Extracellular vesicles for drug delivery
Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained consider...
Uloženo v:
| Vydáno v: | Advanced drug delivery reviews Ročník 106; číslo Pt A; s. 148 - 156 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier B.V
15.11.2016
|
| Témata: | |
| ISSN: | 0169-409X, 1872-8294, 1872-8294 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained considerable scientific interest. EVs may have multiple advantages over currently available drug delivery vehicles, such as their ability to overcome natural barriers, their intrinsic cell targeting properties, and stability in the circulation. However, therapeutic applications of EVs as drug delivery systems have been limited due to a lack of methods for scalable EV isolation and efficient drug loading. Furthermore, in order to achieve targeted drug delivery, their intrinsic cell targeting properties should be tuned through EV engineering. Here, we review and discuss recent progress and remaining challenges in the development of EVs as drug delivery vehicles.
[Display omitted] |
|---|---|
| AbstractList | Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained considerable scientific interest. EVs may have multiple advantages over currently available drug delivery vehicles, such as their ability to overcome natural barriers, their intrinsic cell targeting properties, and stability in the circulation. However, therapeutic applications of EVs as drug delivery systems have been limited due to a lack of methods for scalable EV isolation and efficient drug loading. Furthermore, in order to achieve targeted drug delivery, their intrinsic cell targeting properties should be tuned through EV engineering. Here, we review and discuss recent progress and remaining challenges in the development of EVs as drug delivery vehicles.Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained considerable scientific interest. EVs may have multiple advantages over currently available drug delivery vehicles, such as their ability to overcome natural barriers, their intrinsic cell targeting properties, and stability in the circulation. However, therapeutic applications of EVs as drug delivery systems have been limited due to a lack of methods for scalable EV isolation and efficient drug loading. Furthermore, in order to achieve targeted drug delivery, their intrinsic cell targeting properties should be tuned through EV engineering. Here, we review and discuss recent progress and remaining challenges in the development of EVs as drug delivery vehicles. Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained considerable scientific interest. EVs may have multiple advantages over currently available drug delivery vehicles, such as their ability to overcome natural barriers, their intrinsic cell targeting properties, and stability in the circulation. However, therapeutic applications of EVs as drug delivery systems have been limited due to a lack of methods for scalable EV isolation and efficient drug loading. Furthermore, in order to achieve targeted drug delivery, their intrinsic cell targeting properties should be tuned through EV engineering. Here, we review and discuss recent progress and remaining challenges in the development of EVs as drug delivery vehicles. [Display omitted] Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained considerable scientific interest. EVs may have multiple advantages over currently available drug delivery vehicles, such as their ability to overcome natural barriers, their intrinsic cell targeting properties, and stability in the circulation. However, therapeutic applications of EVs as drug delivery systems have been limited due to a lack of methods for scalable EV isolation and efficient drug loading. Furthermore, in order to achieve targeted drug delivery, their intrinsic cell targeting properties should be tuned through EV engineering. Here, we review and discuss recent progress and remaining challenges in the development of EVs as drug delivery vehicles. |
| Author | Schiffelers, Raymond M. Mol, Emma A. Vader, Pieter Pasterkamp, Gerard |
| Author_xml | – sequence: 1 givenname: Pieter surname: Vader fullname: Vader, Pieter email: pvader@umcutrecht.nl organization: Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands – sequence: 2 givenname: Emma A. surname: Mol fullname: Mol, Emma A. organization: Department of Experimental Cardiology, University Medical Center Utrecht, the Netherlands, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands – sequence: 3 givenname: Gerard surname: Pasterkamp fullname: Pasterkamp, Gerard organization: Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands – sequence: 4 givenname: Raymond M. orcidid: 0000-0002-1012-9815 surname: Schiffelers fullname: Schiffelers, Raymond M. email: r.schiffelers@umcutrecht.nl organization: Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26928656$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kD1rwzAQhkVpaT7aP9CheMxiV5JtyYIuJaQfEOjSQjehSKei4NipZIfm31cmydIh0x3c-xx3zwRdNm0DCN0RnBFM2MM6U8b4jMY-wzTDmF2gMak4TSsqiks0jgORFlh8jdAkhDXGhHKGr9GIMkErVrIxmi1-O6801HVfK5_sIDhdQ0hs6xPj--_EQO124Pc36MqqOsDtsU7R5_PiY_6aLt9f3uZPy1TnJetSgblhvKArzivBc6JyjEtYaZszSyowBafGEAAohdWFIcxWVuOyLEpGCm5FPkWzw96tb396CJ3cuDDcpxpo-yBJRRkrRcF5jN4fo_1qA0Zuvdsov5en72KgOgS0b0PwYKV2nepc28SfXS0JloNIuZaDSDmIlJjKKDKi9B962n4WejxAEAXtHHgZtINGg3EedCdN687hf5C-ioc |
| CitedBy_id | crossref_primary_10_1038_s41388_021_01896_1 crossref_primary_10_1007_s11914_019_00537_7 crossref_primary_10_1038_s41598_025_95908_9 crossref_primary_10_3390_ijms19123859 crossref_primary_10_2147_IJN_S307843 crossref_primary_10_3390_cells11101670 crossref_primary_10_1016_j_drudis_2017_08_012 crossref_primary_10_1186_s12951_024_02518_0 crossref_primary_10_3389_fcvm_2024_1399738 crossref_primary_10_3390_cancers16050923 crossref_primary_10_3389_fcvm_2022_789203 crossref_primary_10_1016_j_biomaterials_2021_120946 crossref_primary_10_2174_1570180819666220610140616 crossref_primary_10_1016_j_bioactmat_2022_10_016 crossref_primary_10_1016_j_nano_2019_102014 crossref_primary_10_3390_ijms22189896 crossref_primary_10_1186_s12951_024_03079_y crossref_primary_10_1016_j_bcp_2017_12_020 crossref_primary_10_1088_2516_1091_ac73c9 crossref_primary_10_1016_j_xphs_2024_12_014 crossref_primary_10_1016_j_jconrel_2018_06_015 crossref_primary_10_1039_D0NR00362J crossref_primary_10_1016_j_colsurfb_2021_112163 crossref_primary_10_1038_aps_2017_12 crossref_primary_10_1007_s12274_020_2931_5 crossref_primary_10_3390_gels6040038 crossref_primary_10_3390_bioengineering12010092 crossref_primary_10_3390_ijms23147668 crossref_primary_10_3390_cells8090965 crossref_primary_10_3389_fimmu_2021_716407 crossref_primary_10_1016_j_phrs_2023_106880 crossref_primary_10_1186_s12951_022_01330_y crossref_primary_10_3390_jnt4030014 crossref_primary_10_3390_ijms22041624 crossref_primary_10_1016_j_biomaterials_2023_122242 crossref_primary_10_1016_j_biopha_2024_117248 crossref_primary_10_1186_s12929_024_01096_5 crossref_primary_10_1016_j_bioactmat_2024_05_039 crossref_primary_10_1038_s41598_018_30786_y crossref_primary_10_1002_adbi_201800079 crossref_primary_10_1186_s12943_019_0975_5 crossref_primary_10_1021_acs_jpcb_5c00472 crossref_primary_10_3389_fmolb_2021_699929 crossref_primary_10_3390_cancers15133507 crossref_primary_10_1016_j_bios_2020_112510 crossref_primary_10_1038_s41598_017_07265_x crossref_primary_10_3389_fcell_2021_790722 crossref_primary_10_3389_fimmu_2024_1402468 crossref_primary_10_1186_s12951_023_01952_w crossref_primary_10_1186_s40635_023_00491_w crossref_primary_10_3390_cancers12113165 crossref_primary_10_3390_cancers13225669 crossref_primary_10_3390_cells7080093 crossref_primary_10_3389_fimmu_2024_1296061 crossref_primary_10_1016_j_ijbiomac_2025_145463 crossref_primary_10_3389_fimmu_2022_943321 crossref_primary_10_1515_bams_2021_0183 crossref_primary_10_1007_s13534_023_00334_3 crossref_primary_10_2217_bmm_2019_0368 crossref_primary_10_3390_polym15020318 crossref_primary_10_1002_advs_201901293 crossref_primary_10_1016_j_bioactmat_2022_11_011 crossref_primary_10_1039_D2RA07863E crossref_primary_10_1002_anie_201909927 crossref_primary_10_1097_PRS_0000000000006046 crossref_primary_10_1039_D3NR05524H crossref_primary_10_1007_s00774_022_01362_2 crossref_primary_10_1088_1361_6528_ac49bf crossref_primary_10_3389_fmolb_2024_1447953 crossref_primary_10_1038_s41598_022_15524_9 crossref_primary_10_1016_j_intimp_2024_113620 crossref_primary_10_3390_ijms222212204 crossref_primary_10_1080_17435889_2025_2500913 crossref_primary_10_1093_ndt_gfac233 crossref_primary_10_3390_biomedicines10081978 crossref_primary_10_3390_ijms231911312 crossref_primary_10_1016_j_jconrel_2023_08_043 crossref_primary_10_1186_s13045_020_00987_y crossref_primary_10_1016_j_addr_2023_114824 crossref_primary_10_1016_j_jddst_2020_102098 crossref_primary_10_1016_j_nantod_2021_101143 crossref_primary_10_3389_fnmol_2018_00434 crossref_primary_10_1038_s41598_017_13469_y crossref_primary_10_3389_fbioe_2022_1077028 crossref_primary_10_1016_j_ejpb_2019_10_005 crossref_primary_10_1186_s12967_022_03392_w crossref_primary_10_1002_adtp_202300161 crossref_primary_10_3390_pharmaceutics15030718 crossref_primary_10_1016_j_cej_2018_03_101 crossref_primary_10_3389_fphar_2019_00751 crossref_primary_10_1002_jex2_97 crossref_primary_10_1186_s12943_017_0755_z crossref_primary_10_3390_pharmaceutics15051439 crossref_primary_10_1002_JLB_3MIR0221_099R crossref_primary_10_1186_s12935_025_03795_x crossref_primary_10_1186_s11658_024_00581_x crossref_primary_10_1002_adma_202201054 crossref_primary_10_1002_bmm2_12018 crossref_primary_10_1002_adma_201706616 crossref_primary_10_3390_pharmaceutics11030113 crossref_primary_10_1016_j_jconrel_2023_08_040 crossref_primary_10_26599_NR_2025_94907176 crossref_primary_10_1016_j_canlet_2023_216141 crossref_primary_10_1080_20415990_2024_2415281 crossref_primary_10_1002_adbi_201700044 crossref_primary_10_3389_fmats_2023_1152378 crossref_primary_10_1007_s42247_024_00666_5 crossref_primary_10_1016_j_ijpharm_2018_10_032 crossref_primary_10_1208_s12248_018_0200_2 crossref_primary_10_3389_fmicb_2018_01502 crossref_primary_10_1002_smll_201801674 crossref_primary_10_1002_adhm_202300584 crossref_primary_10_1016_j_bbcan_2024_189244 crossref_primary_10_2147_IJN_S432279 crossref_primary_10_1016_j_biomaterials_2019_119606 crossref_primary_10_1016_j_pneurobio_2021_102022 crossref_primary_10_1002_cbin_12014 crossref_primary_10_1016_j_semcancer_2021_02_010 crossref_primary_10_1186_s40635_024_00701_z crossref_primary_10_3390_cancers13153700 crossref_primary_10_1002_cac2_12377 crossref_primary_10_3390_nano11071788 crossref_primary_10_3390_pharmaceutics15030937 crossref_primary_10_1016_j_jconrel_2024_02_037 crossref_primary_10_3390_cancers13071711 crossref_primary_10_3390_cells8121509 crossref_primary_10_1016_j_jconrel_2023_08_059 crossref_primary_10_1038_s41598_019_41100_9 crossref_primary_10_3390_pharmaceutics15051453 crossref_primary_10_1016_j_heliyon_2024_e30238 crossref_primary_10_1002_smtd_202301178 