From branchings to flows: a study of an Edmonds' like property to arc-disjoint branching flows

An s-branching flow f in a network N = (D, u), where u is the capacity function, is a flow thatreaches every vertex in V(D) from s while loosing exactly one unit of flow in each vertex other thans. Bang-Jensen and Bessy [TCS, 2014] showed that, when every arc has capacity n − 1, a network Nadmits k...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete mathematics and theoretical computer science Ročník 25:1; číslo Graph Theory; s. 1 - 15
Hlavní autori: Carvalho, Cláudio, Costa, Jonas, Lopes, Raul, Maia, Ana Karolinna, Nisse, Nicolas, Sales, Cláudia
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Nancy DMTCS 02.05.2023
Discrete Mathematics & Theoretical Computer Science
Predmet:
ISSN:1365-8050, 1462-7264, 1365-8050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract An s-branching flow f in a network N = (D, u), where u is the capacity function, is a flow thatreaches every vertex in V(D) from s while loosing exactly one unit of flow in each vertex other thans. Bang-Jensen and Bessy [TCS, 2014] showed that, when every arc has capacity n − 1, a network Nadmits k arc-disjoint s-branching flows if and only if its associated digraph D contains k arc-disjoints-branchings. Thus a classical result by Edmonds stating that a digraph contains k arc-disjoints-branchings if and only if the indegree of every set X ⊆ V (D) \ {s} is at least k also characterizesthe existence of k arc-disjoint s-branching flows in those networks, suggesting that the larger thecapacities are, the closer an s-branching flow is from simply being an s-branching. This observationis further implied by results by Bang-Jensen et al. [DAM, 2016] showing that there is a polynomialalgorithm to find the flows (if they exist) when every arc has capacity n − c, for every fixed c ≥ 1,and that such an algorithm is unlikely to exist for most other choices of the capacities. In this paper,we investigate how a property that is a natural extension of the characterization by Edmonds’ relatesto the existence of k arc-disjoint s-branching flows in networks. Although this property is alwaysnecessary for the existence of the flows, we show that it is not always sufficient and that it is hardto decide if the desired flows exist even if we know beforehand that the network satisfies it. On thepositive side, we show that it guarantees the existence of the desired flows in some particular casesdepending on the choice of the capacity function or on the structure of the underlying graph of D,for example. We remark that, in those positive cases, polynomial time algorithms to find the flowscan be extracted from the constructive proofs.
AbstractList An s-branching flow f in a network N = (D, u), where u is the capacity function, is a flow thatreaches every vertex in V(D) from s while loosing exactly one unit of flow in each vertex other thans. Bang-Jensen and Bessy [TCS, 2014] showed that, when every arc has capacity n − 1, a network Nadmits k arc-disjoint s-branching flows if and only if its associated digraph D contains k arc-disjoints-branchings. Thus a classical result by Edmonds stating that a digraph contains k arc-disjoints-branchings if and only if the indegree of every set X ⊆ V (D) \ {s} is at least k also characterizesthe existence of k arc-disjoint s-branching flows in those networks, suggesting that the larger thecapacities are, the closer an s-branching flow is from simply being an s-branching. This observationis further implied by results by Bang-Jensen et al. [DAM, 2016] showing that there is a polynomialalgorithm to find the flows (if they exist) when every arc has capacity n − c, for every fixed c ≥ 1,and that such an algorithm is unlikely to exist for most other choices of the capacities. In this paper,we investigate how a property that is a natural extension of the characterization by Edmonds’ relatesto the existence of k arc-disjoint s-branching flows in networks. Although this property is alwaysnecessary for the existence of the flows, we show that it is not always sufficient and that it is hardto decide if the desired flows exist even if we know beforehand that the network satisfies it. On thepositive side, we show that it guarantees the existence of the desired flows in some particular casesdepending on the choice of the capacity function or on the structure of the underlying graph of D,for example. We remark that, in those positive cases, polynomial time algorithms to find the flowscan be extracted from the constructive proofs.
