Generalized Newton’s method based on graphical derivatives

This paper concerns developing a numerical method of the Newton type to solve systems of nonlinear equations described by nonsmooth continuous functions. We propose and justify a new generalized Newton algorithm based on graphical derivatives, which have never been used to derive a Newton-type metho...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nonlinear analysis Ročník 75; číslo 3; s. 1324 - 1340
Hlavní autoři: Hoheisel, T., Kanzow, C., Mordukhovich, B.S., Phan, H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Ltd 01.02.2012
Elsevier
Témata:
ISSN:0362-546X, 1873-5215
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper concerns developing a numerical method of the Newton type to solve systems of nonlinear equations described by nonsmooth continuous functions. We propose and justify a new generalized Newton algorithm based on graphical derivatives, which have never been used to derive a Newton-type method for solving nonsmooth equations. Based on advanced techniques of variational analysis and generalized differentiation, we establish the well-posedness of the algorithm, its local superlinear convergence, and its global convergence of the Kantorovich type. Our convergence results hold with no semismoothness and Lipschitzian assumptions, which is illustrated by examples. The algorithm and main results obtained in the paper are compared with well-recognized semismooth and B -differentiable versions of Newton’s method for nonsmooth Lipschitzian equations.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2011.06.039