crossref_primary_10_1016_j_plipres_2017_03_001 crossref_primary_10_3390_ijms252313121 crossref_primary_10_1016_j_chemphyslip_2020_105009 crossref_primary_10_1016_j_ijpharm_2024_124096 crossref_primary_10_1124_jpet_119_257097 crossref_primary_10_1186_s13229_020_00366_x crossref_primary_10_1093_asj_sjad139 crossref_primary_10_1016_j_biopha_2024_116128 crossref_primary_10_3390_antiox11061194 crossref_primary_10_1039_D3BM01170D crossref_primary_10_1016_j_nantod_2020_101066 crossref_primary_10_1016_j_ijpharm_2019_118802 crossref_primary_10_1155_2021_1490732 crossref_primary_10_3390_biomedicines12030489 crossref_primary_10_1016_j_addr_2021_05_006 crossref_primary_10_1016_j_cophys_2025_100815 crossref_primary_10_3390_pharmaceutics12121146 crossref_primary_10_1016_j_apsb_2020_12_014 crossref_primary_10_1016_j_placenta_2021_04_001 crossref_primary_10_1002_jev2_12305 crossref_primary_10_1186_s13287_024_03952_5 crossref_primary_10_1007_s40778_024_00241_y crossref_primary_10_1186_s12951_023_02073_0 crossref_primary_10_1016_j_brainres_2022_147840 crossref_primary_10_1016_j_lfs_2022_120935 crossref_primary_10_1016_j_colsurfb_2024_113951 crossref_primary_10_1016_j_bbrc_2022_01_051 crossref_primary_10_2147_JIR_S339113 crossref_primary_10_1002_bit_28909 crossref_primary_10_1016_j_semcancer_2021_02_006 crossref_primary_10_1016_j_jddst_2025_106647 crossref_primary_10_1186_s12951_021_01192_w crossref_primary_10_1016_j_bbagen_2019_129486 crossref_primary_10_1073_pnas_2025451118 crossref_primary_10_1016_j_saa_2023_123346 crossref_primary_10_1186_s12943_025_02372_0 crossref_primary_10_3390_ijms251910401 crossref_primary_10_3389_fmed_2024_1420281 crossref_primary_10_3389_fphar_2022_1026386 crossref_primary_10_1016_j_addr_2022_114324 crossref_primary_10_1186_s13075_021_02420_2 crossref_primary_10_1002_admi_202200357 crossref_primary_10_1016_j_jddst_2019_03_009 crossref_primary_10_1016_j_freeradbiomed_2024_12_006 crossref_primary_10_3390_pharmaceutics11060285 crossref_primary_10_3389_fcimb_2020_00417 crossref_primary_10_3390_cancers13174435 crossref_primary_10_3390_pharmaceutics15051418 crossref_primary_10_3389_fphys_2021_707429 crossref_primary_10_1016_j_jconrel_2023_08_010 crossref_primary_10_1002_bit_27606 crossref_primary_10_1002_adhm_201900847 crossref_primary_10_3390_life14121584 crossref_primary_10_3390_biomedicines9030275 crossref_primary_10_1016_j_jconrel_2018_09_019 crossref_primary_10_1016_j_jcyt_2019_01_001 crossref_primary_10_1186_s11658_023_00507_z crossref_primary_10_1002_advs_202102441 crossref_primary_10_1038_s41420_020_00367_y crossref_primary_10_3389_fimmu_2022_836922 crossref_primary_10_3390_ijms21072299 crossref_primary_10_1002_ctm2_204 crossref_primary_10_1016_j_biomaterials_2021_121234 crossref_primary_10_3389_fcell_2020_553444 crossref_primary_10_1016_j_oraloncology_2020_104916 crossref_primary_10_1080_1061186X_2018_1491977 crossref_primary_10_1093_rb_rbaa019 crossref_primary_10_3390_ijms26062491 crossref_primary_10_1002_smll_202312153 crossref_primary_10_3390_cancers14051160 crossref_primary_10_1002_jev2_12469 crossref_primary_10_1016_j_ccr_2020_213506 crossref_primary_10_3390_pharmaceutics14122564 crossref_primary_10_1002_anbr_202500008 crossref_primary_10_1002_EXP_20230139 crossref_primary_10_1016_j_jare_2025_08_003 crossref_primary_10_1002_imt2_86 crossref_primary_10_1002_adtp_202400051 crossref_primary_10_1038_s41598_021_85833_y crossref_primary_10_3390_ijms24076467 crossref_primary_10_1038_s41598_017_14725_x crossref_primary_10_1155_2023_7059289 crossref_primary_10_1007_s00280_021_04348_5 crossref_primary_10_1021_acsnano_8b02053 crossref_primary_10_1002_hep4_1300 crossref_primary_10_1186_s12929_023_00972_w crossref_primary_10_1016_j_eng_2025_06_042 crossref_primary_10_3390_ijms232315236 crossref_primary_10_2174_0929867325666180831150259 crossref_primary_10_1039_D0BM01735C crossref_primary_10_1186_s12967_023_04729_9 crossref_primary_10_1002_jev2_12245 crossref_primary_10_1016_j_semcancer_2023_11_003 crossref_primary_10_1038_s41598_021_87891_8 crossref_primary_10_1002_jev2_12248 crossref_primary_10_1039_D0BM00427H crossref_primary_10_1007_s40820_022_00818_4 crossref_primary_10_1016_j_phrs_2025_107890 crossref_primary_10_1016_j_bioactmat_2021_12_006 crossref_primary_10_1080_17425247_2024_2306877 crossref_primary_10_1016_j_lfs_2021_120216 crossref_primary_10_1016_j_colsurfb_2018_10_056 crossref_primary_10_1080_1061186X_2021_1929257 crossref_primary_10_1002_sctm_17_0055 crossref_primary_10_1016_j_biomaterials_2017_05_003 crossref_primary_10_1002_adtp_202000259 crossref_primary_10_1080_20013078_2020_1809766 crossref_primary_10_3390_ijms20020299 crossref_primary_10_1007_s00774_017_0860_5 crossref_primary_10_1186_s40580_024_00434_5 crossref_primary_10_5500_wjt_v10_i11_330 crossref_primary_10_3389_fchem_2020_00009 crossref_primary_10_1002_advs_202100460 crossref_primary_10_3389_fimmu_2018_00738 crossref_primary_10_1088_1748_605X_ad525c crossref_primary_10_1016_j_heliyon_2024_e27025 crossref_primary_10_1186_s40779_024_00521_y crossref_primary_10_1038_s42003_025_08749_7 crossref_primary_10_1038_s41392_024_01735_1 crossref_primary_10_1038_s41582_025_01080_z crossref_primary_10_1080_10717544_2020_1748758 crossref_primary_10_3390_ijms22158163 crossref_primary_10_1016_j_matdes_2023_112067 crossref_primary_10_3389_fbioe_2022_1023700 crossref_primary_10_1016_j_jddst_2025_107453 crossref_primary_10_3389_fphar_2025_1550208 crossref_primary_10_1109_TNB_2023_3284090 crossref_primary_10_3390_v12050564 crossref_primary_10_1038_nrcardio_2017_7 crossref_primary_10_3390_v16010094 crossref_primary_10_1002_mco2_259 crossref_primary_10_1016_j_cej_2024_156638 crossref_primary_10_1051_e3sconf_202339101133 crossref_primary_10_1038_s41467_019_11718_4 crossref_primary_10_1016_j_ejmech_2021_113372 crossref_primary_10_2147_IJN_S497428 crossref_primary_10_1016_j_biopha_2020_110237 crossref_primary_10_1186_s40348_025_00190_4 crossref_primary_10_1016_j_tibtech_2020_05_012 crossref_primary_10_1002_wnan_1523 crossref_primary_10_1016_j_jconrel_2023_06_011 crossref_primary_10_1093_cvr_cvac031 crossref_primary_10_3390_biology14010027 crossref_primary_10_3390_biom14010052 crossref_primary_10_3390_pharmaceutics13111931 crossref_primary_10_1016_j_jconrel_2023_07_059 crossref_primary_10_1186_s12951_025_03352_8 crossref_primary_10_1055_s_0041_1731294 crossref_primary_10_3389_fcell_2022_898394 crossref_primary_10_3390_cells10081992 crossref_primary_10_1186_s12964_023_01103_6 crossref_primary_10_1039_D4FO04321A crossref_primary_10_1186_s12951_022_01641_0 crossref_primary_10_1093_rb_rbad108 crossref_primary_10_1016_j_phymed_2025_156376 crossref_primary_10_3390_biomedicines13010147 crossref_primary_10_1016_j_jddst_2022_103219 crossref_primary_10_1002_adtp_201900111 crossref_primary_10_1002_jev2_12283 crossref_primary_10_3390_membranes11080619 crossref_primary_10_1111_cpr_12659 crossref_primary_10_1002_bies_201800245 crossref_primary_10_1007_s00011_025_02053_0 crossref_primary_10_1016_j_addr_2021_113974 crossref_primary_10_1016_j_biopha_2023_115992 crossref_primary_10_1002_adhm_202100596 crossref_primary_10_1016_j_jconrel_2020_06_036 crossref_primary_10_1016_j_jconrel_2024_11_060 crossref_primary_10_1002_adhm_202101202 crossref_primary_10_1016_j_jconrel_2022_10_019 crossref_primary_10_1186_s12951_018_0388_4 crossref_primary_10_1038_s41467_020_20723_x crossref_primary_10_1186_s13036_024_00425_4 crossref_primary_10_3389_fphys_2022_895322 crossref_primary_10_1016_j_apmt_2023_101834 crossref_primary_10_3390_pharmaceutics13060768 crossref_primary_10_1016_j_canlet_2022_215668 crossref_primary_10_3389_fphar_2022_882243 crossref_primary_10_1016_j_apsb_2022_11_014 crossref_primary_10_1007_s13206_025_00232_z crossref_primary_10_1007_s13346_023_01370_3 crossref_primary_10_1016_j_biopha_2023_115744 crossref_primary_10_1038_s41598_023_30180_3 crossref_primary_10_1186_s12964_022_00889_1 crossref_primary_10_1016_j_cell_2020_02_001 crossref_primary_10_1016_j_trac_2018_07_014 crossref_primary_10_52711_0974_360X_2022_00655 crossref_primary_10_1002_ange_201909927 crossref_primary_10_29413_ABS_2025_10_1_3 crossref_primary_10_1016_j_addr_2018_03_008 crossref_primary_10_1016_j_indcrop_2025_121850 crossref_primary_10_3389_fphar_2022_985030 crossref_primary_10_1039_D1BM00928A crossref_primary_10_2147_IJN_S449388 crossref_primary_10_1002_advs_202003505 crossref_primary_10_1002_advs_202003747 crossref_primary_10_2147_IJN_S263756 crossref_primary_10_3389_fimmu_2022_1042983 crossref_primary_10_3390_ijms22168580 crossref_primary_10_1016_j_biomaterials_2021_120761 crossref_primary_10_1016_j_colsurfb_2024_114357 crossref_primary_10_1016_j_tice_2024_102549 crossref_primary_10_1016_j_bioactmat_2024_11_016 crossref_primary_10_1016_j_jconrel_2020_09_028 crossref_primary_10_1016_j_actbio_2019_07_006 crossref_primary_10_3390_nano9050660 crossref_primary_10_3390_ijms22063130 crossref_primary_10_1007_s12274_017_1561_z crossref_primary_10_1088_1748_605X_abaaa2 crossref_primary_10_1002_EXP_20240109 crossref_primary_10_3390_nano11010002 crossref_primary_10_1093_rb_rbac064 crossref_primary_10_1016_j_jconrel_2018_12_022 crossref_primary_10_1186_s12967_025_06817_4 crossref_primary_10_3389_fgene_2022_891465 crossref_primary_10_1016_j_bcp_2021_114714 crossref_primary_10_1016_j_jconrel_2021_01_018 crossref_primary_10_1080_17425247_2020_1752179 crossref_primary_10_3389_fbioe_2020_00019 crossref_primary_10_1016_j_tibtech_2018_11_012 crossref_primary_10_1161_HYPERTENSIONAHA_121_17574 crossref_primary_10_1007_s12015_022_10455_4 crossref_primary_10_2174_1381612825666190701143845 crossref_primary_10_3390_nano10091838 crossref_primary_10_1007_s11033_024_09302_1 crossref_primary_10_3390_ph14080734 crossref_primary_10_1016_j_expneurol_2024_114730 crossref_primary_10_1007_s11596_024_2939_2 crossref_primary_10_1016_j_ymeth_2019_11_012 crossref_primary_10_1016_j_apsb_2023_08_033 crossref_primary_10_1038_s41467_023_37226_0 crossref_primary_10_1186_s12967_024_04981_7 crossref_primary_10_1177_20417314211059624 crossref_primary_10_1002_adma_202005709 crossref_primary_10_1002_mco2_70386 crossref_primary_10_3390_cells11111845 crossref_primary_10_1016_j_jconrel_2020_08_018 crossref_primary_10_3390_ijms221910553 crossref_primary_10_1002_smll_202106241 crossref_primary_10_1038_s41570_022_00404_7 crossref_primary_10_1016_j_apsb_2022_12_013 crossref_primary_10_3389_fimmu_2021_768771 crossref_primary_10_3389_fimmu_2020_01912 crossref_primary_10_1016_j_addr_2021_113954 crossref_primary_10_3389_fphar_2020_538137 crossref_primary_10_3389_fonc_2024_1292083 crossref_primary_10_1016_j_ymeth_2019_10_005 crossref_primary_10_1002_elps_202200133 crossref_primary_10_1016_j_actbio_2018_12_045 crossref_primary_10_3892_ijo_2019_4745 crossref_primary_10_1007_s40005_024_00699_2 crossref_primary_10_2217_nnm_2020_0064 crossref_primary_10_1080_14737140_2017_1322511 crossref_primary_10_3390_foods13101492 crossref_primary_10_1016_j_matdes_2023_112240 crossref_primary_10_3389_fmolb_2020_00139 crossref_primary_10_1080_14686996_2019_1629835 