Predictive Algorithm for Optimizing Power Flow in Hybrid Ultracapacitor/Battery Storage Systems for Light Electric Vehicles

This study deals with the optimal control of hybrid energy storage systems for electric vehicle applications. These storage systems can capitalize on the high specific energy of Lithium-Ion batteries and the high specific power of modern ultracapacitors. The new predictive algorithm uses a state-bas...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics Vol. 28; no. 8; pp. 3882 - 3895
Main Authors: Laldin, Omar, Moshirvaziri, M., Trescases, O.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.08.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0885-8993, 1941-0107
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study deals with the optimal control of hybrid energy storage systems for electric vehicle applications. These storage systems can capitalize on the high specific energy of Lithium-Ion batteries and the high specific power of modern ultracapacitors. The new predictive algorithm uses a state-based approach inspired by power systems optimization, organized as a probability-weighted Markov process to predict future load demands. Decisions on power sharing are made in real time, based on the predictions and probabilities of state trajectories along with associated system losses. Detailed simulations comparing various power sharing algorithms are presented, along with converter-level simulations presenting the response characteristics of power sharing scenarios. The full hybrid storage system along with the mechanical drivetrain is implemented and validated experimentally on a 500 W, 50 V system with a programmable drive cycle having a strong regenerative component. It is experimentally shown that the hybrid energy storage system runs more efficiently and captures the excess regenerative energy that is otherwise dissipated in the mechanical brakes due to the battery's limited charge current capability.
AbstractList This study deals with the optimal control of hybrid energy storage systems for electric vehicle applications. These storage systems can capitalize on the high specific energy of Lithium-Ion batteries and the high specific power of modern ultracapacitors. The new predictive algorithm uses a state-based approach inspired by power systems optimization, organized as a probability-weighted Markov process to predict future load demands. Decisions on power sharing are made in real time, based on the predictions and probabilities of state trajectories along with associated system losses. Detailed simulations comparing various power sharing algorithms are presented, along with converter-level simulations presenting the response characteristics of power sharing scenarios. The full hybrid storage system along with the mechanical drivetrain is implemented and validated experimentally on a 500 W, 50 V system with a programmable drive cycle having a strong regenerative component. It is experimentally shown that the hybrid energy storage system runs more efficiently and captures the excess regenerative energy that is otherwise dissipated in the mechanical brakes due to the battery's limited charge current capability. [PUBLICATION ABSTRACT]
This study deals with the optimal control of hybrid energy storage systems for electric vehicle applications. These storage systems can capitalize on the high specific energy of Lithium-Ion batteries and the high specific power of modern ultracapacitors. The new predictive algorithm uses a state-based approach inspired by power systems optimization, organized as a probability-weighted Markov process to predict future load demands. Decisions on power sharing are made in real time, based on the predictions and probabilities of state trajectories along with associated system losses. Detailed simulations comparing various power sharing algorithms are presented, along with converter-level simulations presenting the response characteristics of power sharing scenarios. The full hybrid storage system along with the mechanical drivetrain is implemented and validated experimentally on a 500 W, 50 V system with a programmable drive cycle having a strong regenerative component. It is experimentally shown that the hybrid energy storage system runs more efficiently and captures the excess regenerative energy that is otherwise dissipated in the mechanical brakes due to the battery's limited charge current capability.
Author Trescases, O.
Laldin, Omar
Moshirvaziri, M.
Author_xml – sequence: 1
  givenname: Omar
  surname: Laldin
  fullname: Laldin, Omar
  email: olaldin@purdue.edu
  organization: Purdue Univ., West Lafayette, IN, USA
– sequence: 2
  givenname: M.
  surname: Moshirvaziri
  fullname: Moshirvaziri, M.
  email: mazhar@ele.utoronto.ca
  organization: Motive, York, ON, Canada
– sequence: 3
  givenname: O.
  surname: Trescases
  fullname: Trescases, O.
