825 year: 2021 ident: b1060 article-title: A critical review of radiation therapy: From particle beam therapy (Proton, Carbon, and BNCT) to beyond publication-title: Journal of Personalized Medicine – volume: 40 start-page: 507 year: 2012 end-page: 515 ident: b0855 article-title: Macrophages as cell-based delivery systems for nanoshells in photothermal therapy publication-title: Ann Biomed Eng – volume: 157 start-page: 195 year: 2009 end-page: 206 ident: b0760 article-title: Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics publication-title: Br J Pharmacol – volume: 98 start-page: 1252 year: 2019 end-page: 1276 ident: b1045 article-title: Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer publication-title: Mater Sci Eng C Mater Biol Appl – volume: 46 start-page: 169 year: 2001 end-page: 185 ident: b0145 article-title: SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy publication-title: Adv Drug Deliv Rev – volume: 47 start-page: 209 year: 2001 end-page: 228 ident: b0500 article-title: Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research publication-title: Adv Drug Deliv Rev – volume: 63 start-page: 136 year: 2011 end-page: 151 ident: b0040 article-title: The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect publication-title: Adv Drug Deliv Rev – volume: 14 start-page: 7170 year: 2020 end-page: 7180 ident: b0700 article-title: Peptide-Based Nanoparticles Mimic Fibrillogenesis of Laminin in Tumor Vessels for Precise Embolization publication-title: ACS Nano – volume: 19 start-page: 997 year: 2019 end-page: 1008 ident: b0590 article-title: Enhanced Drug Delivery by Nanoscale Integration of a Nitric Oxide Donor To Induce Tumor Collagen Depletion publication-title: Nano Lett – volume: 235 year: 2020 ident: b0580 article-title: Nano-puerarin regulates tumor microenvironment and facilitates chemo- and immunotherapy in murine triple negative breast cancer model publication-title: Biomaterials – volume: 43 start-page: 1838 year: 2019 end-page: 1843 ident: b0860 article-title: Macrophage-engulfed MoS2 for active targeted photothermal therapy publication-title: New J. Chem. – volume: 32 start-page: 1005 year: 2001 end-page: 1011 ident: b0890 article-title: Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats publication-title: Stroke – volume: 12 start-page: 4085 year: 2017 end-page: 4109 ident: b1085 article-title: High drug-loading nanomedicines: Progress, current status, and prospects publication-title: Int. J. Nanomed. – volume: 98 start-page: 15155 year: 2001 end-page: 15160 ident: b0925 article-title: Combination bacteriolytic therapy for the treatment of experimental tumors publication-title: PNAS – volume: 108 start-page: 44 year: 2016 end-page: 56 ident: b0335 article-title: Development of a multi-target peptide for potentiating chemotherapy by modulating tumor microenvironment publication-title: Biomaterials – volume: 263 start-page: 68 year: 2017 end-page: 78 ident: b0525 article-title: Extracellular matrix remodeling in vivo for enhancing tumor-targeting efficiency of nanoparticle drug carriers using the pulsed high intensity focused ultrasound publication-title: J Control Release – volume: 28 start-page: 1707249 year: 2018 ident: b0670 article-title: Size/Charge Changeable Acidity-Responsive Micelleplex for Photodynamic-Improved PD-L1 Immunotherapy with Enhanced Tumor Penetration publication-title: Adv. Funct. Mater. – volume: 1 start-page: 667 year: 2017 end-page: 679 ident: b0305 article-title: Nanoparticle-mediated local depletion of tumour-associated platelets disrupts vascular barriers and augments drug accumulation in tumours publication-title: Nat. Biomed. Eng. – volume: 72 start-page: 4875 year: 2012 end-page: 4882 ident: b0225 article-title: Intratumor heterogeneity: evolution through space and time publication-title: Cancer Res. – volume: 31 start-page: 2583 year: 2014 end-page: 2592 ident: b1080 article-title: Development of High-Content Gemcitabine PEGylated Liposomes and Their Cytotoxicity on Drug-Resistant Pancreatic Tumour Cells publication-title: Pharm Res – volume: 46 start-page: 6387 year: 1986 end-page: 6392 ident: b0035 article-title: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs publication-title: Cancer Res – volume: 30 start-page: 953 year: 2016 end-page: 967 ident: b0330 article-title: Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment publication-title: Cancer Cell – volume: 14 start-page: 1396 year: 2018 end-page: 1408 ident: b0785 article-title: iRGD-Mediated and Enzyme-Induced Precise Targeting and Retention of Gold Nanoparticles for the Enhanced Imaging and Treatment of Breast Cancer publication-title: J Biomed Nanotechnol – volume: 9 start-page: 6655 year: 2015 end-page: 6674 ident: b1050 article-title: Clearance pathways and tumor targeting of imaging nanoparticles publication-title: ACS Nano – volume: 496 year: 2020 ident: b1025 article-title: Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability publication-title: J Theor Biol – volume: 52 start-page: 5110 year: 1992 end-page: 5114 ident: b0130 article-title: Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse publication-title: Cancer Res – start-page: 73 year: 2017 end-page: 84 ident: b0875 article-title: Introduction: T Cell Trafficking in Inflammation and Immunity publication-title: Methods Mol Biol – reference: W. Zeng, et al., Hypoxia and hypoxia inducible factors in tumor metabolism. Cancer Lett, 2015. 356(2 Pt A): p. 263-7. – volume: 13 start-page: 3070 year: 2021 ident: b0195 article-title: Perspectives on hypoxia signaling in tumor stroma publication-title: Cancers – volume: 65 start-page: 1920 year: 2017 end-page: 1935 ident: b0825 article-title: Neutrophils promote hepatic metastasis growth through fibroblast growth factor 2-dependent angiogenesis in mice publication-title: Hepatology – volume: 8 start-page: 1102 year: 2019 ident: b0415 article-title: Trends and Challenges in Tumor Anti-Angiogenic Therapies publication-title: Cells – volume: 23 start-page: 395 year: 1995 end-page: 405 ident: b0175 article-title: An overview on oxygen carriers in cancer therapy publication-title: Artif Cells Blood Substit Immobil Biotechnol – volume: 201 start-page: 18 year: 2013 end-page: 29 ident: b0730 article-title: Exocytosis of nanoparticles from cells: role in cellular retention and toxicity publication-title: Adv. Colloid Interface Sci. – volume: 76 start-page: 699 year: 2015 end-page: 712 ident: b0800 article-title: Albumin-bound nanoparticle (nab) paclitaxel exhibits enhanced paclitaxel tissue distribution and tumor penetration publication-title: Cancer Chemother Pharmacol – volume: 29 start-page: 244 year: 2001 end-page: 255 ident: b0895 article-title: Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion publication-title: Exp Hematol – volume: 7 year: 2014 ident: b1005 article-title: Inflammation and the blood microvascular system publication-title: Cold Spring Harb Perspect Biol – volume: 244 start-page: 108 year: 2016 end-page: 121 ident: b0120 article-title: To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? publication-title: J Control Release – volume: 13 start-page: 161 year: 2017 ident: b0490 article-title: Dual-Stage Light Amplified Photodynamic Therapy against Hypoxic Tumor Based on an O2 Self-Sufficient Nanoplatform publication-title: Small – volume: 11 start-page: 1160 year: 2021 ident: b1065 article-title: Improved In Vivo Delivery of Small RNA Based on the Calcium Phosphate Method publication-title: Journal of personalized medicine – volume: 18 start-page: 2039 year: 2021 end-page: 2052 ident: b0030 article-title: Morphology/Interstitial Fluid Pressure-Tunable Nanopomegranate Designed by Alteration of Membrane Fluidity under Tumor Enzyme and PEGylation publication-title: Mol. Pharm. – volume: 182 start-page: 145 year: 2018 end-page: 156 ident: b0360 article-title: Hypoxic tumor therapy by hemoglobin-mediated drug delivery and reversal of hypoxia-induced chemoresistance publication-title: Biomaterials – volume: 11 start-page: 1187 year: 2019 ident: b0610 article-title: 4-Methylumbelliferone inhibits cancer stem cell activation and overcomes chemoresistance in ovarian cancer publication-title: Cancers – volume: 8 start-page: 6765 year: 2020 end-page: 6781 ident: b0475 article-title: Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy publication-title: J Mater Chem B – volume: 19 start-page: 1 year: 2017 end-page: 9 ident: b0535 article-title: Targeting the tumor stroma: the biology and clinical development of pegylated recombinant human hyaluronidase (PEGPH20) publication-title: Current oncology reports – volume: 22 start-page: 697 year: 2010 end-page: 706 ident: b0150 article-title: Dynamic interplay between the collagen scaffold and tumor evolution publication-title: Curr Opin Cell Biol – volume: 3 start-page: 83 year: 2015 end-page: 92 ident: b0170 article-title: The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy publication-title: Hypoxia (Auckl) – volume: 51 start-page: 503 year: 1987 end-page: 