An s-branching flow f in a network N = (D, u), where u is the capacity function, is a flow that reaches every vertex in V(D) from s while loosing exactly one unit of flow in each vertex other than s. Bang-Jensen and Bessy [TCS, 2014] showed that, when every arc has capacity n − 1, a network N admits k arc-disjoint s-branching flows if and only if its associated digraph D contains k arc-disjoints-branchings. Thus a classical result by Edmonds stating that a digraph contains k arc-disjoints-branchings if and only if the indegree of every set X ⊆ V (D) \ {s} is at least k also characterizes the existence of k arc-disjoint s-branching flows in those networks, suggesting that the larger the capacities are, the closer an s-branching flow is from simply being an s-branching. This observationis further implied by results by Bang-Jensen et al. [DAM, 2016] showing that there is a polynomial algorithm to find the flows (if they exist) when every arc has capacity n − c, for every fixed c ≥ 1,and that such an algorithm is unlikely to exist for most other choices of the capacities. In this paper, we investigate how a property that is a natural extension of the characterization by Edmonds’ relates to the existence of k arc-disjoint s-branching flows in networks. Although this property is always necessary for the existence of the flows, we show that it is not always sufficient and that it is hard to decide if the desired flows exist even if we know beforehand that the network satisfies it. On the positive side, we show that it guarantees the existence of the desired flows in some particular cases depending on the choice of the capacity function or on the structure of the underlying graph of D, for example. We remark that, in those positive cases, polynomial time algorithms to find the flows can be extracted from the constructive proofs.
Author Sales, Cláudia
Lopes, Raul
Carvalho, Cláudio
Costa, Jonas
Maia, Ana Karolinna
Nisse, Nicolas
Author_xml – sequence: 1
  givenname: Cláudio
  surname: Carvalho
  fullname: Carvalho, Cláudio
  organization: Universidade Federal do Ceará = Federal University of Ceará, Departamento de Computaçãos [Ceará]
– sequence: 2
  givenname: Jonas
  surname: Costa
  fullname: Costa, Jonas
  organization: Universidade Federal do Ceará = Federal University of Ceará, Departamento de Computaçãos [Ceará]
– sequence: 3
  givenname: Raul
  surname: Lopes
  fullname: Lopes, Raul
  organization: Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision
– sequence: 4
  givenname: Ana Karolinna
  orcidid: 0000-0002-9027-7948
  surname: Maia
  fullname: Maia, Ana Karolinna
  organization: Departamento de Computaçãos [Ceará], UFC - Universidade Federal do Ceará = Federal University of Ceará
– sequence: 5
  givenname: Nicolas
  orcidid: 0000-0003-4500-5078
  surname: Nisse
  fullname: Nisse, Nicolas
  organization: Université Côte d'Azur, Inria Sophia Antipolis - Méditerranée, Centre National de la Recherche Scientifique, Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis
– sequence: 6
  givenname: Cláudia
  surname: Sales
  fullname: Sales, Cláudia
  organization: Universidade Federal do Ceará = Federal University of Ceará, Departamento de Computaçãos [Ceará]
BackLink https://hal.science/hal-03031759$$DView record in HAL
