Designed miniaturization of microfluidic biosensor platforms using the stop-flow technique

Here, we present a novel approach to increase the degree of miniaturization as well as the sensitivity of biosensor platforms by the optimization of microfluidic stop-flow techniques independent of the applied detection technique (e.g. electrochemical or optical). The readout of the labeled bioassay...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analyst (London) Jg. 141; H. 21; S. 6073
Hauptverfasser: Dincer, C, Kling, A, Chatelle, C, Armbrecht, L, Kieninger, J, Weber, W, Urban, G A
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 17.10.2016
Schlagworte:
ISSN:1364-5528, 1364-5528
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Here, we present a novel approach to increase the degree of miniaturization as well as the sensitivity of biosensor platforms by the optimization of microfluidic stop-flow techniques independent of the applied detection technique (e.g. electrochemical or optical). The readout of the labeled bioassays, immobilized in a microfluidic channel, under stop-flow conditions leads to a rectangular shaped peak signal. Data evaluation using the peak height allows for a high level miniaturization of the channel geometries. To study the main advantages and limitations of this method by numerical simulations, a universally applicable model system is introduced for the first time. Consequently, proof-of-principle experiments were successfully performed with standard and miniaturized versions of an electrochemical biosensor platform utilizing a repressor protein-based assay for tetracycline antibiotics. Herein, the measured current peak heights are the same despite the sextuple reduction of the channel dimensions. Thus, this results in a 22-fold signal amplification compared to the constant flow measurements in the case of the miniaturized version.
AbstractList Here, we present a novel approach to increase the degree of miniaturization as well as the sensitivity of biosensor platforms by the optimization of microfluidic stop-flow techniques independent of the applied detection technique (e.g. electrochemical or optical). The readout of the labeled bioassays, immobilized in a microfluidic channel, under stop-flow conditions leads to a rectangular shaped peak signal. Data evaluation using the peak height allows for a high level miniaturization of the channel geometries. To study the main advantages and limitations of this method by numerical simulations, a universally applicable model system is introduced for the first time. Consequently, proof-of-principle experiments were successfully performed with standard and miniaturized versions of an electrochemical biosensor platform utilizing a repressor protein-based assay for tetracycline antibiotics. Herein, the measured current peak heights are the same despite the sextuple reduction of the channel dimensions. Thus, this results in a 22-fold signal amplification compared to the constant flow measurements in the case of the miniaturized version.Here, we present a novel approach to increase the degree of miniaturization as well as the sensitivity of biosensor platforms by the optimization of microfluidic stop-flow techniques independent of the applied detection technique (e.g. electrochemical or optical). The readout of the labeled bioassays, immobilized in a microfluidic channel, under stop-flow conditions leads to a rectangular shaped peak signal. Data evaluation using the peak height allows for a high level miniaturization of the channel geometries. To study the main advantages and limitations of this method by numerical simulations, a universally applicable model system is introduced for the first time. Consequently, proof-of-principle experiments were successfully performed with standard and miniaturized versions of an electrochemical biosensor platform utilizing a repressor protein-based assay for tetracycline antibiotics. Herein, the measured current peak heights are the same despite the sextuple reduction of the channel dimensions. Thus, this results in a 22-fold signal amplification compared to the constant flow measurements in the case of the miniaturized version.
Here, we present a novel approach to increase the degree of miniaturization as well as the sensitivity of biosensor platforms by the optimization of microfluidic stop-flow techniques independent of the applied detection technique (e.g. electrochemical or optical). The readout of the labeled bioassays, immobilized in a microfluidic channel, under stop-flow conditions leads to a rectangular shaped peak signal. Data evaluation using the peak height allows for a high level miniaturization of the channel geometries. To study the main advantages and limitations of this method by numerical simulations, a universally applicable model system is introduced for the first time. Consequently, proof-of-principle experiments were successfully performed with standard and miniaturized versions of an electrochemical biosensor platform utilizing a repressor protein-based assay for tetracycline antibiotics. Herein, the measured current peak heights are the same despite the sextuple reduction of the channel dimensions. Thus, this results in a 22-fold signal amplification compared to the constant flow measurements in the case of the miniaturized version.