512 ident: b0990 article-title: Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells publication-title: Cell – volume: 23 start-page: 249 year: 2013 end-page: 262 ident: b0445 article-title: Role of macrophage targeting in the antitumor activity of trabectedin publication-title: Cancer Cell – volume: 113 year: 2020 ident: b0605 article-title: pH-sensitive bromelain nanoparticles by ortho ester crosslinkage for enhanced doxorubicin penetration in solid tumor publication-title: Mater. Sci. Eng., C – volume: 13 start-page: 11008 year: 2019 end-page: 11021 ident: b0540 article-title: Collagenase Nanoparticles Enhance the Penetration of Drugs into Pancreatic Tumors publication-title: ACS Nano – volume: 68 start-page: 257 year: 2013 end-page: 274 ident: b0045 article-title: The enhanced permeability retention effect: a new paradigm for drug targeting in infection publication-title: J Antimicrob Chemother – volume: 153 start-page: 198 year: 2011 end-page: 205 ident: b0090 article-title: Targeted drug delivery to tumors: Myths, reality and possibility publication-title: J. Control. Release – volume: 190 start-page: 451 year: 2014 end-page: 464 ident: b0215 article-title: EPR: Evidence and fallacy publication-title: J Control Release – reference: L. Jingqiu, et al., Synergizing Upconversion Nanophotosensitizers with Hyperbaric Oxygen to Remodel the Extracellular Matrix for Enhanced Photodynamic Cancer Therapy. Acs Applied Materials & Interfaces, 2018: p. acsami.8b07090-. – volume: 311–312 start-page: 319 year: 2019 end-page: 321 ident: b0020 article-title: Nanomedicine: From where are we coming and where are we going? publication-title: J. Control. Release – volume: 119 start-page: 44 year: 2017 end-page: 60 ident: b0395 article-title: Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors publication-title: Adv. Drug Deliv. Rev. – start-page: 1 year: 2021 end-page: 14 ident: b0095 article-title: Factors affecting the dynamics and heterogeneity of the EPR effect: pathophysiological and pathoanatomic features, drug formulations and physicochemical factors publication-title: Expert Opinion on Drug Delivery – volume: 18 year: 2018 ident: b0625 article-title: Turning foes to friends: targeting cancer-associated fibroblasts publication-title: Nat. Rev. Drug Discovery – start-page: 258 year: 2018 ident: b0165 article-title: Reengineering the Tumor Vasculature: Improving Drug Delivery and Efficacy. Trends publication-title: Cancer – volume: 17 start-page: 2643 year: 2018 end-page: 2653 ident: b0295 article-title: Augmentation of the Enhanced Permeability and Retention Effect with Nitric Oxide-Generating Agents Improves the Therapeutic Effects of Nanomedicines publication-title: Mol. Cancer Ther. – volume: 425 start-page: 769 year: 2012 end-page: 774 ident: b0935 article-title: Bacteria-mediated in vivo delivery of quantum dots into solid tumor publication-title: Biochem. Biophys. Res. Commun. – volume: 366 start-page: 883 year: 2012 end-page: 892 ident: b0210 article-title: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing publication-title: N Engl J Med – volume: 103 start-page: 855 year: 2006 end-page: 860 ident: b0390 article-title: Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 39 start-page: 756 year: 2009 end-page: 766 ident: b0285 article-title: Elevating blood pressure as a strategy to increase tumor-targeted delivery of macromolecular drug SMANCS: cases of advanced solid tumors publication-title: Jpn J Clin Oncol – volume: 320 start-page: 142 year: 2020 end-page: 158 ident: b0690 article-title: Size-adaptable and ligand (biotin)-sheddable nanocarriers equipped with avidin scavenging technology for deep tumor penetration and reduced toxicity publication-title: J. Control. Release – volume: 158 start-page: 24 year: 2016 end-page: 40 ident: b0440 article-title: Bisphosphonates for cancer treatment: Mechanisms of action and lessons from clinical trials publication-title: Pharmacol Ther – volume: 16 start-page: 879 year: 2007 end-page: 886 ident: b0905 article-title: SDF-1 recruits cardiac stem cell-like cells that depolarize in vivo publication-title: Cell Transplant – volume: 77 start-page: 7380 year: 1980 end-page: 7384 ident: b0985 article-title: Genetic transformation of mouse embryos by microinjection of purified DNA publication-title: Proc Natl Acad Sci U S A – volume: 93 start-page: 266 year: 2001 end-page: 276 ident: b0185 article-title: Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects publication-title: J Natl Cancer Inst – volume: 24 start-page: 3747 year: 2012 end-page: 3756 ident: b0790 article-title: Peptides as targeting elements and tissue penetration devices for nanoparticles publication-title: Adv Mater – volume: 21 start-page: 1741 year: 2004 end-page: 1749 ident: b1040 article-title: The arthrotropism of macromolecules in adjuvant-induced arthritis rat model: a preliminary study publication-title: Pharm. Res. – volume: 11 start-page: 218 year: 2013 end-page: 229 ident: b0365 article-title: Towards a superior streptokinase for fibrinolytic therapy of vascular thrombosis publication-title: Cardiovasc Hematol Agents Med Chem – start-page: 25 year: 2018 ident: b0345 article-title: Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors publication-title: Journal of Controlled Release Official Journal of the Controlled Release Society – volume: 353 year: 2020 ident: b0435 article-title: The roles of tumor-associated macrophages in tumor angiogenesis and metastasis publication-title: Cell Immunol – start-page: 4 year: 2016 end-page: 27 ident: b0520 article-title: Extracellular matrix structure publication-title: Adv Drug Deliv Rev – volume: 12 start-page: 1 year: 2010 end-page: 10 ident: b1035 article-title: Development of a macromolecular prodrug for the treatment of inflammatory arthritis: mechanisms involved in arthrotropism and sustained therapeutic efficacy publication-title: Arthritis research & therapy – volume: 4 start-page: 421 year: 2013 end-page: 423 ident: b0645 article-title: EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors publication-title: Ther Deliv – volume: 27 start-page: 2865 year: 2009 end-page: 2874 ident: b0920 article-title: Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells publication-title: Stem Cells – volume: 11 start-page: 7731 year: 2019 end-page: 7742 ident: b0355 article-title: An Oxygen Self-sufficient Fluorinated Nanoplatform for Relieved Tumor Hypoxia and Enhanced Photodynamic Therapy of Cancers publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 137 year: 2017 end-page: 153 ident: b0995 article-title: Genetically engineered mouse models in oncology research and cancer medicine publication-title: EMBO Mol Med – volume: 305 start-page: 89 year: 2019 end-page: 100 ident: b0025 article-title: Can intracellular drug delivery using hyaluronic acid functionalised pH-sensitive liposomes overcome gemcitabine resistance in pancreatic cancer? publication-title: J. Control. Release – volume: 16 start-page: 3493 year: 2016 end-page: 3499 ident: b0945 article-title: Bacteria-Mediated Hypoxia-Specific Delivery of Nanoparticles for Tumors Imaging and Therapy publication-title: Nano Lett. – volume: 121 start-page: 1 year: 2010 end-page: 14 ident: b0240 article-title: Cancer immunoediting from immune surveillance to immune escape publication-title: Insect Science – volume: 35 start-page: 547 year: 2016 end-page: 573 ident: b0960 article-title: Patient-derived xenograft (PDX) models in basic and translational breast cancer research publication-title: Cancer Metastasis Rev – volume: 162 start-page: 76 year: 2012 end-page: 83 ident: b1075 article-title: Endocytic pathway rapidly delivers internalized molecules to lysosomes: an analysis of vesicle trafficking, clustering and mass transfer publication-title: Journal of Controlled Release Official Journal of the Controlled Release Society – volume: 14 start-page: 731 year: 2019 end-page: 732 ident: b0110 article-title: Transcellular transfer of nanomedicine publication-title: Nat. Nanotechnol. – volume: 12 start-page: 53 year: 2015 end-page: 64 ident: b0080 article-title: Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls publication-title: Expert Opin Drug Deliv – volume: 480 start-page: 109 year: 2011 end-page: 112 ident: b0810 article-title: Lyn is a redox sensor that mediates leukocyte wound attraction in vivo publication-title: Nature – volume: 1030 start-page: 255 year: 2017 end-page: 264 ident: b0765 article-title: Uptake Mechanism of Cell-Penetrating Peptides publication-title: Adv Exp Med Biol – volume: 103 start-page: 12 year: 2016 ident: 10.1016/j.addr.2022.114449_b0560 article-title: Cyclopamine disrupts tumor extracellular matrix and improves the distribution and efficacy of nanotherapeutics in pancreatic cancer publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.06.048 – volume: 35 start-page: 13 issue: 1 year: 2018 ident: 10.1016/j.addr.2022.114449_b0680 article-title: Optimization of Weight Ratio for DSPE-PEG/TPGS Hybrid Micelles to