Polynomial time ultrapowers and the consistency of circuit lower bounds

A polynomial time ultrapower is a structure given by the set of polynomial time computable functions modulo some ultrafilter. They model the universal theory ∀ PV of all polynomial time functions. Generalizing a theorem of Hirschfeld (Israel J Math 20(2):111–126, 1975 ), we show that every countable...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Archive for mathematical logic Ročník 59; číslo 1-2; s. 127 - 147
Hlavní autori: Bydžovský, Jan, Müller, Moritz
Médium: Journal Article Publikácia
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2020
Springer Nature B.V
Predmet:
ISSN:0933-5846, 1432-0665
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A polynomial time ultrapower is a structure given by the set of polynomial time computable functions modulo some ultrafilter. They model the universal theory ∀ PV of all polynomial time functions. Generalizing a theorem of Hirschfeld (Israel J Math 20(2):111–126, 1975 ), we show that every countable model of ∀ PV is isomorphic to an existentially closed substructure of a polynomial time ultrapower. Moreover, one can take a substructure of a special form, namely a limit polynomial time ultrapower in the classical sense of Keisler (in: Bergelson, V., Blass, A., Di Nasso, M., Jin, R. (eds.) Ultrafilters across mathematics, contemporary mathematics vol 530, pp 163–179. AMS, New York, 1963 ). Using a polynomial time ultrapower over a nonstandard Herbrand saturated model of  ∀ PV we show that ∀ PV is consistent with a formal statement of a polynomial size circuit lower bound for a polynomial time computable function. This improves upon a recent result of Krajíček and Oliveira (Logical methods in computer science 13 (1:4), 2017 ).
AbstractList A polynomial time ultrapower is a structure given by the set of polynomial time computable functions modulo some ultrafilter. They model the universal theory ∀ PV of all polynomial time functions. Generalizing a theorem of Hirschfeld (Israel J Math 20(2):111–126, 1975 ), we show that every countable model of ∀ PV is isomorphic to an existentially closed substructure of a polynomial time ultrapower. Moreover, one can take a substructure of a special form, namely a limit polynomial time ultrapower in the classical sense of Keisler (in: Bergelson, V., Blass, A., Di Nasso, M., Jin, R. (eds.) Ultrafilters across mathematics, contemporary mathematics vol 530, pp 163–179. AMS, New York, 1963 ). Using a polynomial time ultrapower over a nonstandard Herbrand saturated model of  ∀ PV we show that ∀ PV is consistent with a formal statement of a polynomial size circuit lower bound for a polynomial time computable function. This improves upon a recent result of Krajíček and Oliveira (Logical methods in computer science 13 (1:4), 2017 ).
A polynomial time ultrapower is a structure given by the set of polynomial time computable functions modulo some ultrafilter. They model the universal theory ∀PV of all polynomial time functions. Generalizing a theorem of Hirschfeld (Israel J Math 20(2):111–126, 1975), we show that every countable model of ∀PV is isomorphic to an existentially closed substructure of a polynomial time ultrapower. Moreover, one can take a substructure of a special form, namely a limit polynomial time ultrapower in the classical sense of Keisler (in: Bergelson, V., Blass, A., Di Nasso, M., Jin, R. (eds.) Ultrafilters across mathematics, contemporary mathematics vol 530, pp 163–179. AMS, New York, 1963). Using a polynomial time ultrapower over a nonstandard Herbrand saturated model of ∀PV we show that ∀PV is consistent with a formal statement of a polynomial size circuit lower bound for a polynomial time computable function. This improves upon a recent result of Krajíček and Oliveira (Logical methods in computer science 13 (1:4), 2017). Peer Reviewed
A polynomial time ultrapower is a structure given by the set of polynomial time computable functions modulo some ultrafilter. They model the universal theory ∀PV of all polynomial time functions. Generalizing a theorem of Hirschfeld (Israel J Math 20(2):111–126, 1975), we show that every countable model of ∀PV is isomorphic to an existentially closed substructure of a polynomial time ultrapower. Moreover, one can take a substructure of a special form, namely a limit polynomial time ultrapower in the classical sense of Keisler (in: Bergelson, V., Blass, A., Di Nasso, M., Jin, R. (eds.) Ultrafilters across mathematics, contemporary mathematics vol 530, pp 163–179. AMS, New York, 1963). Using a polynomial time ultrapower over a nonstandard Herbrand saturated model of ∀PV we show that ∀PV is consistent with a formal statement of a polynomial size circuit lower bound for a polynomial time computable function. This improves upon a recent result of Krajíček and Oliveira (Logical methods in computer science 13 (1:4), 2017).