crossref_primary_10_3390_ph14040289 crossref_primary_10_1016_j_prp_2024_155785 crossref_primary_10_1007_s12265_023_10438_x crossref_primary_10_1007_s12672_024_00974_6 crossref_primary_10_1016_j_biomaterials_2020_120282 crossref_primary_10_1155_2022_1872933 crossref_primary_10_1002_adhm_201801604 crossref_primary_10_3390_nano10112172 crossref_primary_10_1039_D4BM00410H crossref_primary_10_1007_s13346_024_01698_4 crossref_primary_10_1016_j_ymthe_2017_03_021 crossref_primary_10_1186_s12951_024_02580_8 crossref_primary_10_1088_1361_6528_ad5690 crossref_primary_10_1016_j_critrevonc_2022_103628 crossref_primary_10_3390_pharmaceutics15112623 crossref_primary_10_1039_D3BM02017G crossref_primary_10_1002_adfm_201703482 crossref_primary_10_2174_0113816128303695240512141729 crossref_primary_10_1038_s41551_022_00989_w crossref_primary_10_1089_adt_2024_045 crossref_primary_10_3390_cancers11020136 crossref_primary_10_3390_ijms20030567 crossref_primary_10_3389_fphar_2018_00817 crossref_primary_10_3390_membranes12050464 crossref_primary_10_1002_adhm_202300404 crossref_primary_10_1002_ar_24186 crossref_primary_10_1016_j_biomaterials_2020_120546 crossref_primary_10_1016_j_phrs_2023_106796 crossref_primary_10_2217_nnm_2018_0286 crossref_primary_10_2147_IJN_S526945 crossref_primary_10_1016_j_pmatsci_2024_101375 crossref_primary_10_3390_futurepharmacol5030048 crossref_primary_10_1007_s11481_020_09981_0 crossref_primary_10_3389_fbioe_2019_00452 crossref_primary_10_1016_j_foodchem_2024_139034 crossref_primary_10_3389_fmedt_2021_678593 crossref_primary_10_3390_cells14060409 crossref_primary_10_1007_s13346_021_01087_1 crossref_primary_10_2174_0115672018289883240226113353 crossref_primary_10_3389_fchem_2022_910341 crossref_primary_10_1016_j_molliq_2022_118549 crossref_primary_10_1016_j_cellsig_2024_111433 crossref_primary_10_1016_j_jconrel_2020_12_005 crossref_primary_10_3390_bioengineering9110671 crossref_primary_10_1007_s00289_020_03531_7 crossref_primary_10_1016_j_ccr_2021_214111 crossref_primary_10_3389_fnagi_2023_1184435 crossref_primary_10_1016_j_biomaterials_2024_122829 crossref_primary_10_1134_S1062359024610991 crossref_primary_10_1080_10717544_2023_2184315 crossref_primary_10_1371_journal_pone_0258599 crossref_primary_10_1038_s41551_019_0405_4 crossref_primary_10_3390_ijms24097833 crossref_primary_10_1016_j_omtn_2019_03_008 crossref_primary_10_1016_j_cej_2025_166067 crossref_primary_10_3390_bioengineering7040124 crossref_primary_10_1016_j_bbrc_2023_05_024 crossref_primary_10_1016_j_foodhyd_2019_04_006 crossref_primary_10_1186_s11671_019_3139_z crossref_primary_10_1016_j_ijpharm_2025_125753 crossref_primary_10_3390_bioengineering9110662 crossref_primary_10_3390_ijms252212346 crossref_primary_10_3390_pharmaceutics15030891 crossref_primary_10_1039_D2FO00876A crossref_primary_10_1016_j_matdes_2025_114275 crossref_primary_10_1016_j_xphs_2023_10_017 crossref_primary_10_1016_j_jconrel_2016_09_016 crossref_primary_10_1007_s12195_022_00738_8 crossref_primary_10_3389_fbioe_2025_1609673 crossref_primary_10_3390_cells14020132 crossref_primary_10_1016_j_intimp_2024_112442 crossref_primary_10_1038_s41598_018_32535_7 crossref_primary_10_1111_jcmm_70723 crossref_primary_10_1039_D4BM00159A crossref_primary_10_3390_biom13081209 crossref_primary_10_1007_s11033_024_10157_9 crossref_primary_10_1007_s00280_018_3586_8 crossref_primary_10_3389_fbioe_2021_645039 crossref_primary_10_1021_acsbiomaterials_9b00417 crossref_primary_10_1186_s12964_019_0423_6 crossref_primary_10_1016_j_jddst_2022_104088 crossref_primary_10_1016_j_jconrel_2023_11_011 crossref_primary_10_1016_j_ymthe_2020_11_030 crossref_primary_10_1177_15330338211041203 crossref_primary_10_3390_cells8121652 crossref_primary_10_1002_btm2_10284 crossref_primary_10_3390_bioengineering9110675 crossref_primary_10_1002_ddr_22091 crossref_primary_10_1016_j_addr_2022_114294 crossref_primary_10_3390_ijms222011187 crossref_primary_10_1016_j_jconrel_2025_113620 crossref_primary_10_1111_exd_13451 crossref_primary_10_1007_s11154_021_09680_y crossref_primary_10_1002_eji_202350916 crossref_primary_10_1039_D0BM00804D crossref_primary_10_1016_j_actbio_2020_11_001 crossref_primary_10_1016_j_actbio_2020_06_029 crossref_primary_10_3390_ijms23147986 crossref_primary_10_3390_pharmaceutics15020663 crossref_primary_10_3389_fimmu_2023_1153901 crossref_primary_10_1016_j_ccr_2024_216328 crossref_primary_10_1016_j_jconrel_2020_12_039 crossref_primary_10_1039_D1NR02706A crossref_primary_10_3389_fimmu_2020_01509 crossref_primary_10_1016_j_cej_2025_161819 crossref_primary_10_3389_fphar_2016_00533 crossref_primary_10_1080_15384047_2025_2541991 crossref_primary_10_1038_srep38743 crossref_primary_10_3390_ijms24010250 crossref_primary_10_1002_jex2_70030 crossref_primary_10_1038_s41587_022_01491_z crossref_primary_10_1007_s00259_022_05696_x crossref_primary_10_1016_j_tips_2020_07_001 crossref_primary_10_1016_j_jconrel_2020_11_062 crossref_primary_10_1016_j_addr_2020_04_004 crossref_primary_10_3390_bioengineering6010007 crossref_primary_10_1016_j_biomaterials_2019_119707 crossref_primary_10_3390_ijms21197362 crossref_primary_10_1016_j_ejpb_2021_12_012 crossref_primary_10_1111_jnc_16108 crossref_primary_10_1080_10717544_2018_1425774 crossref_primary_10_1016_j_omtn_2019_12_004 crossref_primary_10_1016_j_snb_2020_128917 crossref_primary_10_3389_fbioe_2022_1043130 crossref_primary_10_2147_IJN_S444582 crossref_primary_10_1371_journal_ppat_1009508 crossref_primary_10_1016_j_talanta_2022_123625 crossref_primary_10_1002_jex2_70054 crossref_primary_10_1016_j_nantod_2022_101531 crossref_primary_10_1038_s42003_024_07364_2 crossref_primary_10_3389_fcell_2020_00573 crossref_primary_10_1186_s13287_022_03142_1 crossref_primary_10_1016_j_devcel_2016_04_019 crossref_primary_10_1016_j_jelechem_2018_11_015 crossref_primary_10_1002_rmv_2562 crossref_primary_10_3390_pharmaceutics15051327 crossref_primary_10_3390_ijms21186680 crossref_primary_10_1016_j_biopha_2024_117754 crossref_primary_10_1186_s40478_024_01777_0 crossref_primary_10_3389_fcell_2021_734720 crossref_primary_10_1016_j_transci_2017_07_015 crossref_primary_10_3390_ijms24119368 crossref_primary_10_1002_biot_201800528 crossref_primary_10_3390_cancers11081147 crossref_primary_10_1021_acs_jafc_4c11183 crossref_primary_10_1039_D1BM00862E crossref_primary_10_1039_D3NR01667F crossref_primary_10_1002_adtp_201900201 crossref_primary_10_1038_s42003_021_02965_7 crossref_primary_10_3390_pharmaceutics15072011 crossref_primary_10_1016_j_biopha_2023_115284 crossref_primary_10_1016_j_biopha_2023_115048 crossref_primary_10_3390_jfb16010025 crossref_primary_10_1080_10717544_2018_1513609 crossref_primary_10_1016_j_biomaterials_2020_119925 crossref_primary_10_1007_s11033_022_07169_8 crossref_primary_10_1080_08982104_2020_1850776 crossref_primary_10_1016_j_cancergen_2020_12_006 crossref_primary_10_1007_s10735_017_9711_x crossref_primary_10_1039_D0NR07349K crossref_primary_10_1080_20013078_2017_1286095 crossref_primary_10_1016_j_kint_2021_04_039 crossref_primary_10_26599_NTM_2022_9130013 crossref_primary_10_3389_fcell_2024_1372847 crossref_primary_10_1093_ckj_sfad196 crossref_primary_10_1155_2021_6696894 crossref_primary_10_1016_j_jconrel_2017_07_023 crossref_primary_10_3390_jcm14155515 crossref_primary_10_3389_fendo_2017_00194 crossref_primary_10_5812_jjcmb_136652 crossref_primary_10_1016_j_addr_2021_114108 crossref_primary_10_1021_acsami_5c06927 crossref_primary_10_1038_nrg_2016_106 crossref_primary_10_1038_s42003_021_02364_y crossref_primary_10_1016_j_ijpharm_2022_121791 crossref_primary_10_3389_fbioe_2025_1600227 crossref_primary_10_3389_fnano_2022_939197 crossref_primary_10_1016_j_semcancer_2022_04_004 crossref_primary_10_3390_pharmaceutics17040508 crossref_primary_10_1039_D0BM01696A crossref_primary_10_1016_j_ejpb_2021_05_024 crossref_primary_10_1186_s12933_025_02603_0 crossref_primary_10_3389_fonc_2022_884369 crossref_primary_10_3390_ijms22041729 crossref_primary_10_1002_wnan_1594 crossref_primary_10_1016_j_jconrel_2020_03_039 crossref_primary_10_2147_IJN_S502591 crossref_primary_10_3389_fbioe_2021_752019 crossref_primary_10_3389_fcell_2021_751079 crossref_primary_10_1186_s12951_023_02050_7 crossref_primary_10_3389_fphar_2020_01016 crossref_primary_10_1007_s10544_019_0396_7 crossref_primary_10_1186_s12935_020_01526_y crossref_primary_10_1016_j_bios_2025_117275 crossref_primary_10_3390_ijms22189726 crossref_primary_10_1002_advs_202301440 crossref_primary_10_1186_s13287_023_03275_x crossref_primary_10_1016_j_jconrel_2017_07_001 crossref_primary_10_1002_jev2_12434 crossref_primary_10_3390_cells11182772 crossref_primary_10_1186_s12951_022_01342_8 crossref_primary_10_1016_j_polymer_2019_121634 crossref_primary_10_1007_s00018_017_2637_3 crossref_primary_10_1016_j_jconrel_2022_06_011 crossref_primary_10_1016_j_theriogenology_2022_10_027 crossref_primary_10_1016_j_jconrel_2022_12_013 crossref_primary_10_1016_j_biomaterials_2023_122303 crossref_primary_10_1016_j_intimp_2020_107198 crossref_primary_10_3390_pharmaceutics10040218 crossref_primary_10_3390_biomedicines11010201 crossref_primary_10_1002_sctm_18_0226 crossref_primary_10_1002_mco2_192 crossref_primary_10_1039_D1BM01751A crossref_primary_10_1002_cbin_11494 crossref_primary_10_1063_5_0157913 crossref_primary_10_3390_pharmaceutics16081028 crossref_primary_10_1002_btm2_10756 crossref_primary_10_1093_burnst_tkab043 crossref_primary_10_1016_j_cej_2020_125939 crossref_primary_10_1039_D1BM01142A crossref_primary_10_3390_ijms221910467 crossref_primary_10_1002_adfm_202302579 crossref_primary_10_1002_nano_202100142 crossref_primary_10_3390_ijms22126417 crossref_primary_10_1016_j_bioana_2024_05_002 crossref_primary_10_3389_fbioe_2022_1053217 crossref_primary_10_1080_14756366_2022_2155816 crossref_primary_10_3390_nano11061481 crossref_primary_10_1002_clt2_12138 crossref_primary_10_1186_s12943_019_0981_7 crossref_primary_10_1007_s13205_025_04345_y crossref_primary_10_3390_ijms252413488 crossref_primary_10_1016_j_omtn_2021_04_006 crossref_primary_10_1007_s12013_025_01730_5 crossref_primary_10_3390_v12050486 crossref_primary_10_1007_s10529_023_03376_w crossref_primary_10_1016_j_actaastro_2019_04_045 crossref_primary_10_3390_pharmaceutics12121171 crossref_primary_10_1016_j_mtbio_2025_101646 crossref_primary_10_1016_j_impact_2020_100261 crossref_primary_10_3390_ijms25073645 crossref_primary_10_1002_med_21453 crossref_primary_10_3389_fimmu_2024_1328145 crossref_primary_10_1016_j_ejpb_2019_08_009 crossref_primary_10_1016_j_jiec_2023_02_015 crossref_primary_10_1016_j_biotechadv_2021_107814 crossref_primary_10_1155_2018_4851949 crossref_primary_10_1016_j_apsb_2022_02_030 crossref_primary_10_1002_adma_201605604 crossref_primary_10_1016_j_addr_2021_04_012 crossref_primary_10_3390_pharmaceutics17091131 crossref_primary_10_3390_molecules26061544 crossref_primary_10_1039_D3BM00893B crossref_primary_10_1016_j_colsurfb_2018_07_007 crossref_primary_10_3389_fncel_2019_00530 crossref_primary_10_3390_cells11131989 crossref_primary_10_1039_C8BM01449C crossref_primary_10_1002_adhm_202200142 