Improve Drug Retention and Tumor Penetration publication-title: Pharm Res doi: 10.1007/s11095-017-2340-y – volume: 169 start-page: 313 year: 2018 ident: 10.1016/j.addr.2022.114449_b0685 article-title: Charge reversible and biodegradable nanocarriers showing dual pH-/reduction-sensitive disintegration for rapid site-specific drug delivery publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2018.05.026 – volume: 68 start-page: 257 issue: 2 year: 2013 ident: 10.1016/j.addr.2022.114449_b0045 article-title: The enhanced permeability retention effect: a new paradigm for drug targeting in infection publication-title: J Antimicrob Chemother doi: 10.1093/jac/dks379 – volume: 64 start-page: 3731 issue: 11 year: 2004 ident: 10.1016/j.addr.2022.114449_b0420 article-title: Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-0074 – volume: 63 start-page: 136 issue: 3 year: 2011 ident: 10.1016/j.addr.2022.114449_b0040 article-title: The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2010.04.009 – volume: 6 start-page: 193 issue: 3 year: 1989 ident: 10.1016/j.addr.2022.114449_b0140 article-title: Tumoritropic and lymphotropic principles of macromolecular drugs publication-title: Crit Rev Ther Drug Carrier Syst – volume: 7 start-page: 243 issue: 2 year: 2001 ident: 10.1016/j.addr.2022.114449_b1020 article-title: Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes publication-title: Clin Cancer Res – volume: 345 start-page: 48 issue: 1 year: 2014 ident: 10.1016/j.addr.2022.114449_b0270 article-title: Serum biomarkers for personalization of nanotherapeutics-based therapy in different tumor and organ microenvironments publication-title: Cancer Lett. doi: 10.1016/j.canlet.2013.11.015 – volume: 47 start-page: 209 issue: 2–3 year: 2001 ident: 10.1016/j.addr.2022.114449_b0500 article-title: Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research publication-title: Adv Drug Deliv Rev doi: 10.1016/S0169-409X(01)00107-7 – volume: 83 start-page: 240 issue: 3 year: 1992 ident: 10.1016/j.addr.2022.114449_b0380 article-title: Enhanced tumor localization of monoclonal antibody by treatment with kininase II inhibitor and angiotensin II publication-title: Jpn J Cancer Res doi: 10.1111/j.1349-7006.1992.tb00093.x – volume: 133 start-page: 775 issue: 5 year: 2008 ident: 10.1016/j.addr.2022.114449_b0880 article-title: Regulatory T cells and immune tolerance publication-title: Cell doi: 10.1016/j.cell.2008.05.009 – volume: 11 start-page: 1187 issue: 8 year: 2019 ident: 10.1016/j.addr.2022.114449_b0610 article-title: 4-Methylumbelliferone inhibits cancer stem cell activation and overcomes chemoresistance in ovarian cancer publication-title: Cancers doi: 10.3390/cancers11081187 – volume: 121 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.addr.2022.114449_b0240 article-title: Cancer immunoediting from immune surveillance to immune escape publication-title: Insect Science – volume: 7 start-page: 383 issue: 6 year: 2012 ident: 10.1016/j.addr.2022.114449_b0320 article-title: Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.45 – volume: 13 start-page: 161 issue: 37 year: 2017 ident: 10.1016/j.addr.2022.114449_b0490 article-title: Dual-Stage Light Amplified Photodynamic Therapy against Hypoxic Tumor Based on an O2 Self-Sufficient Nanoplatform publication-title: Small doi: 10.1002/smll.201701621 – volume: 14 start-page: 7170 issue: 6 year: 2020 ident: 10.1016/j.addr.2022.114449_b0700 article-title: Peptide-Based Nanoparticles Mimic Fibrillogenesis of Laminin in Tumor Vessels for Precise Embolization publication-title: ACS Nano doi: 10.1021/acsnano.0c02110 – volume: 11 start-page: 1160 issue: 11 year: 2021 ident: 10.1016/j.addr.2022.114449_b1065 article-title: Improved In Vivo Delivery of Small RNA Based on the Calcium Phosphate Method publication-title: Journal of personalized medicine doi: 10.3390/jpm11111160 – volume: 288 start-page: 20768 issue: 29 year: 2013 ident: 10.1016/j.addr.2022.114449_b0200 article-title: Sirtuin-7 inhibits the activity of hypoxia-inducible factors publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.476903 – ident: 10.1016/j.addr.2022.114449_b0100 doi: 10.1038/s41565-019-0597-5 – volume: 14 start-page: 799 issue: 8 year: 2019 ident: 10.1016/j.addr.2022.114449_b0740 article-title: Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy publication-title: Nat Nanotechnol doi: 10.1038/s41565-019-0485-z – volume: 425 start-page: 769 issue: 4 year: 2012 ident: 10.1016/j.addr.2022.114449_b0935 article-title: Bacteria-mediated in vivo delivery of quantum dots into solid tumor publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2012.07.150 – volume: 11 start-page: 7731 issue: 8 year: 2019 ident: 10.1016/j.addr.2022.114449_b0355 article-title: An Oxygen Self-sufficient Fluorinated Nanoplatform for Relieved Tumor Hypoxia and Enhanced Photodynamic Therapy of Cancers publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b19840 – volume: 114 start-page: 206 year: 2017 ident: 10.1016/j.addr.2022.114449_b0430 article-title: Progress in tumor-associated macrophage (TAM)-targeted therapeutics publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2017.04.010 – volume: 263 start-page: 68 year: 2017 ident: 10.1016/j.addr.2022.114449_b0525 article-title: Extracellular matrix remodeling in vivo for enhancing tumor-targeting efficiency of nanoparticle drug carriers using the pulsed high intensity focused ultrasound publication-title: J Control Release doi: 10.1016/j.jconrel.2017.02.035 – volume: 13 start-page: 11008 issue: 10 year: 2019 ident: 10.1016/j.addr.2022.114449_b0540 article-title: Collagenase Nanoparticles Enhance the Penetration of Drugs into Pancreatic Tumors publication-title: ACS Nano doi: 10.1021/acsnano.9b02395 – volume: 10 start-page: 785 issue: 11 year: 2010 ident: 10.1016/j.addr.2022.114449_b0930 article-title: Engineering the perfect (bacterial) cancer therapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2934 – volume: 98 start-page: 15155 issue: 26 year: 2001 ident: 10.1016/j.addr.2022.114449_b0925 article-title: Combination bacteriolytic therapy for the treatment of experimental tumors publication-title: PNAS doi: 10.1073/pnas.251543698 – volume: 21 start-page: 1741 issue: 10 year: 2004 ident: 10.1016/j.addr.2022.114449_b1040 article-title: The arthrotropism of macromolecules in adjuvant-induced arthritis rat model: a preliminary study publication-title: Pharm. Res. doi: 10.1023/B:PHAM.0000045232.18134.e9 – volume: 10 start-page: 2001550 issue: 3 year: 2021 ident: 10.1016/j.addr.2022.114449_b0405 article-title: Polymeric nitric oxide delivery nanoplatforms for treating cancer, cardiovascular diseases, and infection publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.202001550 – volume: 65 start-page: 3307 issue: 8 year: 2005 ident: 10.1016/j.addr.2022.114449_b0915 article-title: Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-1874 – volume: 106 start-page: 3179 issue: 11 year: 2017 ident: 10.1016/j.addr.2022.114449_b0220 article-title: Parameters Affecting the Enhanced Permeability and Retention Effect: The Need for Patient Selection publication-title: J Pharm Sci doi: 10.1016/j.xphs.2017.06.019 – volume: 103 start-page: 855 issue: 4 year: 2006 ident: 10.1016/j.addr.2022.114449_b0390 article-title: Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0510412103 – volume: 9 start-page: 615 issue: 3 year: 2019 ident: 10.1016/j.addr.2022.114449_b0615 article-title: Depletion of collagen by losartan to improve tumor accumulation and therapeutic efficacy of photodynamic nanoplatforms publication-title: Drug Deliv Transl Res doi: 10.1007/s13346-018-00610-1 – volume: 65 start-page: 80 issue: 1 year: 2013 ident: 10.1016/j.addr.2022.114449_b0065 article-title: Cancer nanomedicines: So many papers and so few drugs! publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.09.038 – volume: 157 start-page: 142 year: 2020 ident: 10.1016/j.addr.2022.114449_b0280 article-title: Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2020.06.005 – volume: 422 start-page: 37 issue: 6927 year: 2003 ident: 10.1016/j.addr.2022.114449_b0725 article-title: Regulated portals of entry into the cell publication-title: Nature doi: 10.1038/nature01451 – volume: 52 start-page: 5110 issue: 18 year: 1992 ident: 10.1016/j.addr.2022.114449_b0130 article-title: Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse publication-title: Cancer Res – volume: 38 start-page: 5799 issue: 10 year: 2018 ident: 10.1016/j.addr.2022.114449_b0545 article-title: 4-Methylumbelliferone decreases the hyaluronan-rich extracellular matrix and increases the effectiveness of 5-fluorouracil publication-title: Anticancer Res. doi: 10.21873/anticanres.12919 – volume: 172 start-page: 80 year: 2021 ident: 10.1016/j.addr.2022.114449_b0410 article-title: Tumor microenvironment remodeling-based penetration strategies to amplify nanodrug accessibility to tumor parenchyma publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2021.02.019 – volume: 20 start-page: 409 issue: 4 year: 2017 ident: 