Author Bydžovský, Jan
Müller, Moritz
Author_xml – sequence: 1
  givenname: Jan
  orcidid: 0000-0003-2240-0147
  surname: Bydžovský
  fullname: Bydžovský, Jan
  email: jan.bydz@gmail.com
  organization: Institute of Discrete Mathematics and Geometry, Technische Universität Wien
– sequence: 2
  givenname: Moritz
  surname: Müller
  fullname: Müller, Moritz
  organization: Department of Computer Science, Universitat Politècnica de Catalunya
BookMark eNp9kM1KAzEURoNUsK2-gKuA62h-ZpLMUopWoaALXYckzeiUaVKTDDJvb-oU3Lm4XC585-NyFmDmg3cAXBN8SzAWdwljUjOESYMw5pKg8QzMScUowpzXMzDHDWOolhW_AIuUdiVOpSRzsH4N_ejDvtM9zN3ewaHPUR_Ct4sJar-F-dNBG3zqUnbejjC00HbRDl2G_TEFTRj8Nl2C81b3yV2d9hK8Pz68rZ7Q5mX9vLrfIMtqnpERDSdbaTiVTrayrupaUEm0Lf8ZbIxumKUt4ZzYxglhqDASN04SRytua8OWgEy9Ng1WRWddtDqroLu_4zgUC6qYwESKwtxMzCGGr8GlrHZhiL68qSgrjkQjGCkpemqOIaXoWnWI3V7HURGsjpLVJFkVyepXshoLxCYolbD_cPGv-h_qBzuRgTg
Cites_doi 10.1007/BF02757881
10.1007/s00153-016-0484-9
10.1007/978-3-642-59048-1_3
10.1007/BF02771574
10.1016/0168-0072(90)90064-9
10.1007/978-1-4612-2566-9_12
10.1090/S0002-9947-1963-0148547-1
10.1007/978-3-662-22108-2_8
10.2178/jsl/1191333850
10.1016/0168-0072(91)90043-L
10.2178/jsl/1203350791
10.1007/s00037-014-0087-y
10.1080/00029890.1973.11993265
10.4064/fm-23-1-150-161
10.1016/S0168-0072(02)00030-1
10.4064/fm-51-3-195-228
10.1002/malq.201700009
10.2307/2275794
10.2307/2275541
10.1006/jcss.1997.1494
10.2307/1970235
10.1090/conm/530/10444
10.1007/978-3-319-00119-7
10.7146/brics.v1i36.21607
10.1016/S0049-237X(08)71130-3
10.1016/S0049-237X(09)70306-4
10.1017/CBO9781139107211
10.1007/978-3-662-22156-3
10.1145/800116.803756
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
2019© Springer-Verlag GmbH Germany, part of Springer Nature 2019
info:eu-repo/semantics/openAccess
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: 2019© Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: info:eu-repo/semantics/openAccess
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
XX2
DOI 10.1007/s00153-019-00681-y
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Recercat
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-0665
EndPage 147
ExternalDocumentID oai_recercat_cat_2072_370187
10_1007_s00153_019_00681_y
GrantInformation_xml – fundername: Austrian Science Fund
  grantid: P31063
  funderid: http://dx.doi.org/10.13039/501100002428
– fundername: European Research Council
  grantid: ERC-2014-CoG 648276 AUTAR
  funderid: http://dx.doi.org/10.13039/501100000781
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMHG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCSS
ARMRJ
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF-
PQQKQ
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
XX2
ID FETCH-LOGICAL-c356t-b7961d8b628e8f854557281ac093b0bba93c2f1661c9e77b27b809e81e246c5b3
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522232600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0933-5846
IngestDate Fri Nov 07 13:53:49 EST 2025
Fri Jul 25 19:40:42 EDT 2025
Sat Nov 29 04:47:52 EST 2025
Fri Feb 21 02:35:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 03C20
03C98
03B70
Bounded arithmetic
68Q17
Circuit lower bounds
Restricted ultrapowers