  email: ot@ele.utoronto.ca
  organization: Dept. of Electr. & Comput. Eng., Univ. of Toronto, Toronto, ON, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27600278$$DView record in Pascal Francis
BookMark eNp9kUtrGzEURkVJoc7jB5RuBKXQzThXGs1DyzQ4ScEQQx5bodHcsRU0I1eSE9z--Y5jN4ssqs1FcM7H5X7H5GjwAxLymcGUMZDn94vZfMqB8SnnvBSV-EAmTAqWAYPqiEygrousljL_RI5jfAJgogA2IX8WAVtrkn1GeuGWPti06mnnA71dJ9vb33ZY0oV_wUCvnH-hdqA32ybYlj64FLTRa21s8uH8h04Jw5bejR-9RHq3jQn7-Bo1t8tVojOHJgVr6COurHEYT8nHTruIZ4d5Qh6uZveXN9n89vrn5cU8M3lRpqxhrOMcocaWQ2PaRmANYLgENPX4kOUsz7HVHEUnTWkazQAbiShLIwTPT8j3fe46-F8bjEn1Nhp0Tg_oN1GNflFWRV3DiH59hz75TRjG7RTjFZNcFnwX-O1A6Wi064IejI1qHWyvw1bxqgTgVT1y1Z4zwccYsFPjrXSyfhhPZ51ioHblqV15aleeOpQ3muyd-S_8f86XvWMR8Y0vcwG5kPlfEz2oPw
CODEN ITPEE8
CitedBy_id crossref_primary_10_1007_s11431_016_0640_2
crossref_primary_10_1049_iet_pel_2015_0090
crossref_primary_10_3390_info13070350
crossref_primary_10_1109_TSTE_2016_2619759
crossref_primary_10_1109_TIE_2019_2898606
crossref_primary_10_3390_su151411200
crossref_primary_10_1016_j_jclepro_2018_08_134
crossref_primary_10_1016_j_apenergy_2017_11_072
crossref_primary_10_1016_j_conengprac_2016_05_020
crossref_primary_10_1109_TVT_2020_2967467
crossref_primary_10_1116_1_4983210
crossref_primary_10_1016_j_seta_2020_100924
crossref_primary_10_1109_TII_2014_2378596
crossref_primary_10_1007_s11356_023_30573_x
crossref_primary_10_1109_TIE_2016_2618778
crossref_primary_10_1109_TIE_2022_3186369
crossref_primary_10_1109_TPEL_2013_2270000
crossref_primary_10_1109_TPEL_2018_2859317
crossref_primary_10_1109_TIA_2016_2572102
crossref_primary_10_1109_TII_2018_2827466
crossref_primary_10_1002_eng2_70122
crossref_primary_10_1002_er_7107
crossref_primary_10_1016_j_est_2024_113096
crossref_primary_10_1109_TPEL_2013_2295601
crossref_primary_10_1109_TVT_2018_2871038
crossref_primary_10_3390_smartcities5020024
crossref_primary_10_1016_j_est_2022_105045
crossref_primary_10_3390_en11102854
crossref_primary_10_3390_en12091759
crossref_primary_10_3390_en10111708
crossref_primary_10_1109_TPEL_2015_2408457
crossref_primary_10_3390_en11020423
crossref_primary_10_1109_TVT_2019_2941395
crossref_primary_10_1002_asjc_1259
crossref_primary_10_1049_gtd2_12882
crossref_primary_10_1016_j_egyr_2023_01_120
crossref_primary_10_1049_iet_rpg_2015_0199
crossref_primary_10_1016_j_est_2022_104241
crossref_primary_10_1109_TTE_2017_2648178
crossref_primary_10_3390_vehicles7010006
crossref_primary_10_1109_TPEL_2018_2878682
crossref_primary_10_1016_j_ijhydene_2015_12_046
crossref_primary_10_1016_j_est_2016_01_007
crossref_primary_10_1109_TIE_2023_3270522
crossref_primary_10_1109_TPEL_2015_2424075
crossref_primary_10_1109_TPEL_2016_2593102
crossref_primary_10_1016_j_apenergy_2014_08_033
crossref_primary_10_1109_TEC_2015_2418818
crossref_primary_10_1109_TIE_2017_2752141
crossref_primary_10_1016_j_renene_2024_120708
crossref_primary_10_1016_j_est_2022_104456
crossref_primary_10_1002_2050_7038_12774
crossref_primary_10_1007_s40864_024_00223_7
crossref_primary_10_1016_j_rineng_2024_103598
crossref_primary_10_1109_TPEL_2014_2372774
crossref_primary_10_1002_2050_7038_12819
crossref_primary_10_3390_en18020336
crossref_primary_10_1016_j_apenergy_2016_05_030
crossref_primary_10_1016_j_est_2024_113963
crossref_primary_10_1016_j_rser_2025_115610
crossref_primary_10_1002_etep_2315
crossref_primary_10_3390_en18010088
crossref_primary_10_1002_er_7150