BookMark eNpVkU1LHEEQhptgIGo85Q80eBAJY6qnpnu7vYloFBZySa42tf2hs5mdXrtnDfvvM7sTop6qeHl4oOo9Ygd96gNjXwRcNKo2-ptfDa5cGIT6AzsUqGSlQcLBm_0TOyplCSBq08wO2cNtTiu-yNS7p7Z_LHxIPHbpT7nkxMuw8VueIqee3_hV6n054137O_B1TuuQh-0Op-wq35Zlavvh1TRZPrOPkboSTv7NY_br9ubn9V01__H9_vpqXjmUaqgIlRNIWDuhagwxoI-11KRAgyNqjBBRyBlGr7UgrbDR5BYABowPDgCP2f3k9YmWdp3bFeWtTdTafZDyo6U8tK4LlkCJIA0tlIMmojeLUVpH4WEmZSPN6DqfXE_UvVPdXc3tLgMEFDNpXpqRPZ3Y8SHPm1AGu0yb3I-nWoRGCwWocKS-TpTLqZQc4n-tALsvzu6Ls7vi8C-tNIv9
ContentType Journal Article
Copyright Copyright DMTCS 2023
Attribution
Copyright_xml – notice: Copyright DMTCS 2023
– notice: Attribution
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
1XC
VOOES
DOA
DOI 10.46298/dmtcs.9302
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Continental Europe Database (ProQuest)
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1365-8050
EndPage 15
ExternalDocumentID oai_doaj_org_article_a061e59ab6c04f3d9bd882f1d0755459
oai:HAL:hal-03031759v4
10_46298_dmtcs_9302
Genre Feature
GroupedDBID -~9
.4S
.DC
29G
2WC
5GY
5VS
8FE
8FG
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACIWK
ACUHS
ADBBV
ADQAK
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
B0M
BAIFH
BBTPI
BCNDV
BENPR
BFMQW
BGLVJ
BPHCQ
CCPQU
CITATION
EAP
EBS
ECS
EDO
EJD
EMK
EPL
EST
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IBB
ICD
ITC
J9A
KQ8
KWQ
L6V
M7S
MK~
ML~
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PV9
REM
RNS
RSU
RZL
TR2
TUS
XSB
~8M
ADOJU
AZQEC
DWQXO
PKEHL
PQEST
PQUKI
PRINS
1XC
VOOES
ID FETCH-LOGICAL-c356t-a36c13a32c1623efe3df258a6080caa4911f1573fd881a86348acb00909dec003
IEDL.DBID M7S
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000988664800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1365-8050
1462-7264
IngestDate Fri Oct 03 12:44:48 EDT 2025
Tue Oct 14 20:53:17 EDT 2025
Fri Jul 25 12:20:39 EDT 2025
Sat Nov 29 02:48:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Graph Theory
Keywords Branchings
Branching flows
Arc-disjoint flows
Digraphs
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-a36c13a32c1623efe3df258a6080caa4911f1573fd881a86348acb00909dec003
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ORCID 0000-0002-9027-7948
0000-0003-4500-5078
0000-0002-7487-3475
OpenAccessLink https://www.proquest.com/docview/3048160363?pq-origsite=%requestingapplication%
PQID 3048160363
PQPubID 946337
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_a061e59ab6c04f3d9bd882f1d0755459
hal_primary_oai_HAL_hal_03031759v4
proquest_journals_3048160363
crossref_primary_10_46298_dmtcs_9302
PublicationCentury 2000
PublicationDate 2023-05-02
PublicationDateYYYYMMDD 2023-05-02
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-02
  day: 02
PublicationDecade 2020
PublicationPlace Nancy
PublicationPlace_xml – name: Nancy
PublicationTitle Discrete mathematics and theoretical computer science
PublicationYear 2023
Publisher DMTCS
Discrete Mathematics & Theoretical Computer Science
Publisher_xml – name: DMTCS
– name: Discrete Mathematics & Theoretical Computer Science
SSID ssj0012947
ssib044734695
Score 2.2584915
Snippet An s-branching flow f in a network N = (D, u), where u is the capacity function, is a flow thatreaches every vertex in V(D) from s while loosing exactly one...
An s-branching flow f in a network N = (D, u), where u is the capacity function, is a flow that reaches every vertex in V(D) from s while loosing exactly one...
SourceID doaj
hal
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1
SubjectTerms [info.info-cc]computer science [cs]/computational complexity [cs.cc]
[info.info-ds]computer science [cs]/data structures and algorithms [cs.ds]
[math.math-co]mathematics [math]/combinatorics [math.co]
[math]mathematics [math]
arc-disjoint flows