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-b7961d8b628e8f854557281ac093b0bba93c2f1661c9e77b27b809e81e246c5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2240-0147
OpenAccessLink https://recercat.cat/handle/2072/370187
PQID 2343279731
PQPubID 29784
PageCount 21
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_370187
proquest_journals_2343279731
crossref_primary_10_1007_s00153_019_00681_y
springer_journals_10_1007_s00153_019_00681_y
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Archive for mathematical logic
PublicationTitleAbbrev Arch. Math. Logic
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Kochen, Kripke (CR17) 1982; 28
Pudlák (CR30) 2013
Avigad (CR1) 2002; 118
Razborov, Rudich (CR35) 1997; 55
Kochen (CR16) 1961; 74
Keisler (CR14) 1963; 107
CR15
Krajíček, Pudlák, Takeuti (CR23) 1991; 52
CR37
Hirschfeld (CR11) 1975; 20
Jeřábek (CR12) 2007; 72
Keisler (CR13) 1960; 7
Krajíček (CR18) 1995
Shelah (CR38) 1971; 10
Garlík (CR9) 2016; 55
CR10
CR32
CR31
Razborov (CR34) 1995; 59
McLaughlin (CR27) 1990; 49
Frayne, Morel, Scott (CR8) 1962; 51
Cook, Krajíček (CR5) 2007; 72
Maly, Müller (CR26) 2018; 64
CR4
CR3
CR6
Krajíček (CR20) 1998
CR29
CR28
Krajíček (CR19) 1997; 62
Davis (CR7) 1973; 80
CR25
CR24
CR22
CR21
Razborov (CR33) 1995; II
Santhanam, Williams (CR36) 2014; 23
Zambella (CR40) 1996; 61
Buss (CR2) 1997
Skolem (CR39) 1934; 23
M Davis (681_CR7) 1973; 80
SB Kochen (681_CR16) 1961; 74
J Krajíček (681_CR19) 1997; 62
J Hirschfeld (681_CR11) 1975; 20
HJ Keisler (681_CR13) 1960; 7
P Pudlák (681_CR30) 2013
J Avigad (681_CR1) 2002; 118
681_CR31
681_CR10
681_CR32
J Maly (681_CR26) 2018; 64
681_CR28
AA Razborov (681_CR33) 1995; II
SB Kochen (681_CR17) 1982; 28
TG McLaughlin (681_CR27) 1990; 49
681_CR29
R Santhanam (681_CR36) 2014; 23
681_CR24
J Krajíček (681_CR23) 1991; 52
681_CR25
SA Cook (681_CR5) 2007; 72
HJ Keisler (681_CR14) 1963; 107
TE Frayne (681_CR8) 1962; 51
T Skolem (681_CR39) 1934; 23
S Shelah (681_CR38) 1971; 10
E Jeřábek (681_CR12) 2007; 72
J Krajíček (681_CR18) 1995
681_CR6
681_CR3
681_CR21
681_CR4
681_CR22
D Zambella (681_CR40) 1996; 61
Samuel R. Buss (681_CR2) 1997
AA Razborov (681_CR34) 1995; 59
AA Razborov (681_CR35) 1997; 55
681_CR15
Jan Krajíček (681_CR20) 1998
681_CR37
M Garlík (681_CR9) 2016; 55
References_xml – ident: CR22
– ident: CR4
– volume: 20
  start-page: 111
  issue: 2
  year: 1975
  end-page: 126
  ident: CR11
  article-title: Models of arithmetic and recursive functions
  publication-title: Israel J. Math.
  doi: 10.1007/BF02757881
– ident: CR37
– volume: 55
  start-page: 625
  year: 2016
  end-page: 648
  ident: CR9
  article-title: Construction of models of bounded arithmetic by restricted reduced powers
  publication-title: Arch. Math. Logic
  doi: 10.1007/s00153-016-0484-9
– start-page: 67
  year: 1997
  end-page: 121
  ident: CR2
  article-title: Bounded Arithmetic and Propositional Proof Complexity
  publication-title: Logic of Computation
  doi: 10.1007/978-3-642-59048-1_3
– ident: CR10
– volume: 10
  start-page: 224
  year: 1971
  end-page: 233
  ident: CR38
  article-title: Every two elementarily equivalent models have isomorphic ultrapowers
  publication-title: Israel J. Math.