crossref_primary_10_1016_j_lfs_2025_123813 crossref_primary_10_7759_cureus_80200 crossref_primary_10_1016_j_ijpharm_2020_119478 crossref_primary_10_1096_fj_202002777RR crossref_primary_10_1016_j_acthis_2025_152270 crossref_primary_10_1002_INMD_20240126 crossref_primary_10_1016_j_biomaterials_2021_121160 crossref_primary_10_3389_fbioe_2023_1170212 crossref_primary_10_3390_vetsci9110609 crossref_primary_10_1007_s12015_020_10002_z crossref_primary_10_1016_j_addr_2021_113891 crossref_primary_10_3389_fcvm_2021_758050 crossref_primary_10_1016_j_nano_2022_102625 crossref_primary_10_2147_IJN_S436774 crossref_primary_10_1002_jev2_12371 crossref_primary_10_1038_nature22341 crossref_primary_10_1016_j_biomaterials_2022_121438 crossref_primary_10_3390_pharmaceutics17050600 crossref_primary_10_1002_smll_202007796 crossref_primary_10_1016_j_neuroscience_2020_05_046 crossref_primary_10_1002_jev2_12389 crossref_primary_10_1016_j_actbio_2018_03_046 crossref_primary_10_3390_cells11233873 crossref_primary_10_1002_ird3_77 crossref_primary_10_1016_j_jconrel_2024_09_053 crossref_primary_10_1002_jcp_27615 crossref_primary_10_1016_j_jconrel_2017_09_019 crossref_primary_10_1002_adhm_202403903 crossref_primary_10_1002_adma_201707112 crossref_primary_10_1016_j_apsb_2022_08_020 crossref_primary_10_1002_wnan_1885 crossref_primary_10_1016_j_apsb_2020_04_004 crossref_primary_10_1016_j_ejpb_2024_114500 crossref_primary_10_3390_cancers14143550 crossref_primary_10_1093_ecco_jcc_jjz184 crossref_primary_10_3389_fmed_2018_00178 crossref_primary_10_1016_j_addr_2021_03_017 crossref_primary_10_1177_20417314241312563 crossref_primary_10_1016_j_addr_2021_03_016 crossref_primary_10_1186_s12935_023_02985_9 crossref_primary_10_3389_fonc_2024_1482087 crossref_primary_10_1016_j_omtn_2018_11_009 crossref_primary_10_1016_j_addr_2021_03_012 crossref_primary_10_1002_jev2_70006 crossref_primary_10_1016_j_nano_2022_102607 crossref_primary_10_1039_D1NR04999B crossref_primary_10_1002_jev2_70005 crossref_primary_10_1016_j_bbrc_2025_151707 crossref_primary_10_1016_j_actbio_2018_03_043 crossref_primary_10_1016_j_colsurfa_2019_124033 crossref_primary_10_3390_cells10112887 crossref_primary_10_1111_1759_7714_13175 crossref_primary_10_1002_advs_202004929 crossref_primary_10_1016_j_biomaterials_2019_01_024 crossref_primary_10_1039_D0NR00523A crossref_primary_10_1016_j_jconrel_2022_05_062 crossref_primary_10_1038_s41569_020_00499_9 crossref_primary_10_1016_j_ymthe_2019_10_016 crossref_primary_10_1016_j_bbcan_2021_188539 crossref_primary_10_3389_fonc_2023_1172292 crossref_primary_10_1016_j_scib_2023_11_055 crossref_primary_10_1155_2021_6681771 crossref_primary_10_1208_s12248_024_00889_8 crossref_primary_10_1016_j_jconrel_2022_04_019 crossref_primary_10_1002_jev2_12163 crossref_primary_10_1002_pmic_202300063 crossref_primary_10_1016_j_lfs_2023_121830 crossref_primary_10_3390_ijms26125766 crossref_primary_10_7717_peerj_10062 crossref_primary_10_1002_prca_70023 crossref_primary_10_1111_aji_13312 crossref_primary_10_1007_s00018_021_03973_w crossref_primary_10_1021_jacs_3c13123 crossref_primary_10_1039_D1QM00717C crossref_primary_10_1002_adhm_202401990 crossref_primary_10_1016_j_phrs_2023_106957 crossref_primary_10_4155_fmc_2018_0214 crossref_primary_10_1016_j_addr_2020_08_010 crossref_primary_10_3390_cancers15030701 crossref_primary_10_1038_nrgastro_2017_113 crossref_primary_10_1016_j_jconrel_2021_08_038 crossref_primary_10_1186_s13062_023_00429_y crossref_primary_10_3390_biology11020177 crossref_primary_10_1002_smll_202106569 crossref_primary_10_1002_adfm_201909890 crossref_primary_10_1080_1061186X_2024_2449482 crossref_primary_10_1089_ten_teb_2020_0222 crossref_primary_10_3390_nano11030570 crossref_primary_10_1039_D3BM01980B crossref_primary_10_1016_j_biopha_2022_114046 crossref_primary_10_2217_epi_2019_0081 crossref_primary_10_3390_pharmaceutics14102236 crossref_primary_10_1016_j_tranon_2022_101439 crossref_primary_10_1590_1984_3143_ar2025_0049 crossref_primary_10_1016_j_ymthe_2018_03_019 crossref_primary_10_1016_j_jsps_2024_102124 crossref_primary_10_1016_j_biomaterials_2020_120369 crossref_primary_10_1016_j_phrs_2020_105322 crossref_primary_10_1007_s12015_021_10185_z crossref_primary_10_1016_j_jconrel_2023_12_050 crossref_primary_10_3390_molecules27041303 crossref_primary_10_2174_0109298673276581231210170332 crossref_primary_10_1002_advs_202002787 crossref_primary_10_1186_s12951_024_02779_9 crossref_primary_10_3390_ijms26136448 crossref_primary_10_3390_ma18071440 crossref_primary_10_1002_ctm2_70002 crossref_primary_10_3390_cells11010043 crossref_primary_10_3389_fbioe_2020_01010 crossref_primary_10_1186_s13578_022_00786_7 crossref_primary_10_1039_D2CS00317A crossref_primary_10_3390_antiox11010078 crossref_primary_10_1134_S0026893324010102 crossref_primary_10_1016_j_ijbiomac_2023_127131 crossref_primary_10_3390_molecules25030689 crossref_primary_10_2147_IJN_S465959 crossref_primary_10_1016_j_ijpharm_2020_119627 crossref_primary_10_1182_bloodadvances_2023012464 crossref_primary_10_3390_ijms21207688 crossref_primary_10_1016_j_biomaterials_2017_10_012 crossref_primary_10_1016_j_ijpx_2025_100360 crossref_primary_10_1002_ajoc_202500053 crossref_primary_10_3390_pharmaceutics14102252 crossref_primary_10_1038_gt_2017_8 crossref_primary_10_1038_s41551_017_0119_4 crossref_primary_10_1016_j_ijbiomac_2023_127145 crossref_primary_10_1002_jex2_138 crossref_primary_10_1016_j_addr_2021_113829 crossref_primary_10_1016_j_prp_2024_155446 crossref_primary_10_3390_ijms25179149 crossref_primary_10_3390_ijms26104857 crossref_primary_10_1016_j_jconrel_2022_03_036 crossref_primary_10_1007_s12274_021_3868_z crossref_primary_10_1016_j_lfs_2023_121646 crossref_primary_10_1016_j_lfs_2020_118871 crossref_primary_10_1016_j_nantod_2024_102336 crossref_primary_10_1097_MS9_0000000000001473 crossref_primary_10_3390_bios13010050 crossref_primary_10_1016_j_intimp_2025_115045 crossref_primary_10_3389_fimmu_2020_571897 crossref_primary_10_1016_j_clim_2019_06_006 crossref_primary_10_1002_cac2_12518 crossref_primary_10_1186_s13036_024_00470_z crossref_primary_10_3389_fonc_2025_1586083 crossref_primary_10_1016_j_omtn_2023_05_002 crossref_primary_10_1186_s12929_022_00798_y crossref_primary_10_1016_j_jconrel_2018_05_015 crossref_primary_10_1002_adfm_202100088 crossref_primary_10_1146_annurev_arplant_081720_010616 crossref_primary_10_3390_polym13203492 crossref_primary_10_1016_j_phrs_2024_107260 crossref_primary_10_1002_adma_202314354 crossref_primary_10_1016_j_mtbio_2025_102345 crossref_primary_10_1080_17435889_2024_2391267 crossref_primary_10_3389_fimmu_2022_982040 crossref_primary_10_1002_biof_70021 crossref_primary_10_1080_01652176_2024_2363626 crossref_primary_10_1016_j_exer_2024_109936 crossref_primary_10_1016_j_nbd_2021_105445 crossref_primary_10_3390_cells14070548 crossref_primary_10_1016_j_ymthe_2019_12_007 crossref_primary_10_1016_j_intimp_2024_111845 crossref_primary_10_1016_j_bioactmat_2022_02_019 crossref_primary_10_1016_j_biomaterials_2025_123214 crossref_primary_10_1155_2021_9983900 crossref_primary_10_1016_j_addr_2021_113843 crossref_primary_10_1016_j_bioactmat_2022_02_013 crossref_primary_10_1038_s41388_020_01521_7 crossref_primary_10_1016_j_ijantimicag_2023_106969 crossref_primary_10_3390_ijms221910890 crossref_primary_10_1111_cns_14355 crossref_primary_10_1016_j_chempr_2023_03_012 crossref_primary_10_1186_s13578_022_00784_9 crossref_primary_10_1007_s12272_023_01477_8 crossref_primary_10_1017_neu_2023_27 crossref_primary_10_1016_j_jconrel_2023_10_034 crossref_primary_10_1016_j_jconrel_2023_10_031 crossref_primary_10_2147_IJN_S458397 |
| Cites_doi | 10.1074/jbc.M110.107821 10.1016/j.jconrel.2012.04.038 10.1016/S0022-1759(02)00330-7 10.1038/mt.2010.254 10.1016/S1054-3589(08)60246-X 10.1038/nbt.1807 10.1093/nar/gks463 10.1021/nn404945r 10.1146/annurev-cellbio-101512-122326 10.1038/mt.2011.164 10.1016/j.jconrel.2013.08.014 10.1038/mt.2012.161 10.1016/j.biomaterials.2014.02.003 10.1186/1471-2164-12-S3-S18 10.1186/1479-5876-3-9 10.1038/mt.2010.105 10.1038/ncomms2282 10.1080/08982100802309552 10.1021/nn402232g 10.1074/jbc.M111.288662 10.1016/j.biomaterials.2015.04.028 10.3402/jev.v4.27269 10.1002/immu.200310028 10.1038/leu.2014.41 10.1016/j.jconrel.2014.11.029 10.1095/biolreprod.111.095760 10.1007/s10544-012-9642-y 10.1016/j.biomaterials.2013.11.083 10.1016/0005-2736(94)90005-1 10.1016/j.nano.2014.11.009 10.1016/j.celrep.2014.08.027 10.3402/jev.v2i0.20389 10.3402/jev.v4.29685 10.1038/srep10721 10.1186/1479-5876-3-10 10.1016/j.jconrel.2015.09.031 10.1083/jcb.201211138 10.1016/j.jconrel.2016.01.009 10.1016/j.jconrel.2014.07.042 10.1038/nbt.3045 10.1038/ncb1725 10.1248/bpb.34.13 10.1093/clinchem/48.10.1647 10.1016/j.jconrel.2015.03.033 10.1038/ncb3169 10.1038/ncb1800 10.1074/jbc.M114.621383 10.3390/ph6050659 10.3402/jev.v4.30087 10.1016/j.jconrel.2014.07.049 10.1016/j.ab.2013.12.001 10.1016/j.jconrel.2011.11.021 10.1016/j.nano.2015.01.003 10.1021/nl5047494 10.1016/j.chroma.2014.10.026 10.3402/jev.v3.23430 10.1038/ncb1596 10.1016/j.molcel.2010.06.010 10.1016/S0022-1759(00)00321-5 10.1136/gutjnl-2011-300449 10.1002/jps.2600700412 10.1038/mtna.2011.2 10.1093/intimm/dxh267 10.1517/14712598.2015.977250 10.1038/mt.2012.180 10.1016/j.ymeth.2015.02.019 10.1073/pnas.0403453101 10.1038/mt.2008.1 10.1038/35078107 10.3402/jev.v4.26238 10.1517/14712598.5.6.737 10.1038/sj.leu.2404132 10.1073/pnas.0914843107 10.1016/j.jconrel.2014.12.013 10.3402/jev.v4.26316 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. Copyright © 2016 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright © 2016 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.addr.2016.02.006 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1872-8294 |
| EndPage | 156 |
| ExternalDocumentID | 26928656 10_1016_j_addr_2016_02_006 S0169409X16300576 |
| Genre | Journal Article Review |
| GroupedDBID | --- --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATCM AAXUO ABFNM ABGSF ABJNI ABMAC ABUDA ABYKQ ABZDS ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADUVX AEBSH AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SPCBC SSP SSU SSZ T5K TEORI ~G- --K 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AGRDE AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMT HVGLF HX~ HZ~ R2- SEW SPT WUQ Y6R ~HD CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c356t-907d6742b7789731a3005ebcf36f18ed472dd1eee59fc4d16f8fc055456147f93 |
| ISICitedReferencesCount | 995 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000387525500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0169-409X 1872-8294 |
| IngestDate | Sun Sep 28 01:41:33 EDT 2025 Wed Feb 19 02:43:08 EST 2025 Sat Nov 29 07:24:21 EST 2025 Tue Nov 18 21:55:50 EST 2025 Fri Feb 23 02:29:07 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Pt A |
| Keywords | biodistribution targeting exosomes Extracellular vesicles nanomedicine isolation microvesicles drug delivery |
| Language | English |
| License | Copyright © 2016 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c356t-907d6742b7789731a3005ebcf36f18ed472dd1eee59fc4d16f8fc055456147f93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-1012-9815 |