Author Dincer, C
Armbrecht, L
Kieninger, J
Weber, W
Urban, G A
Kling, A
Chatelle, C
Author_xml – sequence: 1
  givenname: C
  orcidid: 0000-0003-3301-1198
  surname: Dincer
  fullname: Dincer, C
  email: dincer@imtek.de
  organization: Laboratory for Sensors, Department of Microsystems Engineering - IMTEK, University of Freiburg, Germany. dincer@imtek.de and Freiburg Materials Research Center - FMF, University of Freiburg, Germany
– sequence: 2
  givenname: A
  surname: Kling
  fullname: Kling, A
  email: dincer@imtek.de
  organization: Laboratory for Sensors, Department of Microsystems Engineering - IMTEK, University of Freiburg, Germany. dincer@imtek.de
– sequence: 3
  givenname: C
  surname: Chatelle
  fullname: Chatelle, C
  organization: Centre for Biological Signalling Studies - BIOSS, Germany and Faculty of Biology, University of Freiburg, Germany
– sequence: 4
  givenname: L
  surname: Armbrecht
  fullname: Armbrecht, L
  email: dincer@imtek.de
  organization: Laboratory for Sensors, Department of Microsystems Engineering - IMTEK, University of Freiburg, Germany. dincer@imtek.de
– sequence: 5
  givenname: J
  surname: Kieninger
  fullname: Kieninger, J
  email: dincer@imtek.de
  organization: Laboratory for Sensors, Department of Microsystems Engineering - IMTEK, University of Freiburg, Germany. dincer@imtek.de
– sequence: 6
  givenname: W
  surname: Weber
  fullname: Weber, W
  organization: Centre for Biological Signalling Studies - BIOSS, Germany and Faculty of Biology, University of Freiburg, Germany and Spemann School of Biology and Medicine, University of Freiburg, Germany
– sequence: 7
  givenname: G A
  surname: Urban
  fullname: Urban, G A
  email: dincer@imtek.de
  organization: Laboratory for Sensors, Department of Microsystems Engineering - IMTEK, University of Freiburg, Germany. dincer@imtek.de and Freiburg Materials Research Center - FMF, University of Freiburg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27747319$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLxDAAhIOsuA-9-AMkRy_VpEma9risT1j0ohcvJc_dSJvUJEX011twBU8zDB8zMEsw88EbAM4xusKINNebav2EMCFofQQWmFS0YKysZ__8HCxTekcIYcTQCZiXnFNOcLMAbzcmuZ03GvbOO5HH6L5FdsHDYKdIxWC70WmnoHQhGZ9ChEMnsg2xT3BMzu9g3huYchgK24VPmI3ae_cxmlNwbEWXzNlBV-D17vZl81Bsn-8fN-ttoQirctGU3CBlWYMU1QZTQ7lEUnIuNZdKkUpQq5W0VnOBdK1rxGvBraosFpxaW67A5W_vEMM0m3Lbu6RM1wlvwphaXBNGKWYNmdCLAzrK3uh2iK4X8av9-6P8ARh4ZiA
CitedBy_id crossref_primary_10_1016_j_bios_2019_111824
crossref_primary_10_1016_j_cca_2021_07_013
crossref_primary_10_3390_bios10120205
crossref_primary_10_3390_chemosensors6040043
crossref_primary_10_1111_1541_4337_12766
crossref_primary_10_1016_j_tibtech_2017_03_013
crossref_primary_10_1002_adma_201905311
crossref_primary_10_1016_j_mattod_2022_11_001
crossref_primary_10_3390_mi8050133
crossref_primary_10_1016_j_bios_2020_112887
crossref_primary_10_3390_bios12030162
crossref_primary_10_1038_s41598_017_03338_z
crossref_primary_10_3390_s16122045
crossref_primary_10_1007_s00216_022_04210_4
crossref_primary_10_1007_s10404_019_2189_y
crossref_primary_10_1016_j_sna_2022_113589
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1039/C6AN01330A
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-5528