  doi: 10.1007/BF02771574
– ident: CR6
– ident: CR29
– volume: 49
  start-page: 143
  issue: 2
  year: 1990
  end-page: 191
  ident: CR27
  article-title: Sub-arithmetical ultrapowers: a survey
  publication-title: Ann. Pure Appl. Logic
  doi: 10.1016/0168-0072(90)90064-9
– volume: II
  start-page: 344
  year: 1995
  end-page: 386
  ident: CR33
  article-title: Bounded arithmetic and lower bounds in Boolean complexity
  publication-title: Feasible Math.
  doi: 10.1007/978-1-4612-2566-9_12
– volume: 107
  start-page: 382
  year: 1963
  end-page: 408
  ident: CR14
  article-title: Limit ultrapowers
  publication-title: Trans. AMS
  doi: 10.1090/S0002-9947-1963-0148547-1
– volume: 28
  start-page: 211
  year: 1982
  end-page: 231
  ident: CR17
  article-title: Non-standard models of Peano arithmetic
  publication-title: L’Enseignement Mathématique
– start-page: 104
  year: 1998
  end-page: 114
  ident: CR20
  article-title: Extensions of Models of PV
  publication-title: Logic Colloquium ’95
  doi: 10.1007/978-3-662-22108-2_8
– ident: CR25
– volume: 72
  start-page: 959
  issue: 3
  year: 2007
  end-page: 993
  ident: CR12
  article-title: Approximate counting in bounded arithmetic
  publication-title: J. Symb. Logic
  doi: 10.2178/jsl/1191333850
– volume: 52
  start-page: 143
  year: 1991
  end-page: 154
  ident: CR23
  article-title: Bounded arithmetic and polynomial hierarchy
  publication-title: Ann. Pure Appl. Logic
  doi: 10.1016/0168-0072(91)90043-L
– ident: CR21
– volume: 72
  start-page: 1353
  issue: 4
  year: 2007
  end-page: 1371
  ident: CR5
  article-title: Consequences of the provability of NP P/poly
  publication-title: J. Symb. Logic
  doi: 10.2178/jsl/1203350791
– volume: 23
  start-page: 177
  issue: 2
  year: 2014
  end-page: 205
  ident: CR36
  article-title: On uniformity and circuit lower bounds
  publication-title: Comput. Complex.
  doi: 10.1007/s00037-014-0087-y
– volume: 7
  start-page: 878
  year: 1960
  end-page: 879
  ident: CR13
  article-title: On the class of limit ultrapowers of a relational system
  publication-title: Not. Am. Math. Soc.
– ident: CR3
– ident: CR15
– volume: 80
  start-page: 233
  issue: 3
  year: 1973
  end-page: 269
  ident: CR7
  article-title: Hilbert’s tenth problem is unsolvable
  publication-title: Am. Math. Mon.
  doi: 10.1080/00029890.1973.11993265
– ident: CR31
– volume: 23
  start-page: 150
  issue: 1
  year: 1934
  end-page: 161
  ident: CR39
  article-title: Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen
  publication-title: Fundam. Math.
  doi: 10.4064/fm-23-1-150-161
– volume: 118
  start-page: 219
  issue: 3
  year: 2002
  end-page: 234
  ident: CR1
  article-title: Saturated models of universal theories
  publication-title: Ann. Pure Appl. Logic
  doi: 10.1016/S0168-0072(02)00030-1
– volume: 59
  start-page: 201
  year: 1995
  end-page: 224
  ident: CR34
  article-title: Unprovability of lower bounds on the circuit size in certain fragments of bounded arithmetic
  publication-title: Izv. Rus. Acad. Sci.