| PMID | 26928656 |
| PQID | 1826659477 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1826659477 pubmed_primary_26928656 crossref_citationtrail_10_1016_j_addr_2016_02_006 crossref_primary_10_1016_j_addr_2016_02_006 elsevier_sciencedirect_doi_10_1016_j_addr_2016_02_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-11-15 |
| PublicationDateYYYYMMDD | 2016-11-15 |
| PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Advanced drug delivery reviews |
| PublicationTitleAlternate | Adv Drug Deliv Rev |
| PublicationYear | 2016 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Nordin, Lee, Vader, Mager, Johansson, Heusermann, Wiklander, Hallbrink, Seow, Bultema, Gilthorpe, Davies, Fairchild, Gabrielsson, Meisner-Kober, Lehtio, Smith, Wood, El Andaloussi (bb0175) May 2015; 11 Zhang, Liu, Chen, Li, Li, Bian, Sun, Lu, Yin, Cai, Sun, Wang, Ba, Wang, Wang, Yang, Liu, Xu, Yan, Zhang, Zen, Zhang (bb0200) 2010; 39 Hellwinkel, Redzic, Harland, Gunaydin, Anchordoquy, Graner (bb0330) Sep. 18 2015 Urbanelli, Buratta, Sagini, Ferrara, Lanni, Emiliani (bb0075) 2015; 10 Hood, Scott, Wickline (bb0260) 2014; 448 Fuhrmann, Serio, Mazo, Nair, Stevens (bb0270) 2015; 205 Mizrak, Bolukbasi, Ozdener, Brenner, Madlener, Erkan, Strobel, Breakefield, Saydam (bb0385) 2013; 21 Caby, Lankar, Vincendeau-Scherrer, Raposo, Bonnerot (bb0060) 2005; 17 van der Meel, Fens, Vader, van Solinge, Eniola-Adefeso, Schiffelers (bb0295) 2014; 195 Tsui, Ng, Lo (bb0090) 2002; 48 Ogawa, Miura, Harazono, Kanai-Azuma, Akimoto, Kawakami, Yamaguchi, Toda, Endo, Tsubuki, Yanoshita (bb0070) 2011; 34 Kosaka, Iguchi, Yoshioka, Hagiwara, Takeshita, Ochiya (bb0190) 2012; 287 Ashcroft, de Sonneville, Yuana, Osanto, Bertina, Kuil, Oosterkamp (bb0150) 2012; 14 Bolukbasi, Mizrak, Ozdener, Madlener, Strobel, Erkan, Fan, Breakefield, Saydam (bb0030) 2012; 1 Zhuang, Xiang, Grizzle, Sun, Zhang, Axtell, Ju, Mu, Zhang, Steinman, Miller, Zhang (bb0100) 2011; 19 Lamparski, Metha-Damani, Yao, Patel, Hsu, Ruegg, Le Pecq (bb0155) 2002; 270 Imai, Takahashi, Nishikawa, Kato, Morishita, Yamashita, Matsumoto, Charoenviriyakul, Takakura (bb0285) 2015; 4 Wiklander, Nordin, O'Loughlin, Gustafsson, Corso, Mager, Vader, Lee, Sork, Seow, Heldring, Alvarez-Erviti, Smith, Le Blanc, Macchiarini, Jungebluth, Wood, Andaloussi (bb0275) 2015; 4 Koppers-Lalic, Hackenberg, Bijnsdorp, van Eijndhoven, Sadek, Sie, Zini, Middeldorp, Ylstra, de Menezes, Wurdinger, Meijer, Pegtel (bb0025) 2014; 8 Skog, Wurdinger, van Rijn, Meijer, Gainche, Sena-Esteves, Curry, Carter, Krichevsky, Breakefield (bb0050) 2008; 10 Pegtel, Cosmopoulos, Thorley-Lawson, van Eijndhoven, Hopmans, Lindenberg, de Gruijl, Wurdinger, Middeldorp (bb0045) 2010; 107 Yoon, Jo, Jeong, Kim, Jeong, Park (bb0400) 2015; 59 Escudier, Dorval, Chaput, Andre, Caby, Novault, Flament, Leboulaire, Borg, Amigorena, Boccaccio, Bonnerot, Dhellin, Movassagh, Piperno, Robert, Serra, Valente, Le Pecq, Spatz, Lantz, Tursz, Angevin, Zitvogel (bb0110) 2005; 3 Alvarez-Erviti, Seow, Yin, Betts, Lakhal, Wood (bb0095) 2011; 29 Pan, Ramakrishnaiah, Henry, Fouraschen, de Ruiter, Kwekkeboom, Tilanus, Janssen, van der Laan (bb0195) 2012; 61 Lener, Gimona, Aigner, Borger, Buza s, Camussi, Chaput, Chatterjee, Court, Del Portillo, O'Driscoll, Fais, Falcon-Perez, Felderhoff-Mueser, Fraile, Gho, Gorgens, Gupta, Hendrix, Hermann, Hill, Hochberg, Horn, de Kleijn, Kordelas, Kramer, Kramer-Albers, Laner-Plamberger, Laitinen, Leonardi, Lorenowicz, Lim, Lotvall, Maguire, Marcilla, Nazarenko, Ochiya, Patel, Pedersen, Pocsfalvi, Pluchino, Quesenberry, Reischl, Rivera, Sanzenbacher, Schallmoser, Slaper-Cortenbach, Strunk, Tonn, Vader, van Balkom, Wauben, Andaloussi, Thery, Rohde, Giebel (bb0125) 2015; 4 Lai, Mardini, Ericsson, Prabhakar, Maguire, Chen, Tannous, Breakefield (bb0280) 2014; 8 Haney, Klyachko, Zhao, Gupta, Plotnikova, He, Patel, Piroyan, Sokolsky, Kabanov, Batrakova (bb0265) 2015; 207 van Dommelen, Vader, Lakhal, Kooijmans, van Solinge, Wood, Schiffelers (bb0020) 2012; 161 Kordelas, Rebmann, Ludwig, Radtke, Ruesing, Doeppner, Epple, Horn, Beelen, Giebel (bb0340) 2014; 28 Senyei, Reich, Gonczy, Widder (bb0370) 1981; 70 Monguio-Tortajada, Lauzurica-Valdemoros, Borras (bb0335) 2014; 5 Pascucci, Cocce, Bonomi, Ami, Ceccarelli, Ciusani, Vigano, Locatelli, Sisto, Doglia, Parati, Bernardo, Muraca, Alessandri, Bondiolotti, Pessina (bb0215) 2014; 192 Valadi, Ekstrom, Bossios, Sjostrand, Lee, Lotvall (bb0035) 2007; 9 Ratajczak, Miekus, Kucia, Zhang, Reca, Dvorak, Ratajczak (bb0040) 2006; 20 Raposo, Stoorvogel (bb0015) 2013; 200 Moghimi, Hamad (bb0310) 2008; 18 Marcus, Leonard (bb0105) 2013; 6 Morse, Garst, Osada, Khan, Hobeika, Clay, Valente, Shreeniwas, Sutton, Delcayre, Hsu, Le Pecq, Lyerly (bb0115) 2005; 3 Smyth, Kullberg, Malik, Smith-Jones, Graner, Anchordoquy (bb0300) 2015; 199 Tang, Zhang, Zhang, Xu, Liu, Ma, Lv, Li, Katirai, Shen, Zhang, Feng, Ye, Huang (bb0220) 2012; 3 Gould, Raposo (bb0010) 2013; 2 Akao, Iio, Itoh, Noguchi, Itoh, Ohtsuki, Naoe (bb0205) 2011; 19 Al-Nedawi, Meehan, Micallef, Lhotak, May, Guha, Rak (bb0055) 2008; 10 Costa-Silva, Aiello, Ocean, Singh, Zhang, Thakur, Becker, Hoshino, Mark, Molina, Xiang, Zhang, Theilen, Garcia-Santos, Williams, Ararso, Huang, Rodrigues, Shen, Labori, Lothe, Kure, Hernandez, Doussot, Ebbesen, Grandgenett, Hollingsworth, Jain, Mallya, Batra, Jarnagin, Schwartz, Matei, Peinado, Stanger, Bromberg, Lyden (bb0345) 2015; 17 Bala, Csak, Momen-Heravi, Lippai, Kodys, Catalano, Satishchandran, Ambros, Szabo (bb0290) 2015; 5 Heinemann, Ilmer, Silva, Hawke, Recio, Vorontsova, Alt, Vykoukal (bb0160) 2014; 1371 (bb0085) 2014; 32 Saari, Lazaro-Ibanez, Viitala, Vuorimaa-Laukkanen, Siljander, Yliperttula (bb0235) 2015; 220 Sun, Zhuang, Xiang, Liu, Zhang, Liu, Barnes, Grizzle, Miller, Zhang (bb0230) 2010; 18 Aalberts, van Dissel-Emiliani, van Adrichem, van Wijnen, Wauben, Stout, Stoorvogel (bb0135) 2012; 86 Hung, Leonard (bb0355) 2015; 290 Zhang, Li, Yu, Zhu, Li, Gu, Zhang, Zen (bb0390) 2014; 35 Kosaka, Iguchi, Yoshioka, Takeshita, Matsuki, Ochiya (bb0185) 2010; 285 Clayton, Harris, Court, Mason, Morgan (bb0315) 2003; 33 Wahlgren, De, Brisslert, Vaziri Sani, Telemo, Sunnerhagen, Valadi (bb0245) 2012; 40 Taylor, Shah (bb0140) 2015; 87 Clayton, Court, Navabi, Adams, Mason, Hobot, Newman, Jasani (bb0145) 2001; 247 Widder, Senyei, Ranney (bb0365) 1979; 16 Lasser (bb0080) 2015; 15 Silva, Luciani, Gazeau, Aubertin, Bonneau, Chauvierre, Letourneur, Wilhelm (bb0375) 2015; 11 Boing, van der Pol, Grootemaat, Coumans, Sturk, Nieuwland (bb0165) 2014; 3 Chaput, Taieb, Andre, Zitvogel (bb0325) 2005; 5 Welton, Webber, Botos, Jones, Clayton (bb0170) 2015; 4 Lee, Kim, Jeong, Lee, Goh, Kim, Kim, Park (bb0225) 2015; 15 Colombo, Raposo, Thery (bb0005) 2014; 30 Dai, Wei, Wu, Zhou, Wei, Huang, Li (bb0120) 2008; 16 Batagov, Kuznetsov, Kurochkin (bb0210) 2011; 12 Whitehead, Wu, Hvam, Aslan, Dong, Dyrskjot, Ostenfeld, Moghimi, Howard (bb0320) 2015; 4 Pisitkun, Shen, Knepper (bb0065) 2004; 101 Thery, Amigorena, Raposo, Clayton (bb0130) 2006 Tian, Li, Song, Ji, Zhu, Anderson, Wei, Nie (bb0350) 2014; 35 Elbashir, Harborth, Lendeckel, Yalcin, Weber, Tuschl (bb0180) 2001; 411 Ohno, Takanashi, Sudo, Ueda, Ishikawa, Matsuyama, Fujita, Mizutani, Ohgi, Ochiya, Gotoh, Kuroda (bb0360) 2013; 21 Kim, Haney, Zhao, Mahajan, Deygen, Klyachko, Inskoe, Piroyan, Sokolsky, Okolie, Hingtgen, Kabanov, Batrakova (bb0240) Nov. 14 2015 Maeda (bb0380) 2012; 164 Jang, Kim, Yoon, Choi, Roh, Park, Nilsson, Lotvall, Kim, Gho (bb0395) 2013; 7 Kooijmans, Stremersch, Braeckmans, de Smedt, Hendrix, Wood, Schiffelers, Raemdonck, Vader (bb0250) 2013; 172 Stoicheva, Hui (bb0255) 1994; 1195 Kooijmans, Fliervoet, van der Meel, Fens, Heijnen, van Bergen En Henegouwen, Vader, Schiffelers (bb0305) 2016; 224 Clayton (10.1016/j.addr.2016.02.006_bb0145) 2001; 247 Lener (10.1016/j.addr.2016.02.006_bb0125) 2015; 4 Aalberts (10.1016/j.addr.2016.02.006_bb0135) 2012; 86 Kosaka (10.1016/j.addr.2016.02.006_bb0190) 2012; 287 Raposo (10.1016/j.addr.2016.02.006_bb0015) 2013; 200 Costa-Silva (10.1016/j.addr.2016.02.006_bb0345) 2015; 17 Escudier (10.1016/j.addr.2016.02.006_bb0110) 2005; 3 Sun (10.1016/j.addr.2016.02.006_bb0230) 2010; 18 Pascucci (10.1016/j.addr.2016.02.006_bb0215) 2014; 192 Elbashir (10.1016/j.addr.2016.02.006_bb0180) 2001; 411 Hellwinkel (10.1016/j.addr.2016.02.006_bb0330) 2015 Lamparski (10.1016/j.addr.2016.02.006_bb0155) 2002; 270 Zhang (10.1016/j.addr.2016.02.006_bb0200) 2010; 39 Pan (10.1016/j.addr.2016.02.006_bb0195) 2012; 61 Akao (10.1016/j.addr.2016.02.006_bb0205) 2011; 19 Colombo (10.1016/j.addr.2016.02.006_bb0005) 2014; 30 Ratajczak (10.1016/j.addr.2016.02.006_bb0040) 2006; 20 Koppers-Lalic (10.1016/j.addr.2016.02.006_bb0025) 2014; 8 Valadi (10.1016/j.addr.2016.02.006_bb0035) 2007; 9 Chaput (10.1016/j.addr.2016.02.006_bb0325) 2005; 5 Zhuang (10.1016/j.addr.2016.02.006_bb0100) 2011; 19 Ohno (10.1016/j.addr.2016.02.006_bb0360) 2013; 21 Kosaka (10.1016/j.addr.2016.02.006_bb0185) 2010; 285 Heinemann (10.1016/j.addr.2016.02.006_bb0160) 2014; 1371 Welton (10.1016/j.addr.2016.02.006_bb0170) 2015; 4 Moghimi (10.1016/j.addr.2016.02.006_bb0310) 2008; 18 Batagov (10.1016/j.addr.2016.02.006_bb0210) 2011; 12 Fuhrmann (10.1016/j.addr.2016.02.006_bb0270) 2015; 205 Skog (10.1016/j.addr.2016.02.006_bb0050) 2008; 10 Marcus (10.1016/j.addr.2016.02.006_bb0105) 2013; 6 Whitehead (10.1016/j.addr.2016.02.006_bb0320) 2015; 4 Tian (10.1016/j.addr.2016.02.006_bb0350) 2014; 35 (10.1016/j.addr.2016.02.006_bb0085) 2014; 32 Kooijmans (10.1016/j.addr.2016.02.006_bb0305) 2016; 224 Dai (10.1016/j.addr.2016.02.006_bb0120) 2008; 16 Saari (10.1016/j.addr.2016.02.006_bb0235) 2015; 220 Al-Nedawi (10.1016/j.addr.2016.02.006_bb0055) 2008; 10 Tang (10.1016/j.addr.2016.02.006_bb0220) 2012; 3 Taylor (10.1016/j.addr.2016.02.006_bb0140) 2015; 87 Gould (10.1016/j.addr.2016.02.006_bb0010) 2013; 2 Thery (10.1016/j.addr.2016.02.006_bb0130) 2006 Stoicheva (10.1016/j.addr.2016.02.006_bb0255) 1994; 1195 Kim (10.1016/j.addr.2016.02.006_bb0240) 2015 Mizrak (10.1016/j.addr.2016.02.006_bb0385) 2013; 21 Yoon (10.1016/j.addr.2016.02.006_bb0400) 2015; 59 Wiklander (10.1016/j.addr.2016.02.006_bb0275) 2015; 4 Nordin (10.1016/j.addr.2016.02.006_bb0175) 2015; 11 Clayton (10.1016/j.addr.2016.02.006_bb0315) 2003; 33 Morse (10.1016/j.addr.2016.02.006_bb0115) 2005; 3 Senyei (10.1016/j.addr.2016.02.006_bb0370) 1981; 70 Jang (10.1016/j.addr.2016.02.006_bb0395) 2013; 7 Kooijmans (10.1016/j.addr.2016.02.006_bb0250) 2013; 172 Caby (10.1016/j.addr.2016.02.006_bb0060) 2005; 17 Bala (10.1016/j.addr.2016.02.006_bb0290) 2015; 5 Widder (10.1016/j.addr.2016.02.006_bb0365) 1979; 16 Zhang (10.1016/j.addr.2016.02.006_bb0390) 2014; 35 Ashcroft (10.1016/j.addr.2016.02.006_bb0150) 2012; 14 Hood (10.1016/j.addr.2016.02.006_bb0260) 2014; 448 Alvarez-Erviti (10.1016/j.addr.2016.02.006_bb0095) 2011; 29 Imai (10.1016/j.addr.2016.02.006_bb0285) 2015; 4 Pisitkun (10.1016/j.addr.2016.02.006_bb0065) 2004; 101 Tsui (10.1016/j.addr.2016.02.006_bb0090) 2002; 48 van der Meel (10.1016/j.addr.2016.02.006_bb0295) 2014; 195 Haney (10.1016/j.addr.2016.02.006_bb0265) 2015; 207 Kordelas (10.1016/j.addr.2016.02.006_bb0340) 2014; 28 Boing (10.1016/j.addr.2016.02.006_bb0165) 2014; 3 Lee (10.1016/j.addr.2016.02.006_bb0225) 2015; 15 Hung (10.1016/j.addr.2016.02.006_bb0355) 2015; 290 Maeda (10.1016/j.addr.2016.02.006_bb0380) 2012; 164 Smyth (10.1016/j.addr.2016.02.006_bb0300) 2015; 199 Wahlgren (10.1016/j.addr.2016.02.006_bb0245) 2012; 40 Silva (10.1016/j.addr.2016.02.006_bb0375) 2015; 11 Pegtel (10.1016/j.addr.2016.02.006_bb0045) 2010; 107 van Dommelen (10.1016/j.addr.2016.02.006_bb0020) 2012; 161 Ogawa (10.1016/j.addr.2016.02.006_bb0070) 2011; 34 Lasser (10.1016/j.addr.2016.02.006_bb0080) 2015; 15 Bolukbasi (10.1016/j.addr.2016.02.006_bb0030) 2012; 1 Monguio-Tortajada (10.1016/j.addr.2016.02.006_bb0335) 2014; 5 Lai (10.1016/j.addr.2016.02.006_bb0280) 2014; 8 Urbanelli (10.1016/j.addr.2016.02.006_bb0075) 2015; 10 |
| References_xml | – volume: 86 start-page: 82 year: 2012 ident: bb0135 article-title: Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin A1, and GLIPR2 in humans publication-title: Biol. Reprod. – volume: 12 start-page: S18 year: 2011 ident: bb0210 article-title: Identification of nucleotide patterns enriched in secreted RNAs as putative cis-acting elements targeting them to exosome nano-vesicles publication-title: BMC Genomics – volume: 101 start-page: 13368 year: 2004 end-page: 13373 ident: bb0065 article-title: Identification and proteomic profiling of exosomes in human urine publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 4 start-page: 30087 year: 2015 ident: bb0125 article-title: Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper publication-title: J. Extracellular Vesicles – volume: 11 start-page: 879 year: May 2015 end-page: 883 ident: bb0175 article-title: Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties publication-title: Nanomed.: Nanotechnol., Biol. Med. – volume: 287 start-page: 1397 year: 2012 end-page: 1405 ident: bb0190 article-title: Competitive interactions of cancer cells and normal cells via secretory microRNAs publication-title: J. Biol. Chem. – volume: 1371 start-page: 125 year: 2014 end-page: 135 ident: bb0160 article-title: Benchtop isolation and characterization of functional exosomes by sequential filtration publication-title: J. Chromatogr. A – volume: 1 year: 2012 ident: bb0030 article-title: miR-1289 and "Zipcode"-like Sequence Enrich mRNAs in Microvesicles publication-title: Mol. Ther.–Nucleic Acids – volume: 10 start-page: 10 year: 2015 end-page: 27 ident: bb0075 article-title: Exosome-based strategies for Diagnosis and Therapy, Recent patents on CNS drug discovery – volume: 61 start-page: 1330 year: 2012 end-page: 1339 ident: bb0195 article-title: Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi) publication-title: Gut – volume: 3 year: 2014 ident: bb0165 article-title: Single-step isolation of extracellular vesicles by size-exclusion chromatography publication-title: J. Extracellular Vesicles – volume: 5 start-page: 737 year: 2005 end-page: 747 ident: bb0325 article-title: The potential of exosomes in immunotherapy publication-title: Expert. Opin. Biol. Ther. – volume: 107 start-page: 6328 year: 2010 end-page: 6333 ident: bb0045 article-title: Functional delivery of viral miRNAs via exosomes publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 15 start-page: 103 year: 2015 end-page: 117 ident: bb0080 article-title: Exosomes in diagnostic and therapeutic applications: biomarker, vaccine and RNA interference delivery vehicle publication-title: Expert. Opin. Biol. Ther. – volume: 40 start-page: e130 year: 2012 ident: bb0245 article-title: Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes publication-title: Nucleic Acids Res. – volume: 6 start-page: 659 year: 2013 end-page: 680 ident: bb0105 article-title: FedExosomes: Engineering Therapeutic Biological Nanoparticles that Truly Deliver publication-title: Pharmaceuticals (Basel) – volume: 5 start-page: 416 year: 2014 ident: bb0335 article-title: Tolerance in organ transplantation: from conventional immunosuppression to extracellular vesicles publication-title: Front. Immunol. – volume: 10 start-page: 619 year: 2008 end-page: 624 ident: bb0055 article-title: Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells publication-title: Nat. Cell Biol. – volume: 448 start-page: 41 year: 2014 end-page: 49 ident: bb0260 article-title: Maximizing exosome colloidal stability following electroporation publication-title: Anal. Biochem. – volume: 8 start-page: 483 year: 2014 end-page: 494 ident: bb0280 article-title: Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter publication-title: ACS Nano – volume: 200 start-page: 373 year: 2013 end-page: 383 ident: bb0015 article-title: Extracellular vesicles: Exosomes, microvesicles, and friends publication-title: J. Cell Biol. – volume: 7 start-page: 7698 year: 2013 end-page: 7710 ident: bb0395 article-title: Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors publication-title: ACS Nano – start-page: 22 year: 2006 ident: bb0130 article-title: Isolation and characterization of exosomes from cell culture supernatants and biological fluids publication-title: Curr. Protoc. Cell Biol. – volume: 205 start-page: 35 year: 2015 end-page: 44 ident: bb0270 article-title: Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins publication-title: J. Control. Release – volume: 3 start-page: 10 year: 2005 ident: bb0110 article-title: Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial publication-title: J. Transl. Med. – volume: 33 start-page: 522 year: 2003 end-page: 531 ident: bb0315 article-title: Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59 publication-title: Eur. J. Immunol. – volume: 2 year: 2013 ident: bb0010 article-title: As we wait: coping with an imperfect nomenclature for extracellular vesicles publication-title: J. Extracellular Vesicles – volume: 5 start-page: 10721 year: 2015 ident: bb0290 article-title: Biodistribution and function of extracellular miRNA-155 in mice publication-title: Sci. Rep. – volume: 17 start-page: 816 year: 2015 end-page: 826 ident: bb0345 article-title: Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver publication-title: Nat. Cell Biol. – volume: 35 start-page: 4390 year: 2014 end-page: 4400 ident: bb0390 article-title: Microvesicle-mediated delivery of transforming growth factor beta1 siRNA for the suppression of tumor growth in mice publication-title: Biomaterials – volume: 16 start-page: 782 year: 2008 end-page: 790 ident: bb0120 article-title: Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer publication-title: Mol. Ther. – volume: 18 start-page: 1606 year: 2010 end-page: 1614 ident: bb0230 article-title: A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes publication-title: Mol. Ther. – volume: 207 start-page: 18 year: 2015 end-page: 30 ident: bb0265 article-title: Exosomes as drug delivery vehicles for Parkinson's disease therapy publication-title: J. Control. Release – volume: 28 start-page: 970 year: 2014 end-page: 973 ident: bb0340 article-title: MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease publication-title: Leukemia – volume: 247 start-page: 163 year: 2001 end-page: 174 ident: bb0145 article-title: Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry publication-title: J. Immunol. Methods – volume: 270 start-page: 211 year: 2002 end-page: 226 ident: bb0155 article-title: Production and characterization of clinical grade exosomes derived from dendritic cells publication-title: J. Immunol. Methods – volume: 290 start-page: 8166 year: 2015 end-page: 8172 ident: bb0355 article-title: Stabilization of exosome-targeting peptides via engineered glycosylation publication-title: J. Biol. Chem. – volume: 1195 start-page: 31 year: 1994 end-page: 38 ident: bb0255 article-title: Electrofusion of cell-size liposomes publication-title: Biochim. Biophys. Acta – volume: 59 start-page: 12 year: 2015 end-page: 20 ident: bb0400 article-title: Generation of nanovesicles with sliced cellular membrane fragments for exogenous material delivery publication-title: Biomaterials – volume: 220 start-page: 727 year: 2015 end-page: 737 ident: bb0235 article-title: Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells publication-title: J. Control. Release – volume: 18 start-page: 195 year: 2008 end-page: 209 ident: bb0310 article-title: Liposome-mediated triggering of complement cascade publication-title: J. Liposome Res. – volume: 19 start-page: 1769 year: 2011 end-page: 1779 ident: bb0100 article-title: Treatment of Brain Inflammatory Diseases by Delivering Exosome Encapsulated Anti-inflammatory Drugs From the Nasal Region to the Brain publication-title: Mol. Ther. – volume: 224 start-page: 77 year: 2016 end-page: 85 ident: bb0305 article-title: PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time publication-title: J. Control. Release – volume: 172 start-page: 229 year: 2013 end-page: 238 ident: bb0250 article-title: Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles publication-title: J. Control. Release – volume: 30 start-page: 255 year: 2014 end-page: 289 ident: bb0005 article-title: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles publication-title: Annu. Rev. Cell Dev. Biol. – volume: 87 start-page: 3 year: 2015 end-page: 10 ident: bb0140 article-title: Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes publication-title: Methods – volume: 164 start-page: 138 year: 2012 end-page: 144 ident: bb0380 article-title: Macromolecular therapeutics in cancer treatment: the EPR effect and beyond publication-title: J. Control. Release – volume: 32 start-page: 961 year: 2014 ident: bb0085 publication-title: Time to deliver – volume: 21 start-page: 101 year: 2013 end-page: 108 ident: bb0385 article-title: Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth publication-title: Mol. Ther. – volume: 192 start-page: 262 year: 2014 end-page: 270 ident: bb0215 article-title: Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery publication-title: J. Control. Release – volume: 161 start-page: 635 year: 2012 end-page: 644 ident: bb0020 article-title: Microvesicles and exosomes: Opportunities for cell-derived membrane vesicles in drug delivery publication-title: J. Control. Release – volume: 17 start-page: 879 year: 2005 end-page: 887 ident: bb0060 article-title: Exosomal-like vesicles are present in human blood plasma publication-title: Int. Immunol. – volume: 39 start-page: 133 year: 2010 end-page: 144 ident: bb0200 article-title: Secreted monocytic miR-150 enhances targeted endothelial cell migration publication-title: Mol. Cell – volume: 48 start-page: 1647 year: 2002 end-page: 1653 ident: bb0090 article-title: Stability of endogenous and added RNA in blood specimens, serum, and plasma publication-title: Clin. Chem. – volume: 8 start-page: 1649 year: 2014 end-page: 1658 ident: bb0025 article-title: Nontemplated Nucleotide Additions Distinguish the Small RNA Composition in Cells from Exosomes publication-title: Cell Rep. – volume: 29 year: 2011 ident: bb0095 article-title: Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes publication-title: Nat. Biotechnol. – volume: 411 start-page: 494 year: 2001 end-page: 498 ident: bb0180 article-title: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells publication-title: Nature – volume: 3 year: 2012 ident: bb0220 article-title: Delivery of chemotherapeutic drugs in tumour cell-derived microparticles publication-title: Nat. Commun. – volume: 4 start-page: 29685 year: 2015 ident: bb0320 article-title: Tumour exosomes display differential mechanical and complement activation properties dependent on malignant state: implications in endothelial leakiness publication-title: J. Extracellular Vesicles – volume: 34 start-page: 13 year: 2011 end-page: 23 ident: bb0070 article-title: Proteomic Analysis of Two Types of Exosomes in Human Whole Saliva publication-title: Biol. Pharm. Bull. – volume: 70 start-page: 389 year: 1981 end-page: 391 ident: bb0370 article-title: In vivo kinetics of magnetically targeted low-dose doxorubicin publication-title: J. Pharm. Sci. – volume: 199 start-page: 145 year: 2015 end-page: 155 ident: bb0300 article-title: Biodistribution and delivery efficiency of unmodified tumor-derived exosomes publication-title: J. Control. Release – volume: 285 start-page: 17442 year: 2010 end-page: 17452 ident: bb0185 article-title: Secretory mechanisms and intercellular transfer of microRNAs in living cells publication-title: J. Biol. Chem. – volume: 20 start-page: 847 year: 2006 end-page: 856 ident: bb0040 article-title: Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery publication-title: Leukemia – volume: 14 start-page: 641 year: 2012 end-page: 649 ident: bb0150 article-title: Determination of the size distribution of blood microparticles directly in plasma using atomic force microscopy and microfluidics publication-title: Biomed. Microdevices – year: Sep. 18 2015 ident: bb0330 article-title: Glioma-derived extracellular vesicles selectively suppress immune responses publication-title: Neuro Oncol. – volume: 16 start-page: 213 year: 1979 end-page: 271 ident: bb0365 article-title: Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumor agents publication-title: Adv. Pharmacol. Chemother. – volume: 195 start-page: 72 year: 2014 end-page: 85 ident: bb0295 article-title: Extracellular vesicles as drug delivery systems: Lessons from the liposome field publication-title: J. Control. Release – volume: 19 start-page: 395 year: 2011 end-page: 399 ident: bb0205 article-title: Microvesicle-mediated RNA molecule delivery system using monocytes/macrophages publication-title: Mol. Ther. – year: Nov. 14 2015 ident: bb0240 article-title: Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells publication-title: Nanomed.: Nanotechnol., Biol. Med. – volume: 35 start-page: 2383 year: 2014 end-page: 2390 ident: bb0350 article-title: A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy publication-title: Biomaterials – volume: 3 start-page: 9 year: 2005 ident: bb0115 article-title: A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer publication-title: J. Transl. Med. – volume: 21 start-page: 185 year: 2013 end-page: 191 ident: bb0360 article-title: Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells publication-title: Mol. Ther. – volume: 4 start-page: 27269 year: 2015 ident: bb0170 article-title: Ready-made chromatography columns for extracellular vesicle isolation from plasma publication-title: J. Extracellular Vesicles – volume: 15 start-page: 2938 year: 2015 end-page: 2944 ident: bb0225 article-title: Liposome-Based Engineering of Cells To Package Hydrophobic Compounds in Membrane Vesicles for Tumor Penetration publication-title: Nano Lett. – volume: 4 start-page: 26238 year: 2015 ident: bb0285 article-title: Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice publication-title: J. Extracellular Vesicles – volume: 11 start-page: 645 year: 2015 end-page: 655 ident: bb0375 article-title: Combining magnetic nanoparticles with cell derived microvesicles for drug loading and targeting publication-title: Nanomed.: Nanotechnol., Biol. Med. – volume: 9 start-page: 654 year: 2007 end-page: 659 ident: bb0035 article-title: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells publication-title: Nat. Cell Biol. – volume: 10 start-page: 1470 year: 2008 end-page: 1476 ident: bb0050 article-title: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers publication-title: Nat. Cell Biol. – volume: 4 start-page: 26316 year: 2015 ident: bb0275 article-title: Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting publication-title: J. Extracellular Vesicles – volume: 285 start-page: 17442 year: 2010 ident: 10.1016/j.addr.2016.02.006_bb0185 article-title: Secretory mechanisms and intercellular transfer of microRNAs in living cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.107821 – volume: 164 start-page: 138 year: 2012 ident: 10.1016/j.addr.2016.02.006_bb0380 article-title: Macromolecular therapeutics in cancer treatment: the EPR effect and beyond publication-title: J. Control. Release doi: 10.1016/j.jconrel.2012.04.038 – volume: 270 start-page: 211 year: 2002 ident: 10.1016/j.addr.2016.02.006_bb0155 article-title: Production and characterization of clinical grade exosomes derived from dendritic cells publication-title: J. Immunol. Methods doi: 10.1016/S0022-1759(02)00330-7 – volume: 19 start-page: 395 year: 2011 ident: 10.1016/j.addr.2016.02.006_bb0205 article-title: Microvesicle-mediated RNA molecule delivery system using monocytes/macrophages publication-title: Mol. Ther. doi: 10.1038/mt.2010.254 – volume: 16 start-page: 213 year: 1979 ident: 10.1016/j.addr.2016.02.006_bb0365 article-title: Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumor agents publication-title: Adv. Pharmacol. Chemother. doi: 10.1016/S1054-3589(08)60246-X – volume: 29 year: 2011 ident: 10.1016/j.addr.2016.02.006_bb0095 article-title: Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1807 – volume: 40 start-page: e130 year: 2012 ident: 10.1016/j.addr.2016.02.006_bb0245 article-title: Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks463 – volume: 8 start-page: 483 year: 2014 ident: 10.1016/j.addr.2016.02.006_bb0280 article-title: Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter publication-title: ACS Nano doi: 10.1021/nn404945r – volume: 30 start-page: 255 year: 2014 ident: 10.1016/j.addr.2016.02.006_bb0005 article-title: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-101512-122326 – volume: 19 start-page: 1769 year: 2011 ident: 10.1016/j.addr.2016.02.006_bb0100 article-title: Treatment of Brain Inflammatory Diseases by Delivering Exosome Encapsulated Anti-inflammatory Drugs From the Nasal Region to the Brain publication-title: Mol. Ther. doi: 10.1038/mt.2011.164 – volume: 5 start-page: 416 year: 2014 ident: 10.1016/j.addr.2016.02.006_bb0335 article-title: Tolerance in organ transplantation: from conventional immunosuppression to extracellular vesicles publication-title: Front. Immunol. – volume: 172 start-page: 229 year: 2013 ident: 10.1016/j.addr.2016.02.006_bb0250 article-title: Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles publication-title: J. Control. Release doi: 10.1016/j.jconrel.2013.08.014 – volume: 21 start-page: 101 year: 2013 ident: 10.1016/j.addr.2016.02.006_bb0385 article-title: Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth publication-title: Mol. Ther. doi: 10.1038/mt.2012.161 – volume: 35 start-page: 4390 year: 2014 ident: 10.1016/j.addr.2016.02.006_bb0390 article-title: Microvesicle-mediated delivery of transforming growth factor beta1 siRNA for the suppression of tumor growth in mice publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.02.003 – volume: 12 start-page: S18 issue: Suppl. 3 year: 2011 ident: 10.1016/j.addr.2016.02.006_bb0210 article-title: Identification of nucleotide patterns enriched in secreted RNAs as putative cis-acting elements targeting them to exosome nano-vesicles publication-title: BMC Genomics doi: 10.1186/1471-2164-12-S3-S18 – volume: 3 start-page: 9 year: 2005 ident: 10.1016/j.addr.2016.02.006_bb0115 article-title: A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer publication-title: J. Transl. Med. doi: 10.1186/1479-5876-3-9 – volume: 18 start-page: 1606 year: 2010 ident: 10.1016/j.addr.2016.02.006_bb0230 article-title: A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes publication-title: Mol. Ther. doi: 10.1038/mt.2010.105 – volume: 3 year: 2012 ident: 10.1016/j.addr.2016.02.006_bb0220 article-title: Delivery of chemotherapeutic drugs in tumour cell-derived microparticles publication-title: Nat. Commun. doi: 10.1038/ncomms2282 – volume: 18 start-page: 195 year: 2008 ident: 10.1016/j.addr.2016.02.006_bb0310 article-title: Liposome-mediated triggering of complement cascade publication-title: J. Liposome Res. doi: 10.1080/08982100802309552 – volume: 7 start-page: 7698 year: 2013 ident: 10.1016/j.addr.2016.02.006_bb0395 article-title: Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors publication-title: ACS Nano doi: 10.1021/nn402232g – volume: 287 start-page: 1397 year: 2012 ident: 10.1016/j.addr.2016.02.006_bb0190 article-title: Competitive interactions of cancer cells and normal cells via secretory microRNAs publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.288662 – volume: 59 start-page: 12 year: 2015 ident: 10.1016/j.addr.2016.02.006_bb0400 article-title: Generation of nanovesicles with sliced cellular membrane fragments for exogenous material delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.04.028 – volume: 4 start-page: 27269 year: 2015 ident: 10.1016/j.addr.2016.02.006_bb0170 article-title: Ready-made chromatography columns for extracellular vesicle isolation from plasma publication-title: J. Extracellular Vesicles doi: 10.3402/jev.v4.27269 – volume: 33 start-page: 522 year: 2003 ident: 10.1016/j.addr.2016.02.006_bb0315 article-title: Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59 publication-title: Eur. J. Immunol. doi: 10.1002/immu.200310028 – volume: 28 start-page: 970 year: 2014 ident: 10.1016/j.addr.2016.02.006_bb0340 article-title: MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease publication-title: Leukemia doi: 10.1038/leu.2014.41 – volume: 205 start-page: 35 year: 2015 ident: 10.1016/j.addr.2016.02.006_bb0270 article-title: Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.11.029 – volume: 86 start-page: 82 year: 2012 ident: 10.1016/j.addr.2016.02.006_bb0135 article-title: Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin A1, and GLIPR2 in humans publication-title: Biol. Reprod. doi: 10.1095/biolreprod.111.095760 – volume: 14 start-page: 641 year: 2012 ident: 10.1016/j.addr.2016.02.006_bb0150 article-title: Determination of the size distribution of blood microparticles directly in plasma using atomic