10.1016/j.addr.2022.114449_b0425 article-title: Tumor angiogenesis and vascular normalization: alternative therapeutic targets publication-title: Angiogenesis doi: 10.1007/s10456-017-9562-9 – volume: 11 start-page: 941 issue: 11 year: 2016 ident: 10.1016/j.addr.2022.114449_b0940 article-title: Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.137 – volume: 20 start-page: 1637 issue: 3 year: 2020 ident: 10.1016/j.addr.2022.114449_b0675 article-title: Charge Conversional Biomimetic Nanocomplexes as a Multifunctional Platform for Boosting Orthotopic Glioblastoma RNAi Therapy publication-title: Nano Lett doi: 10.1021/acs.nanolett.9b04683 – volume: 18 start-page: 884 issue: 6 year: 2010 ident: 10.1016/j.addr.2022.114449_b0245 article-title: Tumors as organs: complex tissues that interface with the entire organism publication-title: Dev. Cell doi: 10.1016/j.devcel.2010.05.012 – volume: 98 start-page: 1252 year: 2019 ident: 10.1016/j.addr.2022.114449_b1045 article-title: Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer publication-title: Mater Sci Eng C Mater Biol Appl doi: 10.1016/j.msec.2019.01.066 – volume: 35 start-page: 547 issue: 4 year: 2016 ident: 10.1016/j.addr.2022.114449_b0960 article-title: Patient-derived xenograft (PDX) models in basic and translational breast cancer research publication-title: Cancer Metastasis Rev doi: 10.1007/s10555-016-9653-x – volume: 13 start-page: 169 issue: 2 year: 2013 ident: 10.1016/j.addr.2022.114449_b0830 article-title: Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.01.005 – volume: 47 start-page: 531 issue: 6 year: 2010 ident: 10.1016/j.addr.2022.114449_b0805 article-title: Lung vascular targeting using antibody to aminopeptidase P: CT-SPECT imaging, biodistribution and pharmacokinetic analysis publication-title: J Vasc Res doi: 10.1159/000313880 – volume: 19 start-page: 478 issue: 5 year: 2020 ident: 10.1016/j.addr.2022.114449_b0715 article-title: Active transcytosis and new opportunities for cancer nanomedicine publication-title: Nat Mater doi: 10.1038/s41563-020-0672-1 – volume: 10 start-page: 2348 issue: 12 year: 2020 ident: 10.1016/j.addr.2022.114449_b0665 article-title: GSH-responsive SN38 dimer-loaded shape-transformable nanoparticles with iRGD for enhancing chemo-photodynamic therapy publication-title: Acta Pharmaceutica Sinica B doi: 10.1016/j.apsb.2020.10.009 – volume: 158 start-page: 24 year: 2016 ident: 10.1016/j.addr.2022.114449_b0440 article-title: Bisphosphonates for cancer treatment: Mechanisms of action and lessons from clinical trials publication-title: Pharmacol Ther doi: 10.1016/j.pharmthera.2015.11.008 – volume: 235 year: 2020 ident: 10.1016/j.addr.2022.114449_b0580 article-title: Nano-puerarin regulates tumor microenvironment and facilitates chemo- and immunotherapy in murine triple negative breast cancer model publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.119769 – volume: 30 start-page: 953 issue: 6 year: 2016 ident: 10.1016/j.addr.2022.114449_b0330 article-title: Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.10.018 – volume: 4 start-page: 421 issue: 4 year: 2013 ident: 10.1016/j.addr.2022.114449_b0645 article-title: EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors publication-title: Ther Deliv doi: 10.4155/tde.13.8 – volume: 23 start-page: 249 issue: 2 year: 2013 ident: 10.1016/j.addr.2022.114449_b0445 article-title: Role of macrophage targeting in the antitumor activity of trabectedin publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.01.008 – volume: 353 year: 2020 ident: 10.1016/j.addr.2022.114449_b0435 article-title: The roles of tumor-associated macrophages in tumor angiogenesis and metastasis publication-title: Cell Immunol doi: 10.1016/j.cellimm.2020.104119 – start-page: 651 year: 2016 ident: 10.1016/j.addr.2022.114449_b0465 article-title: Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(16)00078-4 – ident: 10.1016/j.addr.2022.114449_b0070 doi: 10.1016/B978-0-12-809717-5.00002-6 – volume: 18 start-page: 2039 issue: 5 year: 2021 ident: 10.1016/j.addr.2022.114449_b0030 article-title: Morphology/Interstitial Fluid Pressure-Tunable Nanopomegranate Designed by Alteration of Membrane Fluidity under Tumor Enzyme and PEGylation publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.1c00036 – volume: 15 start-page: 84 issue: 1 year: 2016 ident: 10.1016/j.addr.2022.114449_b0570 article-title: Tumor-Priming Smoothened Inhibitor Enhances Deposition and Efficacy of Cytotoxic Nanoparticles in a Pancreatic Cancer Model publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-15-0602 – volume: 20 start-page: 4719 issue: 19 year: 2019 ident: 10.1016/j.addr.2022.114449_b0460 article-title: Latest Advances in Targeting the Tumor Microenvironment for Tumor Suppression publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20194719 – volume: 261 start-page: 105 year: 2017 ident: 10.1016/j.addr.2022.114449_b0565 article-title: Sonic-hedgehog pathway inhibition normalizes desmoplastic tumor microenvironment to improve chemo- and nanotherapy publication-title: J Control Release doi: 10.1016/j.jconrel.2017.06.022 – volume: 307 start-page: 58 issue: 5706 year: 2005 ident: 10.1016/j.addr.2022.114449_b0235 article-title: Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy publication-title: Science doi: 10.1126/science.1104819 – volume: 19 start-page: 486 issue: 5 year: 2020 ident: 10.1016/j.addr.2022.114449_b0710 article-title: A nanoparticle's pathway into tumours publication-title: Nat Mater doi: 10.1038/s41563-020-0669-9 – volume: 1 issue: 10 year: 2015 ident: 10.1016/j.addr.2022.114449_b0775 article-title: Neuropilin-1 and heparan sulfate proteoglycans cooperate in cellular uptake of nanoparticles functionalized by cationic cell-penetrating peptides publication-title: Sci Adv doi: 10.1126/sciadv.1500821 – volume: 9 start-page: 6655 issue: 7 year: 2015 ident: 10.1016/j.addr.2022.114449_b1050 article-title: Clearance pathways and tumor targeting of imaging nanoparticles publication-title: ACS Nano doi: 10.1021/acsnano.5b01320 – volume: 496 year: 2020 ident: 10.1016/j.addr.2022.114449_b1025 article-title: Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability publication-title: J Theor Biol doi: 10.1016/j.jtbi.2020.110229 – volume: 24 start-page: 179 issue: 3 year: 2016 ident: 10.1016/j.addr.2022.114449_b0010 article-title: Nanocarriers for cancer-targeted drug delivery publication-title: J Drug Target doi: 10.3109/1061186X.2015.1051049 – volume: 13 start-page: 3070 issue: 12 year: 2021 ident: 10.1016/j.addr.2022.114449_b0195 article-title: Perspectives on hypoxia signaling in tumor stroma publication-title: Cancers doi: 10.3390/cancers13123070 – volume: 5 start-page: 3904 issue: 9 year: 2013 ident: 10.1016/j.addr.2022.114449_b0750 article-title: Development of drug loaded nanoparticles for tumor targeting. Part 2: Enhancement of tumor penetration through receptor mediated transcytosis in 3D tumor models publication-title: Nanoscale doi: 10.1039/c3nr90022c – volume: 24 start-page: 3747 issue: 28 year: 2012 ident: 10.1016/j.addr.2022.114449_b0790 article-title: Peptides as targeting elements and tissue penetration devices for nanoparticles publication-title: Adv Mater doi: 10.1002/adma.201200454 – volume: 12 start-page: 95 issue: 1 year: 2022 ident: 10.1016/j.addr.2022.114449_b0115 article-title: EPR Effect-Based Tumor Targeted Nanomedicine: A Promising Approach for Controlling Cancer publication-title: Journal of Personalized Medicine doi: 10.3390/jpm12010095 – volume: 11 start-page: 48261 issue: 51 year: 2019 ident: 10.1016/j.addr.2022.114449_b0485 article-title: Oxygen-Self-Supplying and HIF-1α-Inhibiting Core-Shell Nanosystem for Hypoxia-Resistant Photodynamic Therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b18112 – volume: 36 start-page: 369 issue: 4 year: 2020 ident: 10.1016/j.addr.2022.114449_b0370 article-title: Thrombolytic effects of recombinant staphylokinase on coronary thrombosis in miniature pigs publication-title: Zhongguo Ying Yong Sheng Li Xue Za Zhi – volume: 117 start-page: 125 issue: 1 year: 2015 ident: 10.1016/j.addr.2022.114449_b1015 article-title: Tumor stage, tumor site and HPV dependent correlation of perfusion CT parameters and [18F]-FDG uptake in head and neck squamous cell carcinoma publication-title: Radiother Oncol doi: 10.1016/j.radonc.2015.09.026 – volume: 11 start-page: 402 issue: 4 year: 2016 ident: 10.1016/j.addr.2022.114449_b0205 article-title: Nanomedicine and tumor heterogeneity: Concept and complex reality publication-title: Nano Today doi: 10.1016/j.nantod.2016.06.006 – volume: 17 start-page: 149 issue: 3 year: 2017 ident: 10.1016/j.addr.2022.114449_b0015 article-title: Targeted Drug Delivery Systems and Their Therapeutic Applications in Cancer and Immune Pathological Conditions publication-title: Infect Disord Drug Targets doi: 10.2174/1871526517666170606102623 – volume: 3 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.addr.2022.114449_b1010 article-title: Tumors: wounds that do not heal-redux publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.CIR-14-0209 – start-page: 4 year: 2016 ident: 10.1016/j.addr.2022.114449_b0520 article-title: Extracellular matrix structure publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2015.11.001 – start-page: 3268 year: 2016 ident: 10.1016/j.addr.2022.114449_b0595 article-title: Hyaluronidase Embedded in Nanocarrier PEG Shell for Enhanced Tumor Penetration and Highly Efficient Antitumor Efficacy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00820 – volume: 31 start-page: 3657 issue: 13 year: 2010 ident: 10.1016/j.addr.2022.114449_b0840 article-title: Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.01.065 – volume: 18 issue: 2 year: 2018 ident: 10.1016/j.addr.2022.114449_b0625 article-title: Turning foes to friends: targeting cancer-associated fibroblasts publication-title: Nat. Rev. Drug Discovery doi: 10.1038/s41573-018-0004-1 – volume: 28 start-page: 1707249 year: 2018 ident: 10.1016/j.addr.2022.114449_b0670 article-title: Size/Charge Changeable Acidity-Responsive Micelleplex for Photodynamic-Improved PD-L1 Immunotherapy with Enhanced Tumor Penetration publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707249 – volume: 130 start-page: 17 year: 2018 ident: 10.1016/j.addr.2022.114449_b0255 article-title: Tumor targeting via EPR: Strategies to enhance patient responses publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2018.07.007 – volume: 10 start-page: 43493 issue: 50 year: 2018 ident: 10.1016/j.addr.2022.114449_b0600 article-title: Collagenase-Encapsulated pH-Responsive Nanoscale Coordination Polymers for Tumor Microenvironment Modulation and Enhanced Photodynamic Nanomedicine publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b17684 – volume: 93 start-page: 266 issue: 4 year: 2001 ident: 10.1016/j.addr.2022.114449_b0185 article-title: Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects publication-title: J Natl Cancer Inst doi: 10.1093/jnci/93.4.266 – volume: 72 start-page: 4875 issue: 19 year: 2012 ident: 10.1016/j.addr.2022.114449_b0225 article-title: Intratumor heterogeneity: evolution through space and time publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-2217 – start-page: 1 year: 2021 ident: 10.1016/j.addr.2022.114449_b0095 article-title: Factors affecting the dynamics and heterogeneity of the EPR effect: pathophysiological and pathoanatomic features, drug formulations and physicochemical factors publication-title: Expert Opinion on Drug Delivery – volume: 16 start-page: 879 issue: 9 year: 2007 ident: 10.1016/j.addr.2022.114449_b0905 article-title: SDF-1 recruits cardiac stem cell-like cells that depolarize in vivo publication-title: Cell Transplant doi: 10.3727/096368907783338271 – volume: 27 start-page: 1865 issue: 11 year: 2015 ident: 10.1016/j.addr.2022.114449_b0575 article-title: Peptide assembly integration of fibroblast-targeting and cell-penetration features for enhanced antitumor drug delivery publication-title: Adv. Mater. doi: 10.1002/adma.201404715 – volume: 39 start-page: 77 issue: 2 year: 2016 ident: 10.1016/j.addr.2022.114449_b0970 article-title: An Integrative Approach to Precision Cancer Medicine Using Patient-Derived Xenografts publication-title: Mol Cells doi: 10.14348/molcells.2016.2350 – volume: 27 start-page: 2865 issue: 11 year: 2009 ident: 10.1016/j.addr.2022.114449_b0920 article-title: Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells publication-title: Stem Cells doi: 10.1002/stem.217 – volume: 6 start-page: 243 issue: 3 year: 2006 ident: 10.1016/j.addr.2022.114449_b0400 article-title: Manipulating the angiotensin system – new approaches to the treatment of solid tumours publication-title: Expert Opin. Biol. Ther. doi: 10.1517/14712598.6.3.243 – volume: 106 start-page: 4254 issue: 11 year: 2009 ident: 10.1016/j.addr.2022.114449_b0620 article-title: Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0813203106 – volume: 8 start-page: 1102 issue: 9 year: 2019 ident: 10.1016/j.addr.2022.114449_b0415 article-title: Trends and Challenges in Tumor Anti-Angiogenic Therapies publication-title: Cells doi: 10.3390/cells8091102 – start-page: 73 year: 2017 ident: 10.1016/j.addr.2022.114449_b0875 article-title: Introduction: T Cell Trafficking in Inflammation and Immunity publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-6931-9_6 – volume: 36 start-page: 6049 issue: 43 year: 2017 ident: 10.1016/j.addr.2022.114449_b0450 article-title: Inhibition of colony stimulating factor-1 receptor abrogates microenvironment-mediated therapeutic resistance in gliomas publication-title: Oncogene doi: 10.1038/onc.2017.261 – ident: 10.1016/j.addr.2022.114449_b0160 – volume: 17 start-page: 2643 issue: 12 year: 2018 ident: 10.1016/j.addr.2022.114449_b0295 article-title: Augmentation of the Enhanced Permeability and Retention Effect with Nitric Oxide-Generating Agents Improves the Therapeutic Effects of Nanomedicines publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-18-0696 – volume: 1 start-page: 667 issue: 8 year: 2017 ident: 10.1016/j.addr.2022.114449_b0305 article-title: Nanoparticle-mediated local depletion of tumour-associated platelets disrupts vascular barriers and augments drug accumulation in tumours publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-017-0115-8 – volume: 9 start-page: 8018 issue: 26 year: 2019 ident: 10.1016/j.addr.2022.114449_b0695 article-title: Transcytosis - An effective targeting strategy that is complementary to “EPR effect” for pancreatic cancer nano drug delivery publication-title: Theranostics doi: 10.7150/thno.38587 – volume: 16 start-page: 3493 issue: 6 year: 2016 ident: 10.1016/j.addr.2022.114449_b0945 article-title: Bacteria-Mediated Hypoxia-Specific Delivery of Nanoparticles for Tumors Imaging and Therapy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00262 – volume: 7 issue: 1 year: 2014 ident: 10.1016/j.addr.2022.114449_b1005 article-title: Inflammation and the blood microvascular system publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a016345 – start-page: 25 year: 2018 ident: 10.1016/j.addr.2022.114449_b0345 article-title: Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors publication-title: Journal of Controlled Release Official Journal of the Controlled Release Society doi: 10.1016/j.jconrel.2018.05.002 – volume: 91 start-page: 3 year: 2015 ident: 10.1016/j.addr.2022.114449_b0075 article-title: Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2015.01.002 – volume: 99 start-page: 180 issue: Pt B year: 2016 ident: 10.1016/j.addr.2022.114449_b0635 article-title: Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2015.11.009 – ident: 10.1016/j.addr.2022.114449_b0530 – volume: 10 start-page: 9935 issue: 21 year: 2018 ident: 10.1016/j.addr.2022.114449_b0660 article-title: A size switchable nanoplatform for targeting the tumor microenvironment and deep tumor penetration publication-title: Nanoscale doi: 10.1039/C8NR00640G – volume: 77 start-page: 7380 issue: 12 year: 1980 ident: 10.1016/j.addr.2022.114449_b0985 article-title: Genetic transformation of mouse embryos by microinjection of purified DNA publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.77.12.7380 – volume: 18 start-page: 1332 issue: 9 year: 2012 ident: 10.1016/j.addr.2022.114449_b0630 article-title: The tumor microenvironment controls drug sensitivity publication-title: Nat. Med. doi: 10.1038/nm.2938 – volume: 624 start-page: 25 year: 2010 ident: 10.1016/j.addr.2022.114449_b0050 article-title: Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting publication-title: Methods Mol Biol doi: 10.1007/978-1-60761-609-2_3 – volume: 14 start-page: 1801694 issue: 45 year: 2018 ident: 10.1016/j.addr.2022.114449_b0310 article-title: Perfluorocarbon Nanoparticles Mediated Platelet Blocking Disrupt Vascular Barriers to Improve the Efficacy of Oxygen-Sensitive Antitumor Drugs publication-title: Small doi: 10.1002/smll.201801694 – volume: 33 start-page: 222 issue: 1–3 year: 1996 ident: 10.1016/j.addr.2022.114449_b0290 article-title: Bradykinin and nitric oxide in infectious disease and cancer publication-title: Immunopharmacology doi: 10.1016/0162-3109(96)00063-X – volume: 153 start-page: 198 issue: 3 year: 2011 ident: 10.1016/j.addr.2022.114449_b0090 article-title: Targeted drug delivery to tumors: Myths, reality and possibility publication-title: J. Control. Release doi: 10.1016/j.jconrel.2011.06.001 – volume: 66 start-page: 225 issue: 3 year: 2018 ident: 10.1016/j.addr.2022.114449_b0950 article-title: Establishment of a Patient-Derived Tumor Xenograft Model and Application for Precision Cancer Medicine publication-title: Chem Pharm Bull (Tokyo) doi: 10.1248/cpb.c17-00789 – volume: 14 start-page: 731 issue: 8 year: 2019 ident: 10.1016/j.addr.2022.114449_b0110 article-title: Transcellular transfer of nanomedicine publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0494-y – volume: 51 start-page: 503 issue: 3 year: 1987 ident: 10.1016/j.addr.2022.114449_b0990 article-title: Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells publication-title: Cell doi: 10.1016/0092-8674(87)90646-5 – volume: 244 start-page: 108 issue: Pt A year: 2016 ident: 10.1016/j.addr.2022.114449_b0120 article-title: To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? publication-title: J Control Release doi: 10.1016/j.jconrel.2016.11.015 – volume: 23 issue: 50 year: 2012 ident: 10.1016/j.addr.2022.114449_b0835 article-title: Role of surface charge in cytotoxicity of charged manganese ferrite nanoparticles towards macrophages publication-title: Nanotechnology doi: 10.1088/0957-4484/23/50/505702 – volume: 12 start-page: 4085 year: 2017 ident: 10.1016/j.addr.2022.114449_b1085 article-title: High drug-loading nanomedicines: Progress, current status, and prospects publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S132780 – volume: 13 start-page: 4 issue: 1 year: 2020 ident: 10.1016/j.addr.2022.114449_b0980 article-title: Applications of patient-derived tumor xenograft models and tumor organoids publication-title: J Hematol Oncol doi: 10.1186/s13045-019-0829-z – volume: 442 start-page: 396 year: 2019 ident: 10.1016/j.addr.2022.114449_b0550 article-title: Intratumoral injection of gels containing losartan microspheres and (PLG-g-mPEG)-cisplatin nanoparticles improves drug penetration, retention and anti-tumor activity publication-title: Cancer Lett. doi: 10.1016/j.canlet.2018.11.011 – volume: 320 start-page: 142 year: 2020 ident: 10.1016/j.addr.2022.114449_b0690 article-title: Size-adaptable and ligand (biotin)-sheddable nanocarriers equipped with avidin scavenging technology for deep tumor penetration and reduced toxicity publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.01.040 – volume: 100 start-page: 201 issue: 4 year: 2008 ident: 10.1016/j.addr.2022.114449_b0755 article-title: Cell-penetrating peptides: from molecular mechanisms to therapeutics publication-title: Biol Cell doi: 10.1042/BC20070116 – volume: 22 start-page: 697 issue: 5 year: 2010 ident: 10.1016/j.addr.2022.114449_b0150 article-title: Dynamic interplay between the collagen scaffold and tumor evolution publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2010.08.015 – volume: 19 start-page: 1 issue: 7 year: 2017 ident: 10.1016/j.addr.2022.114449_b0535 article-title: Targeting the tumor stroma: the biology and clinical development of pegylated recombinant human hyaluronidase (PEGPH20) publication-title: Current oncology reports doi: 10.1007/s11912-017-0608-3 – volume: 15 start-page: 1186 issue: 1 year: 2021 ident: 10.1016/j.addr.2022.114449_b0340 article-title: CC Chemokine Receptor 2-Targeting Copper Nanoparticles for Positron Emission Tomography-Guided Delivery of Gemcitabine for Pancreatic Ductal Adenocarcinoma publication-title: ACS Nano doi: 10.1021/acsnano.0c08185 – volume: 480 start-page: 109 issue: 7375 year: 2011 ident: 10.1016/j.addr.2022.114449_b0810 article-title: Lyn is a redox sensor that mediates leukocyte wound attraction in vivo publication-title: Nature doi: 10.1038/nature10632 – volume: 311–312 start-page: 319 year: 2019 ident: 10.1016/j.addr.2022.114449_b0020 article-title: Nanomedicine: From where are we coming and where are we going? publication-title: J. Control. Release doi: 10.1016/j.jconrel.2019.10.020 – volume: 17 start-page: 20 issue: 1 year: 2017 ident: 10.1016/j.addr.2022.114449_b0265 article-title: Cancer nanomedicine: progress, challenges and opportunities publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.108 – ident: 10.1016/j.addr.2022.114449_b0850 doi: 10.1289/ehp.97105s51261 – volume: 42 start-page: 717 issue: 6 year: 2006 ident: 10.1016/j.addr.2022.114449_b0470 article-title: Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy publication-title: Eur J Cancer doi: 10.1016/j.ejca.2006.01.003 – volume: 7 start-page: 11838 year: 2016 ident: 10.1016/j.addr.2022.114449_b0260 article-title: Nanoreporter PET predicts the efficacy of anti-cancer nanotherapy publication-title: Nat. Commun. doi: 10.1038/ncomms11838 – volume: 104 start-page: 2224 issue: 8 year: 2004 ident: 10.1016/j.addr.2022.114449_b0845 article-title: Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues publication-title: Blood doi: 10.1182/blood-2004-03-1109 – volume: 105 start-page: 11613 issue: 33 year: 2008 ident: 10.1016/j.addr.2022.114449_b0735 article-title: The effect of particle design on cellular internalization pathways publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0801763105 – volume: 8 start-page: 6765 issue: 31 year: 2020 ident: 10.1016/j.addr.2022.114449_b0475 article-title: Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy publication-title: J Mater Chem B doi: 10.1039/D0TB00649A – volume: 1030 start-page: 255 year: 2017 ident: 10.1016/j.addr.2022.114449_b0765 article-title: Uptake Mechanism of Cell-Penetrating Peptides publication-title: Adv Exp Med Biol doi: 10.1007/978-3-319-66095-0_11 – volume: 7 start-page: 653 issue: 11 year: 2010 ident: 10.1016/j.addr.2022.114449_b0155 article-title: Delivering nanomedicine to solid tumors publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2010.139 – volume: 121 start-page: 1746 issue: 3 year: 2021 ident: 10.1016/j.addr.2022.114449_b0350 article-title: The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors publication-title: Chem Rev doi: 10.1021/acs.chemrev.0c00779 – volume: 12 start-page: 8255 issue: 8 year: 2018 ident: 10.1016/j.addr.2022.114449_b1055 article-title: Multifunctional theranostic nanoparticles derived from fruit-extracted anthocyanins with dynamic disassembly and elimination abilities publication-title: ACS Nano doi: 10.1021/acsnano.8b03525 – volume: 182 start-page: 145 year: 2018 ident: 10.1016/j.addr.2022.114449_b0360 article-title: Hypoxic tumor therapy by hemoglobin-mediated drug delivery and reversal of hypoxia-induced chemoresistance publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.08.004 – volume: 58 start-page: 159 issue: 1 year: 1998 ident: 10.1016/j.addr.2022.114449_b0375 article-title: Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger publication-title: Cancer Res – volume: 464 start-page: 999 issue: 7291 year: 2010 ident: 10.1016/j.addr.2022.114449_b0965 article-title: Genome remodelling in a basal-like breast cancer metastasis and xenograft publication-title: Nature doi: 10.1038/nature08989 – volume: 64 start-page: 1205 issue: 12 year: 2012 ident: 10.1016/j.addr.2022.114449_b1030 article-title: Development of macromolecular prodrug for rheumatoid arthritis publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.03.006 – volume: 9 start-page: 344 issue: 3 year: 2014 ident: 10.1016/j.addr.2022.114449_b1070 article-title: Intracellular delivery of nanomaterials: How to catch endosomal escape in the act publication-title: Nano Today doi: 10.1016/j.nantod.2014.04.011 – volume: 9 start-page: 137 issue: 2 year: 2017 ident: 10.1016/j.addr.2022.114449_b0995 article-title: Genetically engineered mouse models in oncology research and cancer medicine publication-title: EMBO Mol Med doi: 10.15252/emmm.201606857 – volume: 14 start-page: 1396 issue: 8 year: 2018 ident: 10.1016/j.addr.2022.114449_b0785 article-title: iRGD-Mediated and Enzyme-Induced Precise Targeting and Retention of Gold Nanoparticles for the Enhanced Imaging and Treatment of Breast Cancer publication-title: J Biomed Nanotechnol doi: 10.1166/jbn.2018.2592 – volume: 11 start-page: 825 issue: 8 year: 2021 ident: 10.1016/j.addr.2022.114449_b1060 article-title: A critical review of radiation therapy: From particle beam therapy (Proton, Carbon, and BNCT) to beyond publication-title: Journal of Personalized Medicine doi: 10.3390/jpm11080825 – volume: 62 start-page: 112 issue: 1 year: 2013 ident: 10.1016/j.addr.2022.114449_b0135 article-title: Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer publication-title: Gut doi: 10.1136/gutjnl-2012-302529 – volume: 33 start-page: 1505 issue: 13 year: 2015 ident: 10.1016/j.addr.2022.114449_b0190 article-title: Targeting tumor hypoxia with hypoxia-activated prodrugs publication-title: J Clin Oncol doi: 10.1200/JCO.2014.60.0759 – volume: 2018 start-page: 3647 year: 1950 ident: 10.1016/j.addr.2022.114449_b0585 article-title: Tumor Tolerance-Promoting Function of Regulatory T Cells Is Optimized by CD28, but Strictly Dependent on Calcineurin publication-title: Journal of immunology (Baltimore, Md. – volume: 100 start-page: 173 issue: 1 year: 2009 ident: 10.1016/j.addr.2022.114449_b0325 article-title: Comparison of the effects of the kinase inhibitors imatinib, sorafenib, and transforming growth factor-β receptor inhibitor on extravasation of nanoparticles from neovasculature publication-title: Cancer Sci. doi: 10.1111/j.1349-7006.2008.01003.x – volume: 75 start-page: 4742 issue: 22 year: 2015 ident: 10.1016/j.addr.2022.114449_b0455 article-title: Macrophage Blockade Using CSF1R Inhibitors Reverses the Vascular Leakage Underlying Malignant Ascites in Late-Stage Epithelial Ovarian Cancer publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-3373 – volume: 15 start-page: 379 issue: 4 year: 2018 ident: 10.1016/j.addr.2022.114449_b0655 