– volume: 51
  start-page: 195
  issue: 3
  year: 1962
  end-page: 228
  ident: CR8
  article-title: Reduced direct products
  publication-title: Fundam. Math.
  doi: 10.4064/fm-51-3-195-228
– volume: 64
  start-page: 418
  issue: 6
  year: 2018
  end-page: 428
  ident: CR26
  article-title: A remark on pseudo proof systems and hard instances of the satisfiability problem
  publication-title: Math. Logic Q
  doi: 10.1002/malq.201700009
– volume: 61
  start-page: 942
  issue: 3
  year: 1996
  end-page: 966
  ident: CR40
  article-title: Notes on polynomially bounded arithmetic
  publication-title: J. Symb. Logic
  doi: 10.2307/2275794
– year: 1995
  ident: CR18
  publication-title: Bounded Arithmetic, Propositional Logic, and Complexity Theory Encyclopedia of Mathematics and Its Applications
– volume: 62
  start-page: 457
  issue: 2
  year: 1997
  end-page: 486
  ident: CR19
  article-title: Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic
  publication-title: J. Symb. Logic
  doi: 10.2307/2275541
– ident: CR32
– year: 2013
  ident: CR30
  publication-title: Logical Foundations of Mathematics and Computational Complexity, a Gentle Introduction
– volume: 55
  start-page: 24
  issue: 1
  year: 1997
  end-page: 35
  ident: CR35
  article-title: Natural proofs
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1494
– volume: 74
  start-page: 221
  issue: 2
  year: 1961
  end-page: 261
  ident: CR16
  article-title: Ultraproducts in the theory of models
  publication-title: Ann. Math.
  doi: 10.2307/1970235
– ident: CR28
– ident: CR24
– start-page: 104
  volume-title: Logic Colloquium ’95
  year: 1998
  ident: 681_CR20
  doi: 10.1007/978-3-662-22108-2_8
– volume: 80
  start-page: 233
  issue: 3
  year: 1973
  ident: 681_CR7
  publication-title: Am. Math. Mon.
  doi: 10.1080/00029890.1973.11993265
– ident: 681_CR28
– ident: 681_CR22
– volume: 23
  start-page: 150
  issue: 1
  year: 1934
  ident: 681_CR39
  publication-title: Fundam. Math.
  doi: 10.4064/fm-23-1-150-161
– volume: 20
  start-page: 111
  issue: 2
  year: 1975
  ident: 681_CR11
  publication-title: Israel J. Math.
  doi: 10.1007/BF02757881
– ident: 681_CR15
  doi: 10.1090/conm/530/10444
– volume: 7
  start-page: 878
  year: 1960
  ident: 681_CR13
  publication-title: Not. Am. Math. Soc.
– volume: II
  start-page: 344
  year: 1995
  ident: 681_CR33
  publication-title: Feasible Math.
  doi: 10.1007/978-1-4612-2566-9_12
– volume: 51
  start-page: 195
  issue: 3
  year: 1962
  ident: 681_CR8
  publication-title: Fundam. Math.
  doi: 10.4064/fm-51-3-195-228
– volume: 64
  start-page: 418
  issue: 6
  year: 2018
  ident: 681_CR26
  publication-title: Math. Logic Q
  doi: 10.1002/malq.201700009
– volume: 28
  start-page: 211
  year: 1982
  ident: 681_CR17
  publication-title: L’Enseignement Mathématique
– volume-title: Logical Foundations of Mathematics and Computational Complexity, a Gentle Introduction
  year: 2013
  ident: 681_CR30
  doi: 10.1007/978-3-319-00119-7
– ident: 681_CR32
  doi: 10.7146/brics.v1i36.21607
– volume: 72
  start-page: 1353
  issue: 4
  year: 2007
  ident: 681_CR5
  publication-title: J. Symb. Logic
  doi: 10.2178/jsl/1203350791
– ident: 681_CR29
  doi: 10.1016/S0049-237X(08)71130-3
– volume: 62
  start-page: 457
  issue: 2
  year: 1997
  ident: 681_CR19
  publication-title: J. Symb. Logic
  doi: 10.2307/2275541
– ident: 681_CR24
  doi: 10.1016/S0049-237X(09)70306-4
– volume: 10
  start-page: 224
  year: 1971
  ident: 681_CR38
  publication-title: Israel J. Math.
  doi: 10.1007/BF02771574
– volume: 49
  start-page: 143
  issue: 2
  year: 1990
  ident: 681_CR27
  publication-title: Ann. Pure Appl. Logic
  doi: 10.1016/0168-0072(90)90064-9
– volume: 23
  start-page: 177
  issue: 2
  year: 2014
  ident: 681_CR36
  publication-title: Comput. Complex.
  doi: 10.1007/s00037-014-0087-y
– volume: 59
  start-page: 201
  year: 1995
  ident: 681_CR34
  publication-title: Izv. Rus. Acad. Sci.