ExternalDocumentID 27747319
Genre Journal Article
GroupedDBID ---
-~X
.HR
0-7
0R~
23M
2WC
4.4
5RE
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABOCM
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CGR
COF
CS3
CUY
CVF
EBS
ECGLT
ECM
EE0
EF-
EIF
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
NPM
O9-
P2P
R56
R7B
R7E
RAOCF
RCNCU
ROL
RPMJG
RRA
RRC
RSCEA
SKM
SKR
SKZ
SLC
SLF
TN5
UPT
VH6
WH7
~02
7X8
AKMSF
ID FETCH-LOGICAL-c356t-927e0cf590c4de14e47b0bb77bd7bcc36a4fdcbffd7a0d8d8078a7fc6f1a74ff2
IEDL.DBID 7X8
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386210900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1364-5528
IngestDate Fri Jul 11 13:05:50 EDT 2025
Tue Apr 08 05:56:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-927e0cf590c4de14e47b0bb77bd7bcc36a4fdcbffd7a0d8d8078a7fc6f1a74ff2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3301-1198
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2016/an/c6an01330a
PMID 27747319
PQID 1835441593
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1835441593
pubmed_primary_27747319
PublicationCentury 2000
PublicationDate 2016-Oct-17
PublicationDateYYYYMMDD 2016-10-17
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-Oct-17
  day: 17
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Analyst (London)
PublicationTitleAlternate Analyst
PublicationYear 2016
SSID ssj0001050
Score 2.3165467
Snippet Here, we present a novel approach to increase the degree of miniaturization as well as the sensitivity of biosensor platforms by the optimization of...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 6073
SubjectTerms Biosensing Techniques
Humans
Microfluidic Analytical Techniques
Microfluidics
Miniaturization
Tetracyclines - analysis
Tetracyclines - blood
Title Designed miniaturization of microfluidic biosensor platforms using the stop-flow technique
URI https://www.ncbi.nlm.nih.gov/pubmed/27747319
https://www.proquest.com/docview/1835441593
Volume 141
WOSCitedRecordID wos000386210900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qCnrx_VhfRPBatm3apD2JqIsXlz0oLF5KMslIYWnX7a7-fZM-3JMgeOkh0NIMycw3k8n3EXIDAWAiA5upInIv4uh7Eu1-xNQwBTKFWOpabEKMRslkko7bglvVtlV2PrF21LoEVyMfBK5CYaNNym5nH55TjXKnq62ExjrpMQtlXEuXmKzYwi12aG4J88iL4zDp6ElZOgAuC4t-mC9_h5Z1iBnu_vfn9shOCy7pXbMa9smaKQ7I1n2n6XZI3h7qhg2jqaMUcZye7TVMWqIdck55usx1DlTlZWUz3HJOZ1O5cMi2oq5H_p1axEgdHYGH0_KL_nDAHpHX4ePL_ZPXqit4wGK-8NJQGB8wTn2ItAkiEwnlKyWE0kIBMC4j1KAQtZC-TrQjppcCgWMgRYQYHpONoizMKaEhA_S5cV9REdikN-FJGkjH8-KzWJg-ue7MltkJuyMJWZhyWWUrw_XJSWP7bNbQbGShRabCeoizP7x9TrYtkuEuqATigvTQ7l1zSTbhc5FX86t6WdjnaPz8DfsHxrw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designed+miniaturization+of+microfluidic+biosensor+platforms+using+the+stop-flow+technique&rft.jtitle=Analyst+%28London%29&rft.au=Dincer%2C+C&rft.au=Kling%2C+A&rft.au=Chatelle%2C+C&rft.au=Armbrecht%2C+L&rft.date=2016-10-17&rft.issn=1364-5528&rft.eissn=1364-5528&rft.volume=141&rft.issue=21&rft.spage=6073&rft_id=info:doi/10.1039%2Fc6an01330a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-5528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-5528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-5528&client=summon