article-title: Particle morphology: an important factor affecting drug delivery by nanocarriers into solid tumors publication-title: Expert opinion on drug delivery doi: 10.1080/17425247.2018.1420051 – start-page: 1700818 year: 2018 ident: 10.1016/j.addr.2022.114449_b0815 article-title: Cell-Based Drug Delivery and Use of Nano-and Microcarriers for Cell Functionalization publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201700818 – volume: 39 start-page: 756 issue: 11 year: 2009 ident: 10.1016/j.addr.2022.114449_b0285 article-title: Elevating blood pressure as a strategy to increase tumor-targeted delivery of macromolecular drug SMANCS: cases of advanced solid tumors publication-title: Jpn J Clin Oncol doi: 10.1093/jjco/hyp074 – volume: 46 start-page: 3830 issue: 12 year: 2017 ident: 10.1016/j.addr.2022.114449_b0640 article-title: Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment publication-title: Chem Soc Rev doi: 10.1039/C6CS00592F – volume: 87 start-page: S42 issue: 9 Suppl year: 2009 ident: 10.1016/j.addr.2022.114449_b0900 article-title: Mesenchymal stem cell homing capacity publication-title: Transplantation doi: 10.1097/TP.0b013e3181a28533 – volume: 12 start-page: 1 issue: 5 year: 2010 ident: 10.1016/j.addr.2022.114449_b1035 article-title: Development of a macromolecular prodrug for the treatment of inflammatory arthritis: mechanisms involved in arthrotropism and sustained therapeutic efficacy publication-title: Arthritis research & therapy doi: 10.1186/ar3130 – volume: 157 start-page: 195 issue: 2 year: 2009 ident: 10.1016/j.addr.2022.114449_b0760 article-title: Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics publication-title: Br J Pharmacol doi: 10.1111/j.1476-5381.2009.00057.x – volume: 381 start-page: 335 year: 2004 ident: 10.1016/j.addr.2022.114449_b0180 article-title: Tumor hypoxia and malignant progression publication-title: Methods Enzymol doi: 10.1016/S0076-6879(04)81023-1 – volume: 61 start-page: 1488 issue: 10 year: 2012 ident: 10.1016/j.addr.2022.114449_b1000 article-title: Genetically engineered mouse models of pancreatic cancer: unravelling tumour biology and progressing translational oncology publication-title: Gut doi: 10.1136/gutjnl-2011-300756 – volume: 6 start-page: 1802070 issue: 5 year: 2019 ident: 10.1016/j.addr.2022.114449_b0555 article-title: Therapeutic Remodeling of the Tumor Microenvironment Enhances Nanoparticle Delivery publication-title: Adv Sci (Weinh) doi: 10.1002/advs.201802070 – volume: 10 start-page: 678 issue: 4 year: 2018 ident: 10.1016/j.addr.2022.114449_b0315 article-title: Analytical and functional similarity of Amgen biosimilar ABP 215 to bevacizumab publication-title: MAbs doi: 10.1080/19420862.2018.1452580 – volume: 29 start-page: 244 issue: 2 year: 2001 ident: 10.1016/j.addr.2022.114449_b0895 article-title: Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion publication-title: Exp Hematol doi: 10.1016/S0301-472X(00)00635-4 – volume: 267 start-page: 15 year: 2017 ident: 10.1016/j.addr.2022.114449_b0720 article-title: Overcoming key biological barriers to cancer drug delivery and efficacy publication-title: J Control Release doi: 10.1016/j.jconrel.2017.09.016 – volume: 12 start-page: 53 issue: 1 year: 2015 ident: 10.1016/j.addr.2022.114449_b0080 article-title: Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls publication-title: Expert Opin Drug Deliv doi: 10.1517/17425247.2014.955011 – start-page: 258 year: 2018 ident: 10.1016/j.addr.2022.114449_b0165 article-title: Reengineering the Tumor Vasculature: Improving Drug Delivery and Efficacy. Trends publication-title: Cancer – volume: 19 start-page: 8010 issue: 11 year: 2019 ident: 10.1016/j.addr.2022.114449_b0745 article-title: Transcytosis of Nanomedicine for Tumor Penetration publication-title: Nano Lett doi: 10.1021/acs.nanolett.9b03211 – volume: 31 start-page: 2583 issue: 10 year: 2014 ident: 10.1016/j.addr.2022.114449_b1080 article-title: Development of High-Content Gemcitabine PEGylated Liposomes and Their Cytotoxicity on Drug-Resistant Pancreatic Tumour Cells publication-title: Pharm Res doi: 10.1007/s11095-014-1353-z – volume: 32 start-page: 1005 issue: 4 year: 2001 ident: 10.1016/j.addr.2022.114449_b0890 article-title: Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats publication-title: Stroke doi: 10.1161/01.STR.32.4.1005 – volume: 48 start-page: 747 issue: 3 year: 1985 ident: 10.1016/j.addr.2022.114449_b0300 article-title: A serratial protease causes vascular permeability reaction by activation of the Hageman factor-dependent pathway in guinea pigs publication-title: Infect Immun doi: 10.1128/iai.48.3.747-753.1985 – ident: 10.1016/j.addr.2022.114449_b0480 doi: 10.1016/j.canlet.2014.01.032 – volume: 14 start-page: 1007 issue: 11 year: 2019 ident: 10.1016/j.addr.2022.114449_b0105 article-title: Smart cancer nanomedicine publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0567-y – volume: 65 start-page: 1920 issue: 6 year: 2017 ident: 10.1016/j.addr.2022.114449_b0825 article-title: Neutrophils promote hepatic metastasis growth through fibroblast growth factor 2-dependent angiogenesis in mice publication-title: Hepatology doi: 10.1002/hep.29088 – volume: 3 start-page: 83 year: 2015 ident: 10.1016/j.addr.2022.114449_b0170 article-title: The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy publication-title: Hypoxia (Auckl) doi: 10.2147/HP.S93413 – volume: 23 start-page: 395 issue: 3 year: 1995 ident: 10.1016/j.addr.2022.114449_b0175 article-title: An overview on oxygen carriers in cancer therapy publication-title: Artif Cells Blood Substit Immobil Biotechnol doi: 10.3109/10731199509117955 – volume: 113 year: 2020 ident: 10.1016/j.addr.2022.114449_b0605 article-title: pH-sensitive bromelain nanoparticles by ortho ester crosslinkage for enhanced doxorubicin penetration in solid tumor publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2020.111004 – volume: 4 start-page: 806 issue: 10 year: 2004 ident: 10.1016/j.addr.2022.114449_b0125 article-title: High interstitial fluid pressure - an obstacle in cancer therapy publication-title: Nat Rev Cancer doi: 10.1038/nrc1456 – volume: 42 start-page: 1275 issue: 8 year: 2013 ident: 10.1016/j.addr.2022.114449_b0975 article-title: Histological advantages of the tumor graft: a murine model involving transplantation of human pancreatic cancer tissue fragments publication-title: Pancreas doi: 10.1097/MPA.0b013e318296f866 – volume: 326 start-page: 164 year: 2020 ident: 10.1016/j.addr.2022.114449_b0005 article-title: Delivering the power of nanomedicine to patients today publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.07.007 – volume: 275 year: 2021 ident: 10.1016/j.addr.2022.114449_b0250 article-title: Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120910 – volume: 7 start-page: 7 year: 2016 ident: 10.1016/j.addr.2022.114449_b0885 article-title: Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells publication-title: Stem Cell Res Ther doi: 10.1186/s13287-015-0271-2 – volume: 91 start-page: 261 issue: 2 year: 2000 ident: 10.1016/j.addr.2022.114449_b0385 article-title: Tumor-selective blood flow decrease induced by an angiotensin converting enzyme inhibitor, temocapril hydrochloride publication-title: Jpn J Cancer Res doi: 10.1111/j.1349-7006.2000.tb00940.x – volume: 46 start-page: 6387 issue: 12 Pt 1 year: 1986 ident: 10.1016/j.addr.2022.114449_b0035 article-title: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs publication-title: Cancer Res – volume: 28 start-page: 7340 issue: 34 year: 2016 ident: 10.1016/j.addr.2022.114449_b0650 article-title: Hierarchical Targeting Strategy for Enhanced Tumor Tissue Accumulation/Retention and Cellular Internalization publication-title: Adv Mater doi: 10.1002/adma.201601498 – volume: 366 start-page: 883 issue: 10 year: 2012 ident: 10.1016/j.addr.2022.114449_b0210 article-title: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing publication-title: N Engl J Med doi: 10.1056/NEJMoa1113205 – volume: 12 start-page: 692 issue: 7 year: 2017 ident: 10.1016/j.addr.2022.114449_b0820 article-title: Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence publication-title: Nat Nanotechnol doi: 10.1038/nnano.2017.54 – volume: 162 start-page: 76 issue: 1 year: 2012 ident: 10.1016/j.addr.2022.114449_b1075 article-title: Endocytic pathway rapidly delivers internalized molecules to lysosomes: an analysis of vesicle trafficking, clustering and mass transfer publication-title: Journal of Controlled Release Official Journal of the Controlled Release Society doi: 10.1016/j.jconrel.2012.05.022 – volume: 11 start-page: 4916 issue: 5 year: 2017 ident: 10.1016/j.addr.2022.114449_b0515 article-title: Quercetin Remodels the Tumor Microenvironment To Improve the Permeation, Retention, and Antitumor Effects of Nanoparticles publication-title: ACS Nano doi: 10.1021/acsnano.7b01522 – volume: 23 start-page: 173 issue: 3 year: 2016 ident: 10.1016/j.addr.2022.114449_b0055 article-title: A Retrospective 30 Years After Discovery of the Enhanced Permeability