– ident: 681_CR25
– volume: 61
  start-page: 942
  issue: 3
  year: 1996
  ident: 681_CR40
  publication-title: J. Symb. Logic
  doi: 10.2307/2275794
– volume: 72
  start-page: 959
  issue: 3
  year: 2007
  ident: 681_CR12
  publication-title: J. Symb. Logic
  doi: 10.2178/jsl/1191333850
– ident: 681_CR21
  doi: 10.1017/CBO9781139107211
– ident: 681_CR10
  doi: 10.1007/978-3-662-22156-3
– ident: 681_CR31
– ident: 681_CR6
– volume: 107
  start-page: 382
  year: 1963
  ident: 681_CR14
  publication-title: Trans. AMS
  doi: 10.1090/S0002-9947-1963-0148547-1
– volume: 55
  start-page: 625
  year: 2016
  ident: 681_CR9
  publication-title: Arch. Math. Logic
  doi: 10.1007/s00153-016-0484-9
– volume-title: Bounded Arithmetic, Propositional Logic, and Complexity Theory Encyclopedia of Mathematics and Its Applications
  year: 1995
  ident: 681_CR18
– volume: 118
  start-page: 219
  issue: 3
  year: 2002
  ident: 681_CR1
  publication-title: Ann. Pure Appl. Logic
  doi: 10.1016/S0168-0072(02)00030-1
– start-page: 67
  volume-title: Logic of Computation
  year: 1997
  ident: 681_CR2
  doi: 10.1007/978-3-642-59048-1_3
– ident: 681_CR37
– volume: 74
  start-page: 221
  issue: 2
  year: 1961
  ident: 681_CR16
  publication-title: Ann. Math.
  doi: 10.2307/1970235
– ident: 681_CR3
– volume: 52
  start-page: 143
  year: 1991
  ident: 681_CR23
  publication-title: Ann. Pure Appl. Logic
  doi: 10.1016/0168-0072(91)90043-L
– volume: 55
  start-page: 24
  issue: 1
  year: 1997
  ident: 681_CR35
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1494
– ident: 681_CR4
  doi: 10.1145/800116.803756
SSID ssj0012881
Score 2.2423577
Snippet A polynomial time ultrapower is a structure given by the set of polynomial time computable functions modulo some ultrafilter. They model the universal theory ∀...
A polynomial time ultrapower is a structure given by the set of polynomial time computable functions modulo some ultrafilter. They model the universal theory...