branching flows
branchings
Combinatorics
Computational Complexity
Computer Science
Data Structures and Algorithms
digraphs
Mathematics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB2h1R7YAx9lEWULslAlTtkmceLE3LqoVQ-l4gCoJyzHH6LLNqma0NX--x07SWG5cOFqWZb1xuN5tsdvAMbIuUMmNQ0klTkeULQJeKqyIDS0oDKKrfJJNN-W2WqVr9f88x-lvlxOWCsP3AI3kRhwTMplwVSYWKp5oZEU2khjrMPo77_uIevpD1Pd-0HMk6z9jZewmOcTvW1Ufclpd3vSxx8v049R5YdLgvxrL_YBZv4MnnTMkEzbGT2HR6YcwNO-6gLpnHAAZ5-OSqv1C_g-31dbUrjyGL4CJ2kqYm-q2_oDkcRrx5LKElmSmcYFp-v35Gbz05Cdu4PfN3euOy71QG_q62pTNr9Hakc5h6_z2ZePi6CrmRAomrIGIWcqopLGKkJiY6yh2sZpLhlipKRMcG-zUZpRiyhGMmc0yaVC1-Mh10ahi7-Ek7IqzSsghbUYqpAfxjpLLFd5aG1sUlbQLIyskkMY90iKXSuNIfBI4QEXHnDhAB_ClUP52MXpWfsGtLLorCz-ZeUhvEMbPRhjMV0K14a7lONA_JAMYdSbUHSeWAvqBHGYe65-_T8mcgGPXcF5n_IYj-Ck2f8yb-BUHZpNvX_rF-E9-0rhdw
  priority: 102
  providerName: Directory of Open Access Journals
Title From branchings to flows: a study of an Edmonds' like property to arc-disjoint branching flows
URI https://www.proquest.com/docview/3048160363
https://hal.science/hal-03031759
https://doaj.org/article/a061e59ab6c04f3d9bd882f1d0755459
Volume 25:1
WOSCitedRecordID wos000988664800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044734695
  issn: 1365-8050
  databaseCode: M~E
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Continental Europe Database (ProQuest)
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BFMQW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: PIMPY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEOFAoVC-3KQpU4hSZ2Xu4FtWVXRequVrSgcsFy_ICFNtkmoYgLv71jb7IVHLhwycG2HEufZ-bzeDwDsIucO0ylZoFkMscDijYBT1QWhIYVTEbUKh9E8_Ekm07z83M-6xxuTRdW2etEr6h1pZyPfI-5xCapu3Z8s7gKXNUod7valdC4C-suSwL1oXunq1sEyuNs-SYvTinP995Ozo5OX3PW-VB6K-ST9aNt-epCIf_SyN7MjDf-d4GP4GFHMMnBckc8hjum3ISNvngD6WR5Ex5MVglbmyfweVxXl6RwVTZ8IU_SVsReVD-bfSKJT0FLKktkSUYa_6ObV-Ri_t2QhXPl1-0vNxwlJtDz5ls1L9vbmZazPIUP49HZ0XHQlV4IFEvSFpFLVcQkoypCfmSsYdrSJJcpEkwlZYwq0kZJxqzO80jmKYtzqVCCeci1UagptmCtrErzDEhhLVo8pJlUZ7HlKg-tpSZJC5aFkVVyALs9FGKxzLAh8GTiERP6slWNcIgN4NDBtBri0mL7hqr-IjopExLZiUm4LFIVxpZpXuD6qI00EiOkinwALxHkP-Y4PjgRrg2VnaNS_DoewHYPsOgEuhG36D7_d_cLuO8q0vuYSLoNa239w-zAPXXdzpt6COuHo-ns_dAf_Yd-t7rv7xH2zN5NZp9uAMBi9I0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJwoFBALBSwUIFTaGLnZSQOfa226u4KxAI9YRw_YKFNliS06p_iNzLOJlvBgVsPXBNr4tifZz57xjMAm8i5_Vhq5kkmU9ygaOPxSCWeb1jGZECtaoJoPoySySQ9OuJvVuBXdxfGhVV2OrFR1LpQ7ox8i7nEJrFzO7YRlIfm_Az3Z9Xrgz2czGeUDvanu0OvLSHgKRbFNfYgVgGTjKoA7byxhmlLo1TGSJSUlCEudRtECbM6TQOZxixMpatZz32ujULEo9zn8x-eq1LlvLltyY4rsJrGnIU9WN0ZjN9-XPotKA-TxS3AMKY83dobT3ffveSsPbXp7F5THgCt2VcXfPmXDWgM22DtfxuSW3CzpdBke4H527Bi8nVY68pTkFZbrcON8TIlbXUHPg3K4oRkro5IU6qU1AWxx8VZ9YpI0iTZJYUlMif7Gr-jqxfkePbdkLlzVpT1uWuOP-_pWfWtmOX1haSFlLvw_lKG4R708iI394Fk1qJNRyJNdRJarlLfWmqiOGOJH1gl-7DZTb2YL3KICNx7NQgR-qRWlXAI6cOOg8WyiUv83Twoyi-i1SNCIv8yEZdZrPzQMs0z7B-1gUbqh2SY9-EpguoPGcPtkXDPUJ07sshPwz5sdIASrcqqxAWaHvz79RO4NpyOR2J0MDl8CNcpsr4mApRuQK8uf5pHcFWd1rOqfNyuDgKfLxuQvwE-WExF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+branchings+to+flows%3A+a+study+of+an+Edmonds%27+like+property+to+arc-disjoint+branching+flows&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=Carvalho%2C+Cl%C3%A1udio&rft.au=Costa%2C+Jonas&rft.au=Lopes%2C+Raul&rft.au=Maia%2C+Ana+Karolinna&rft.date=2023-05-02&rft.issn=1365-8050&rft.eissn=1365-8050&rft.volume=25%3A1&rft.issue=Graph+Theory&rft_id=info:doi/10.46298%2Fdmtcs.9302&rft.externalDBID=n%2Fa&rft.externalDocID=10_46298_dmtcs_9302
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon