Continuous-time inverse quadratic optimal control problem

In this paper, the problem of finite horizon inverse optimal control (IOC) is investigated, where the quadratic cost function of a dynamic process is required to be recovered based on the observation of optimal control sequences. We propose the first complete result of the necessary and sufficient c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Automatica (Oxford) Ročník 117; s. 108977
Hlavní autoři: Li, Yibei, Yao, Yu, Hu, Xiaoming
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.07.2020
Témata:
ISSN:0005-1098, 1873-2836
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, the problem of finite horizon inverse optimal control (IOC) is investigated, where the quadratic cost function of a dynamic process is required to be recovered based on the observation of optimal control sequences. We propose the first complete result of the necessary and sufficient condition for the existence of corresponding standard linear quadratic (LQ) cost functions. Under feasible cases, the analytic expression of the whole solution space is derived and the equivalence of weighting matrices in LQ problems is discussed. For infeasible problems, an infinite dimensional convex problem is formulated to obtain a best-fit approximate solution with minimal control residual. And the optimality condition is solved under a static quadratic programming framework to facilitate the computation. Finally, numerical simulations are used to demonstrate the effectiveness and feasibility of the proposed methods.
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2020.108977