crossref_primary_10_1016_j_est_2020_101509
crossref_primary_10_1016_j_egyr_2023_09_087
crossref_primary_10_1049_iet_pel_2015_1029
crossref_primary_10_1109_TPEL_2020_3030822
crossref_primary_10_1007_s42452_020_2313_3
crossref_primary_10_1109_TPEL_2013_2279428
crossref_primary_10_1109_TIE_2015_2463765
crossref_primary_10_1088_1742_6596_52_1_012038
crossref_primary_10_1016_j_enconman_2014_12_035
crossref_primary_10_1109_JESTPE_2015_2421305
crossref_primary_10_3390_app11167395
crossref_primary_10_1007_s42835_024_01985_7
crossref_primary_10_1109_TPEL_2018_2838678
crossref_primary_10_1016_j_compeleceng_2021_107308
crossref_primary_10_1109_JESTPE_2015_2506462
crossref_primary_10_1109_TIE_2019_2901640
crossref_primary_10_3390_su14020776
crossref_primary_10_1016_j_energy_2022_125620
crossref_primary_10_1177_09544070211014298
crossref_primary_10_3390_en16020837
crossref_primary_10_1016_j_energy_2016_06_084
crossref_primary_10_1049_iet_stg_2020_0021
crossref_primary_10_1007_s42835_024_02067_4
crossref_primary_10_1109_TVT_2017_2725307
crossref_primary_10_1109_TTE_2016_2543965
crossref_primary_10_1109_TIE_2014_2336605
crossref_primary_10_1016_j_est_2023_107628
crossref_primary_10_1109_TMECH_2018_2832019
crossref_primary_10_1109_TSTE_2016_2608968
crossref_primary_10_1002_2050_7038_12510
crossref_primary_10_1016_j_apenergy_2018_02_128
crossref_primary_10_1016_j_est_2025_115496
crossref_primary_10_3390_electronics11040562
crossref_primary_10_1016_j_rser_2020_110581
crossref_primary_10_1016_j_rser_2016_06_029
crossref_primary_10_1186_s13639_016_0032_z
crossref_primary_10_1016_j_jpowsour_2014_10_170
crossref_primary_10_1016_j_egypro_2017_03_831
crossref_primary_10_1016_j_rser_2021_111833
crossref_primary_10_1109_TPEL_2015_2411996
crossref_primary_10_1016_j_ifacol_2024_11_115
crossref_primary_10_1109_TTE_2016_2552721
crossref_primary_10_1109_TPEL_2013_2295259
crossref_primary_10_1016_j_jpowsour_2015_02_012
crossref_primary_10_1109_TPEL_2015_2448112
crossref_primary_10_1007_s00202_024_02622_2
crossref_primary_10_1109_TPEL_2016_2552198
crossref_primary_10_1109_TVT_2014_2305593
crossref_primary_10_1016_j_apenergy_2019_03_001
crossref_primary_10_1177_1687814017732897
crossref_primary_10_1016_j_jpowsour_2014_01_031
crossref_primary_10_1016_j_est_2015_11_001
crossref_primary_10_1109_TVT_2025_3556651
Cites_doi 10.1109/VPPC.2010.5729110
10.1109/VPPC.2009.5289686
10.1109/TPEL.2004.839784
10.1109/ACC.2010.5530728
10.1109/ECCE.2011.6064161
10.1109/IEMDC.2003.1210630
10.1109/ICIINFS.2009.5429825
10.1109/VPPC.2009.5289779
10.1109/ECCE.2009.5316428
10.1109/ICIEA.2009.5138830
10.1007/978-94-017-0843-2
10.1109/APEC.2009.4802757
10.1109/ECCE.2011.6064162
10.1109/PESC.2006.1711776
10.1109/ICMA.2007.4303783
10.1109/9780470544167
10.1109/TPEL.2008.2007845
10.1109/ECCE.2011.6064159
10.1007/b100747
10.1109/VPPC.2007.4544139
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013
Copyright_xml – notice: 2014 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
F28
DOI 10.1109/TPEL.2012.2226474
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Civil Engineering Abstracts
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0107
EndPage 3895
ExternalDocumentID 2871467101
27600278
10_1109_TPEL_2012_2226474
6340349
Genre orig-research
Feature
GroupedDBID -~X
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
AAYXX
CITATION
IQODW
RIG
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