and Retention Effect of Solid Tumors: Next-Generation Chemotherapeutics and Photodynamic Therapy-Problems, Solutions, and Prospects publication-title: Microcirculation doi: 10.1111/micc.12228 – volume: 4 start-page: 998 issue: 9 year: 2014 ident: 10.1016/j.addr.2022.114449_b0955 article-title: Patient-derived xenograft models: an emerging platform for translational cancer research publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-14-0001 – volume: 190 start-page: 451 year: 2014 ident: 10.1016/j.addr.2022.114449_b0215 article-title: EPR: Evidence and fallacy publication-title: J Control Release doi: 10.1016/j.jconrel.2014.03.057 – volume: 43 start-page: 1838 issue: 4 year: 2019 ident: 10.1016/j.addr.2022.114449_b0860 article-title: Macrophage-engulfed MoS2 for active targeted photothermal therapy publication-title: New J. Chem. doi: 10.1039/C8NJ05877F – volume: 127 start-page: 2007 issue: 5 year: 2017 ident: 10.1016/j.addr.2022.114449_b0780 article-title: Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer publication-title: J Clin Invest doi: 10.1172/JCI92284 – volume: 72 start-page: 205 issue: 4 year: 2017 ident: 10.1016/j.addr.2022.114449_b0795 article-title: Co-administration of tLyp-1 with polymeric paclitaxel conjugates: Enhanced intratumoral accumulation and anti-tumor efficacy publication-title: Pharmazie doi: 10.1159/000455154 – volume: 21 start-page: 797 issue: 5 year: 2010 ident: 10.1016/j.addr.2022.114449_b0060 article-title: Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects publication-title: Bioconjug Chem doi: 10.1021/bc100070g – volume: 108 start-page: 44 year: 2016 ident: 10.1016/j.addr.2022.114449_b0335 article-title: Development of a multi-target peptide for potentiating chemotherapy by modulating tumor microenvironment publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.09.001 – volume: 19 start-page: 566 issue: 5 year: 2020 ident: 10.1016/j.addr.2022.114449_b0705 article-title: The entry of nanoparticles into solid tumours publication-title: Nat Mater doi: 10.1038/s41563-019-0566-2 – volume: 172 start-page: 391 issue: 1 year: 2013 ident: 10.1016/j.addr.2022.114449_b0085 article-title: Questions on the role of the EPR effect in tumor targeting publication-title: J. Control. Release doi: 10.1016/j.jconrel.2013.10.001 – volume: 19 start-page: 997 issue: 2 year: 2019 ident: 10.1016/j.addr.2022.114449_b0590 article-title: Enhanced Drug Delivery by Nanoscale Integration of a Nitric Oxide Donor To Induce Tumor Collagen Depletion publication-title: Nano Lett doi: 10.1021/acs.nanolett.8b04236 – volume: 305 start-page: 89 year: 2019 ident: 10.1016/j.addr.2022.114449_b0025 article-title: Can intracellular drug delivery using hyaluronic acid functionalised pH-sensitive liposomes overcome gemcitabine resistance in pancreatic cancer? publication-title: J. Control. Release doi: 10.1016/j.jconrel.2019.05.018 – volume: 201 start-page: 14 year: 2015 ident: 10.1016/j.addr.2022.114449_b0770 article-title: Cell penetrating peptides improve tumor delivery of cargos through neuropilin-1-dependent extravasation publication-title: J Control Release doi: 10.1016/j.jconrel.2015.01.011 – volume: 116 start-page: 2210 issue: 6 year: 2019 ident: 10.1016/j.addr.2022.114449_b0505 article-title: Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1818357116 – volume: 38 start-page: 1 issue: 6 year: 2021 ident: 10.1016/j.addr.2022.114449_b0910 article-title: Recent Advancement and Technical Challenges in Developing Small Extracellular Vesicles for Cancer Drug Delivery publication-title: Pharm. Res. – volume: 71 start-page: 1805 issue: 5 year: 2011 ident: 10.1016/j.addr.2022.114449_b0865 article-title: Use of macrophages to target therapeutic adenovirus to human prostate tumors publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-10-2349 – volume: 46 start-page: 169 issue: 1–3 year: 2001 ident: 10.1016/j.addr.2022.114449_b0145 article-title: SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy publication-title: Adv Drug Deliv Rev doi: 10.1016/S0169-409X(00)00134-4 – volume: 5 start-page: 25 year: 2010 ident: 10.1016/j.addr.2022.114449_b0870 article-title: Surface engineering of macrophages with nanoparticles to generate a cell-nanoparticle hybrid vehicle for hypoxia-targeted drug delivery publication-title: Int J Nanomedicine – volume: 13 start-page: 6049 year: 2018 ident: 10.1016/j.addr.2022.114449_b0495 article-title: Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment publication-title: Int J Nanomedicine doi: 10.2147/IJN.S140462 – ident: 10.1016/j.addr.2022.114449_b0275 doi: 10.1158/1078-0432.CCR-16-3193 – volume: 201 start-page: 18 year: 2013 ident: 10.1016/j.addr.2022.114449_b0730 article-title: Exocytosis of nanoparticles from cells: role in cellular retention and toxicity publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2013.10.013 – volume: 76 start-page: 699 issue: 4 year: 2015 ident: 10.1016/j.addr.2022.114449_b0800 article-title: Albumin-bound nanoparticle (nab) paclitaxel exhibits enhanced paclitaxel tissue distribution and tumor penetration publication-title: Cancer Chemother Pharmacol doi: 10.1007/s00280-015-2833-5 – volume: 11 start-page: 218 issue: 3 year: 2013 ident: 10.1016/j.addr.2022.114449_b0365 article-title: Towards a superior streptokinase for fibrinolytic therapy of vascular thrombosis publication-title: Cardiovasc Hematol Agents Med Chem doi: 10.2174/187152571103140120103816 – volume: 160 start-page: 117 issue: 2 year: 2012 ident: 10.1016/j.addr.2022.114449_b0230 article-title: Doxil — The first FDA-approved nano-drug: Lessons learned publication-title: J. Control. Release doi: 10.1016/j.jconrel.2012.03.020 – volume: 119 start-page: 44 year: 2017 ident: 10.1016/j.addr.2022.114449_b0395 article-title: Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2017.07.007 – volume: 7 start-page: 12630 year: 2016 ident: 10.1016/j.addr.2022.114449_b0510 article-title: ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion publication-title: Nat Commun doi: 10.1038/ncomms12630 – volume: 40 start-page: 507 issue: 2 year: 2012 ident: 10.1016/j.addr.2022.114449_b0855 article-title: Macrophages as cell-based delivery systems for nanoshells in photothermal therapy publication-title: Ann Biomed Eng doi: 10.1007/s10439-011-0415-1 |
| SSID | ssj0012760 |
| Score | 2.68899 |
| SecondaryResourceType | review_article |
| Snippet | [Display omitted]
The Enhanced Permeability and Retention (EPR) effect has been recognized as the central paradigm in tumor-targeted delivery in the last... The Enhanced Permeability and Retention (EPR) effect has been recognized as the central paradigm in tumor-targeted delivery in the last decades. In the wake of... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 114449 |
| SubjectTerms | Antineoplastic Agents Clinical translation Drug Delivery Systems - methods EPR effect Humans independent of EPR effect Nanomedicine Nanomedicine - methods Nanoparticles Neoplasms - therapy Permeability Preclinical models Transendothelial pathway Tumor Microenvironment |
| Title | Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms |
| URI | https://dx.doi.org/10.1016/j.addr.2022.114449 https://www.ncbi.nlm.nih.gov/pubmed/35835353 https://www.proquest.com/docview/2691053986 |
| Volume | 188 |
| WOSCitedRecordID | wos000853367300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-8294 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012760 issn: 0169-409X databaseCode: AIEXJ dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9owFLZou0l7mbbuxi6VJ0280CBytfNYTVTdhhiaMok-WXFiSioIDAiCX7G_vOPYTui2Vt3DhBQhk5CI7-P4HPuc7yD0gVDf4bHwrNiG2ATm27EFboRrgavrxDbpck-UhcJ9MhjQ0SgcNho_TS3MZkrynG634eK_Qg1jALYsnf0HuKsvhQF4D6DDEWCH472AN3qzSrtB5JOyKCBdFlftVExlGkbpcMJDZGl7Xcxktx3wQSfxUlo9Uz3VG36rcj1KPdepXjnciLbKHpdnzoQsHM5WWvLcqNmavIKbN9XCp9VSdZlHcJlti5qgl3r1-kuc7Ypq9EKt8wORJ0U9ixTlvko2E9n-ygUEvSY1yxhbSsAaO6rJcUf8Zayy0HTPxkIE5ymZ0z_Mv1qJuO6A0ZZar47TqU--qbU9-MrOv_f7LOqNotbihyXbkMntet2T5QAdOcQPwUwenX3qjT5XG1MOUYXn5jF1HZZKGfz9trf5OrfFMqVPEz1Bj3Uwgs8UiZ6ihsiP0UPVnnR3jFpDpWu-O8VRXaa3OsUtPKwVz3fP0KbmHF7PseYclvBjA7_8oOQcVpzDfIdrzmHgHAbOYc05DJzDe5zDFedwzbnnKDrvRR8vLN3Qw0pcP1hbIhV2SARNHME5jwMv9FI_LYN62ffcHQfgG_EQQv4gTaiddGna9Wlii7Ev-Dh2X6DDfJ6LVwgHXipTBsBbd4VHuMsTOxBOCtPLOOCEh01km1-eJVrsXvZcmTKT1XjNJFpMosUUWk3Urq5ZKKmXO8_2DaBMO6vKCWVAxjuve2_QZ2DJ5fZcnIt5sWJOAK6774Y0aKKXihbVc7g-RErwen2Pq9-gR_W_7S06XC8L8Q49SDbrbLU8QQdkRE80rX8BlCHMRA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategies+to+enhance+drug+delivery+to+solid+tumors+by+harnessing+the+EPR+effects+and+alternative+targeting+mechanisms&rft.jtitle=Advanced+drug+delivery+reviews&rft.au=Zi%2C+Yixuan&rft.au=Yang%2C+Kaiyun&rft.au=He%2C+Jianhua&rft.au=Wu%2C+Zimei&rft.date=2022-09-01&rft.issn=1872-8294&rft.eissn=1872-8294&rft.volume=188&rft.spage=114449&rft_id=info:doi/10.1016%2Fj.addr.2022.114449&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-409X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-409X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-409X&client=summon |