Syntomic complexes and p-adic nearby cycles

We compute syntomic cohomology of semistable affinoids in terms of cohomology of ( φ , Γ ) -modules which, thanks to work of Fontaine–Herr, Andreatta–Iovita, and Kedlaya–Liu, is known to compute Galois cohomology of these affinoids. For a semistable scheme over a mixed characteristic local ring this...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Inventiones mathematicae Ročník 208; číslo 1; s. 1 - 108
Hlavní autoři: Colmez, Pierre, Nizioł, Wiesława
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2017
Springer Verlag
Témata:
ISSN:0020-9910, 1432-1297
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We compute syntomic cohomology of semistable affinoids in terms of cohomology of ( φ , Γ ) -modules which, thanks to work of Fontaine–Herr, Andreatta–Iovita, and Kedlaya–Liu, is known to compute Galois cohomology of these affinoids. For a semistable scheme over a mixed characteristic local ring this implies a comparison isomorphism, up to some universal constants, between truncated sheaves of p -adic nearby cycles and syntomic cohomology sheaves. This generalizes the comparison results of Kato, Kurihara, and Tsuji for small Tate twists (where no constants are necessary) as well as the comparison result of Tsuji that holds over the algebraic closure of the field. As an application, we combine this local comparison isomorphism with the theory of finite dimensional Banach Spaces and finiteness of étale cohomology of rigid analytic spaces proved by Scholze to prove a Semistable conjecture for formal schemes with semistable reduction.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0020-9910
1432-1297
DOI:10.1007/s00222-016-0683-3