F28
ID FETCH-LOGICAL-c356t-b11f22e08ed20bcdb4e800c290ec8888e13133eda2e4f9c6cba10eb9ee96c4423
IEDL.DBID RIE
ISICitedReferencesCount 168
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000314705500025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-8993
IngestDate Sun Sep 28 02:40:14 EDT 2025
Mon Jun 30 06:44:57 EDT 2025
Mon Jul 21 09:16:17 EDT 2025
Sat Nov 29 04:59:03 EST 2025
Tue Nov 18 22:18:34 EST 2025
Tue Aug 26 16:44:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Markov process
Lithium ion batteries
Electric vehicle
Energy storage system
electric vehicles (EVs)
Battery management
Optimization
Load flow
Hybrid system
ultracapacitors (u-caps)
dc-dc converters
Power flow
Supercapacitor
energy management
Trajectory
hybrid energy storage
Battery storage plants
Direct current convertor
digital control
Storage system
Electrolytic capacitor
Real time
Algorithm
Forecasting
High power
Electrical network
High energy
Optimal control
System simulation
Energy demand
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-b11f22e08ed20bcdb4e800c290ec8888e13133eda2e4f9c6cba10eb9ee96c4423
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1271929522
PQPubID 37080
PageCount 14
ParticipantIDs proquest_journals_1271929522
crossref_primary_10_1109_TPEL_2012_2226474
crossref_citationtrail_10_1109_TPEL_2012_2226474
pascalfrancis_primary_27600278
proquest_miscellaneous_1315675880
ieee_primary_6340349
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on power electronics
PublicationTitleAbbrev TPEL
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
(ref18) 0
ref12
ref15
ref14
ref11
(ref10) 0
ref16
ref19
(ref1) 0
(ref22) 0
ref24
ref23
ref26
ref25
ref20
ref21
liu (ref6) 2009
ref27
(ref17) 0
ref8
ref7
(ref2) 0
ref9
ref4
ref3
ref5
References_xml – ident: ref12
  doi: 10.1109/VPPC.2010.5729110
– ident: ref9
  doi: 10.1109/VPPC.2009.5289686
– ident: ref11
  doi: 10.1109/TPEL.2004.839784
– ident: ref3
  doi: 10.1109/ACC.2010.5530728
– ident: ref16
  doi: 10.1109/ECCE.2011.6064161
– year: 0
  ident: ref22
– ident: ref21
  doi: 10.1109/IEMDC.2003.1210630
– ident: ref7
  doi: 10.1109/ICIINFS.2009.5429825
– ident: ref5
  doi: 10.1109/VPPC.2009.5289779
– ident: ref14
  doi: 10.1109/ECCE.2009.5316428
– ident: ref20
  doi: 10.1109/ICIEA.2009.5138830
– ident: ref24
  doi: 10.1007/978-94-017-0843-2
– ident: ref13
  doi: 10.1109/APEC.2009.4802757
– ident: ref15
  doi: 10.1109/ECCE.2011.6064162
– year: 0
  ident: ref2
– year: 0
  ident: ref10
– year: 0
  ident: ref1
– ident: ref19
  doi: 10.1109/PESC.2006.1711776
– ident: ref4
  doi: 10.1109/ICMA.2007.4303783
– start-page: 1395
  year: 2009
  ident: ref6
  article-title: Development of a novel ultracapacitor electric vehicle and methods to cope with voltage variation
  publication-title: Proc IEEE Vehicle Propuls Conf
– ident: ref27
  doi: 10.1109/9780470544167
– ident: ref26
  doi: 10.1109/TPEL.2008.2007845
– ident: ref8
  doi: 10.1109/ECCE.2011.6064159
– year: 0
  ident: ref18
– ident: ref25
  doi: 10.1007/b100747
– ident: ref23
  doi: 10.1109/VPPC.2007.4544139
– year: 0
  ident: ref17
SSID ssj0014501
Score 2.497907
Snippet This study deals with the optimal control of hybrid energy storage systems for electric vehicle applications. These storage systems can capitalize on the high...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3882
SubjectTerms Algorithms
Applied sciences