SourceID csuc
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 127
SubjectTerms Algebra
Circuits
Informàtica
Informàtica teòrica
Lower bounds
Mathematical analysis
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Original Study
Polinomis
Polynomials
Production scheduling
Substructures
Time functions
Àrees temàtiques de la UPC
Title Polynomial time ultrapowers and the consistency of circuit lower bounds
URI https://link.springer.com/article/10.1007/s00153-019-00681-y
https://www.proquest.com/docview/2343279731
https://recercat.cat/handle/2072/370187
Volume 59
WOSCitedRecordID wos000522232600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0665
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012881
  issn: 0933-5846
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH3-L6IgdPamCTPpIeRXwcVMQX3kKSTWFh2V3arrD_3kxsK4oe9NBD6fTBTJqZYeabD-Coz9I0jxyjkrmExrlANkARUy105FKZ5Cb05rzciLs7-fqa3degsLLpdm9KkmGnbsFu6N6x9yejiGtgdDYPC97dSSRseHh8aWsHXAZqUkzVKbrXGirz8zO-uKOOLaf2S6j5rToanM7l6v8-dw1W6iCTnH2sinWYc6MNWL5tJ7SWm3B1Px7OEJLs5ZBfnkyHVaEngTON6FGfeFlisXu2xKh6RsY5sYPCTgcVGaIUMUjIVG7B8-XF0_k1rUkVqI2StKJGZCnrS5Ny6WQufQCVCC6Ztl5fpmeMziLLc29BZjMnhOHCyF7mvCl5nNrERNvQGY1HbgeI9Kmj0DjRLY7j3EQ69ncxx6Q2FquJXThpdKsmH7MzVDslOahHefWooB4168Ixql_5jd4VVlcKB1-3J3jwnuAqEkgj2IX9xkiq_ulKxREkK5CLqwunjVE-L__-6t2_ie_BEsesO_Ru70OnKqbuABbtWzUoi8OwGN8BlyfYUg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RpRL0UN5iW2h94ARYWjsPO8eqgoLYXa2AIm6W7XWklVa7KMki7b_HY5IgEBzaQw5RJg_NOJ4Zzcz3ARyNWZrmkWNUMpfQOBfIBihiqoWOXCqT3ITenLu-GA7l_X02qofCyqbbvSlJhp26HXZD9469PxnFuQZGl59gNfYeCxHzr2_u2toBl4GaFFN1iu61HpV5_xmv3FHHlgv7KtR8Ux0NTud84_8-dxO-1kEm-fW8KrZgxc224cugRWgtd-DPaD5d4kiyl0N-ebKYVoV-CJxpRM_GxMsSi92zJUbVSzLPiZ0UdjGpyBSliEFCpnIX_p6f3f6-oDWpArVRklbUiCxlY2lSLp3MpQ-gEsEl09bry_SM0Vlkee4tyGzmhDBcGNnLnDclj1ObmGgPOrP5zO0DkT51FBoR3eI4zk2kY38Xc0xqY7Ga2IWTRrfq4Rk7Q7UoyUE9yqtHBfWoZReOUf3Kb_SusLpSCHzdnuDBe4KrSCCNYBcOGiOp-qcrFcchWYFcXF04bYzycvnjV3_7N_GfsHZxO-ir_uXw6jusc8zAQx_3AXSqYuEO4bN9rCZl8SMszCfEaNs2
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7RgCo48OhDhEfxgVNbi9j7sPeIgEAFRJFoETfLdrxSpGgT7W6Q8u_xOMkCFT1UHPZg7exDM7ZmRjPffADHA5ameeQYlcwlNM4FsgGKmGqhI5fKJDehN-f-RvR68uEh679A8Ydu92VJco5pwClNRX0yGeQnDfANXT32AWUUMQ6Mzj7AaoyN9Jiv3903dQQuA00ppu0UXe0CNvP2O165ppatpvZV2PlXpTQ4oO7W-399GzYXwSc5ne-WHVhxxSfYuG0mt1af4bI_Hs0QquzlkHeeTEd1qSeBS43oYkC8LLHYVVthtD0j45zYYWmnw5qMUIoYJGqqvsCf7sXvsyu6IFugNkrSmhqRpWwgTcqlk7n0gVUiuGTaet2ZjjE6iyzPvWWZzZwQhgsjO5nzJuZxahMTfYVWMS7cLhDpU0qhcdJbHMe5iXTsn2KOSW0sVhnb8GOpZzWZz9RQzfTkoB7l1aOCetSsDd_RFMo7AFdaXSsciN0s8OIdwVUkkF6wDQdLg6nFYawUR_CsQI6uNvxcGuj59r8_vfd_4kfwsX_eVTe_etf7sM4xMQ_t3QfQqsupO4Q1-1gPq_Jb2KNPpe_kGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polynomial+time+ultrapowers+and+the+consistency+of+circuit+lower+bounds&rft.jtitle=Archive+for+mathematical+logic&rft.au=Byd%C5%BEovsk%C3%BD%2C+Jan&rft.au=M%C3%BCller%2C+Moritz&rft.date=2020-02-01&rft.issn=0933-5846&rft.eissn=1432-0665&rft.volume=59&rft.issue=1-2&rft.spage=127&rft.epage=147&rft_id=info:doi/10.1007%2Fs00153-019-00681-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00153_019_00681_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-5846&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-5846&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-5846&client=summon