Batteries
Battery
Battery management
Capacitance
Capacitors. Resistors. Filters
Computer simulation
dc-dc converters
Dielectric, amorphous and glass solid devices
digital control
Electric power generation
Electric power plants
Electric vehicles
electric vehicles (EVs)
Electrical engineering. Electrical power engineering
Electrical power engineering
Electronics
energy management
Energy storage
Exact sciences and technology
hybrid energy storage
Hybrid systems
Markov analysis
Miscellaneous
Operation. Load control. Reliability
Optimization algorithms
Power networks and lines
Power supply
Prediction algorithms
Real-time systems
Regenerative
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Simulation
Storage systems
Supercapacitors
System-on-a-chip
ultracapacitors (u-caps)
Various equipment and components
Title Predictive Algorithm for Optimizing Power Flow in Hybrid Ultracapacitor/Battery Storage Systems for Light Electric Vehicles
URI https://ieeexplore.ieee.org/document/6340349
https://www.proquest.com/docview/1271929522
https://www.proquest.com/docview/1315675880
Volume 28
WOSCitedRecordID wos000314705500025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0107
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014501
  issn: 0885-8993
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db5RAEJ-0jQ_64Fc1orVZE5-M9JZlj2UfG3OXPjT1ElvTNwLLYEmuYDhOU_3nnVkosdGY-AZhWAiz88V8_ADeRqQOybKbsMJKhRopTsk1YjgnhVzEEeZSDmAT5uwsvby0qx14P_XCIKIvPsMjPvS5_LJ1W_5VNktizeNUdmHXGDP0ak0ZAz33UMckNPOQYoh4zGBG0s7OV4tTLuJSR4rbRo2-Y4M8qAqXROYb-irVAGfxh2b25mb56P9e9DE8HN1KcTzsgyewg81TePDbsMF9-LnqOCnD6k0cr7-0Xd1fXQvyWcVHUhvX9Q-iEisGTRPLdftd1I04ueF-LnGx7rvckVV1JP7dbBjJeSM-0QlpIzEOPfdLnXKsLxYeW6d24jNe-bK7Z3CxXJx_OAlH6IXQxfOkD4soqpRCmWKpZOHKQiN5lk5ZiY5i5hSjmIJbLHOFurIucUUeSSwsok2cJhftOew1bYMvQCTGlTwlzFTW6iommjQtpJUlxo7WkgHIW2ZkbpxLzvAY68zHJ9JmzL-M-ZeN_Avg3XTL12Eox7-I95lBE-HImwAO73B8uq58qtKkARzcboFslOtNFilDLrElpzWAN9NlkkhOs-QNtluiiSkmpjAslS___uhXcF95UA0uIzyAvb7b4mu457719aY79Nv6F04B9wQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db5RAEJ_UaqJ9qB-tKbbWNfHJSG9Zlo99bMxdzniel3g1fSOwDJbkCobjNLX_fGcXSmw0Jr5BGBbCb3d2hvn4AbzxSB3Szh65BRbClUh-SioR3YAUcuZ7mHLekU1E83l8fq4WW_BuqIVBRJt8hifm0Mby81pvzK-yUehL007lHtwPpBReV601xAxkYMmOadkELnkRfh_D9LgaLRfjmUnjEifCFI5G8s4uZGlVTFJkuqbvUnSEFn_oZrvhTB7_36s-gd3esGSn3Ux4CltYPYOd39oN7sH1ojFhGaPg2OnqW92U7cUlI6uVfSbFcVn-Iim2MLRpbLKqf7KyYtMrU9HFzlZtk2raVzUpgGbUNeW8Yl_ohPQR69ue26FmxttnY8uuU2r2FS9s4t0-nE3Gy_dTtydfcLUfhK2beV4hBPIYc8EznWcSybbUQnHU5DXH6Pnk3mKeCpSF0qHOUo9jphBVqAkd_zlsV3WFB8DCSOemT1hUKCULn2TiOOOK5-hrGos7wG_BSHTfmdwQZKwS66FwlRj8EoNf0uPnwNvhlu9dW45_Ce8ZgAbBHhsHju8gPlwXNlgZxQ4c3U6BpF_Z68QTERnFisxWB14Pl2lNmkBLWmG9IRmfvGJyxGL-4u-PfgUPp8tPs2T2Yf7xEB4JS7FhkgqPYLttNvgSHugfbbluju0UvwFFcfpL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Algorithm+for+Optimizing+Power+Flow+in+Hybrid+Ultracapacitor%2FBattery+Storage+Systems+for+Light+Electric+Vehicles&rft.jtitle=IEEE+transactions+on+power+electronics&rft.au=Laldin%2C+Omar&rft.au=Moshirvaziri%2C+M.&rft.au=Trescases%2C+O.&rft.date=2013-08-01&rft.pub=IEEE&rft.issn=0885-8993&rft.volume=28&rft.issue=8&rft.spage=3882&rft.epage=3895&rft_id=info:doi/10.1109%2FTPEL.2012.2226474&rft.externalDocID=6340349
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8993&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8993&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8993&client=summon