force microscopy and microfluidics publication-title: Biomed. Microdevices doi: 10.1007/s10544-012-9642-y – volume: 35 start-page: 2383 year: 2014 ident: 10.1016/j.addr.2016.02.006_bb0350 article-title: A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.11.083 – volume: 1195 start-page: 31 year: 1994 ident: 10.1016/j.addr.2016.02.006_bb0255 article-title: Electrofusion of cell-size liposomes publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(94)90005-1 – volume: 11 start-page: 645 year: 2015 ident: 10.1016/j.addr.2016.02.006_bb0375 article-title: Combining magnetic nanoparticles with cell derived microvesicles for drug loading and targeting publication-title: Nanomed.: Nanotechnol., Biol. Med. doi: 10.1016/j.nano.2014.11.009 – volume: 8 start-page: 1649 year: 2014 ident: 10.1016/j.addr.2016.02.006_bb0025 article-title: Nontemplated Nucleotide Additions Distinguish the Small RNA Composition in Cells from Exosomes publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.08.027 – volume: 2 year: 2013 ident: 10.1016/j.addr.2016.02.006_bb0010 article-title: As we wait: coping with an imperfect nomenclature for extracellular vesicles publication-title: J. Extracellular Vesicles doi: 10.3402/jev.v2i0.20389 – volume: 4 start-page: 29685 year: 2015 ident: 10.1016/j.addr.2016.02.006_bb0320 article-title: Tumour exosomes display differential mechanical and complement activation properties dependent on malignant state: implications in endothelial leakiness publication-title: J. Extracellular Vesicles doi: 10.3402/jev.v4.29685 – year: 2015 ident: 10.1016/j.addr.2016.02.006_bb0240 article-title: Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells publication-title: Nanomed.: Nanotechnol., Biol. Med. – volume: 5 start-page: 10721 year: 2015 ident: 10.1016/j.addr.2016.02.006_bb0290 article-title: Biodistribution and function of extracellular miRNA-155 in mice publication-title: Sci. Rep. doi: 10.1038/srep10721 – volume: 10 start-page: 10 year: 2015 ident: 10.1016/j.addr.2016.02.006_bb0075 – volume: 3 start-page: 10 year: 2005 ident: 10.1016/j.addr.2016.02.006_bb0110 article-title: Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial publication-title: J. Transl. Med. doi: 10.1186/1479-5876-3-10 – volume: 220 start-page: 727 year: 2015 ident: 10.1016/j.addr.2016.02.006_bb0235 article-title: Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells publication-title: J. Control. Release doi: 10.1016/j.jconrel.2015.09.031 – volume: 200 start-page: 373 year: 2013 ident: 10.1016/j.addr.2016.02.006_bb0015 article-title: Extracellular vesicles: Exosomes, microvesicles, and friends publication-title: J. Cell Biol. doi: 10.1083/jcb.201211138 – volume: 224 start-page: 77 year: 2016 ident: 10.1016/j.addr.2016.02.006_bb0305 article-title: PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.01.009 – volume: 192 start-page: 262 year: 2014 ident: 10.1016/j.addr.2016.02.006_bb0215 article-title: Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.07.042 – volume: 32 start-page: 961 year: 2014 ident: 10.1016/j.addr.2016.02.006_bb0085 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3045 – volume: 10 start-page: 619 year: 2008 ident: 10.1016/j.addr.2016.02.006_bb0055 article-title: Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb1725 – volume: 34 start-page: 13 year: 2011 ident: 10.1016/j.addr.2016.02.006_bb0070 article-title: Proteomic Analysis of Two Types of Exosomes in Human Whole Saliva publication-title: Biol. Pharm. Bull. doi: 10.1248/bpb.34.13 – volume: 48 start-page: 1647 year: 2002 ident: 10.1016/j.addr.2016.02.006_bb0090 article-title: Stability of endogenous and added RNA in blood specimens, serum, and plasma publication-title: Clin. Chem. doi: 10.1093/clinchem/48.10.1647 – volume: 207 start-page: 18 year: 2015 ident: 10.1016/j.addr.2016.02.006_bb0265 article-title: Exosomes as drug delivery vehicles for Parkinson's disease therapy publication-title: J. Control. Release doi: 10.1016/j.jconrel.2015.03.033 – volume: 17 start-page: 816 year: 2015 ident: 10.1016/j.addr.2016.02.006_bb0345 article-title: Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver publication-title: Nat. Cell Biol. doi: 10.1038/ncb3169 – volume: 10 start-page: 1470 year: 2008 ident: 10.1016/j.addr.2016.02.006_bb0050 article-title: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers publication-title: Nat. Cell Biol. doi: 10.1038/ncb1800 – year: 2015 ident: 10.1016/j.addr.2016.02.006_bb0330 article-title: Glioma-derived extracellular vesicles selectively suppress immune responses publication-title: Neuro Oncol. – volume: 290 start-page: 8166 year: 2015 ident: 10.1016/j.addr.2016.02.006_bb0355 article-title: Stabilization of exosome-targeting peptides via engineered glycosylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.621383 – volume: 6 start-page: 659 year: 2013 ident: 10.1016/j.addr.2016.02.006_bb0105 article-title: FedExosomes: Engineering Therapeutic Biological Nanoparticles that Truly Deliver publication-title: Pharmaceuticals (Basel) doi: 10.3390/ph6050659 – volume: 4 start-page: 30087 year: 2015 ident: 10.1016/j.addr.2016.02.006_bb0125 article-title: Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper publication-title: J. Extracellular Vesicles doi: 10.3402/jev.v4.30087 – volume: 195 start-page: 72 year: 2014 ident: 10.1016/j.addr.2016.02.006_bb0295 article-title: Extracellular vesicles as drug delivery systems: Lessons from the liposome field publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.07.049 – volume: 448 start-page: 41 year: 2014 ident: 10.1016/j.addr.2016.02.006_bb0260 article-title: Maximizing exosome colloidal stability following electroporation publication-title: Anal. Biochem. doi: 10.1016/j.ab.2013.12.001 – volume: 161 start-page: 635 year: 2012 ident: 10.1016/j.addr.2016.02.006_bb0020 article-title: Microvesicles and exosomes: Opportunities for cell-derived membrane vesicles in drug delivery publication-title: J. Control. Release doi: 10.1016/j.jconrel.2011.11.021 – volume: 11 start-page: 879 issue: 4 year: 2015 ident: 10.1016/j.addr.2016.02.006_bb0175 article-title: Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties publication-title: Nanomed.: Nanotechnol., Biol. Med. doi: 10.1016/j.nano.2015.01.003 – volume: 15 start-page: 2938 year: 2015 ident: 10.1016/j.addr.2016.02.006_bb0225 article-title: Liposome-Based Engineering of Cells To Package Hydrophobic Compounds in Membrane Vesicles for Tumor Penetration publication-title: Nano Lett. doi: 10.1021/nl5047494 – volume: 1371 start-page: 125 year: 2014 ident: 10.1016/j.addr.2016.02.006_bb0160 article-title: Benchtop isolation and characterization of functional exosomes by sequential filtration publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2014.10.026 – volume: 3 year: 2014 ident: 10.1016/j.addr.2016.02.006_bb0165 article-title: Single-step isolation of extracellular vesicles by size-exclusion chromatography publication-title: J. Extracellular Vesicles doi: 10.3402/jev.v3.23430 – volume: 9 start-page: 654 year: 2007 ident: 10.1016/j.addr.2016.02.006_bb0035 article-title: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb1596 – start-page: 22 year: 2006 ident: 10.1016/j.addr.2016.02.006_bb0130 article-title: Isolation and characterization of exosomes from cell culture supernatants and biological fluids publication-title: Curr. Protoc. Cell Biol. – volume: 39 start-page: 133 year: 2010 ident: 10.1016/j.addr.2016.02.006_bb0200 article-title: Secreted monocytic miR-150 enhances targeted endothelial cell migration publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.06.010 – volume: 247 start-page: 163 year: 2001 ident: 10.1016/j.addr.2016.02.006_bb0145 article-title: Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry publication-title: J. Immunol. Methods doi: 10.1016/S0022-1759(00)00321-5 – volume: 61 start-page: 1330 year: 2012 ident: 10.1016/j.addr.2016.02.006_bb0195 article-title: Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi) publication-title: Gut doi: 10.1136/gutjnl-2011-300449 – volume: 70 start-page: 389 year: 1981 ident: 10.1016/j.addr.2016.02.006_bb0370 article-title: In vivo kinetics of magnetically targeted low-dose doxorubicin publication-title: J. Pharm. Sci. doi: 10.1002/jps.2600700412 – volume: 1 year: 2012 ident: 10.1016/j.addr.2016.02.006_bb0030 article-title: miR-1289 and "Zipcode"-like Sequence Enrich mRNAs in Microvesicles publication-title: Mol. Ther.–Nucleic Acids doi: 10.1038/mtna.2011.2 – volume: 17 start-page: 879 year: 2005 ident: 10.1016/j.addr.2016.02.006_bb0060 article-title: Exosomal-like vesicles are present in human blood plasma publication-title: Int. Immunol. doi: 10.1093/intimm/dxh267 – volume: 15 start-page: 103 year: 2015 ident: 10.1016/j.addr.2016.02.006_bb0080 article-title: Exosomes in diagnostic and therapeutic applications: biomarker, vaccine and RNA interference delivery vehicle publication-title: Expert. Opin. Biol. Ther. doi: 10.1517/14712598.2015.977250 – volume: 21 start-page: 185 year: 2013 ident: 10.1016/j.addr.2016.02.006_bb0360 article-title: Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells publication-title: Mol. Ther. doi: 10.1038/mt.2012.180 – volume: 87 start-page: 3 year: 2015 ident: 10.1016/j.addr.2016.02.006_bb0140 article-title: Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes publication-title: Methods doi: 10.1016/j.ymeth.2015.02.019 – volume: 101 start-page: 13368 year: 2004 ident: 10.1016/j.addr.2016.02.006_bb0065 article-title: Identification and proteomic profiling of exosomes in human urine publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0403453101 – volume: 16 start-page: 782 year: 2008 ident: 10.1016/j.addr.2016.02.006_bb0120 article-title: Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer publication-title: Mol. Ther. doi: 10.1038/mt.2008.1 – volume: 411 start-page: 494 year: 2001 ident: 10.1016/j.addr.2016.02.006_bb0180 article-title: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells publication-title: Nature doi: 10.1038/35078107 – volume: 4 start-page: 26238 year: 2015 ident: 10.1016/j.addr.2016.02.006_bb0285 article-title: Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice publication-title: J. Extracellular Vesicles doi: 10.3402/jev.v4.26238 – volume: 5 start-page: 737 year: 2005 ident: 10.1016/j.addr.2016.02.006_bb0325 article-title: The potential of exosomes in immunotherapy publication-title: Expert. Opin. Biol. Ther. doi: 10.1517/14712598.5.6.737 – volume: 20 start-page: 847 year: 2006 ident: 10.1016/j.addr.2016.02.006_bb0040 article-title: Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery publication-title: Leukemia doi: 10.1038/sj.leu.2404132 – volume: 107 start-page: 6328 year: 2010 ident: 10.1016/j.addr.2016.02.006_bb0045 article-title: Functional delivery of viral miRNAs via exosomes publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0914843107 – volume: 199 start-page: 145 year: 2015 ident: 10.1016/j.addr.2016.02.006_bb0300 article-title: Biodistribution and delivery efficiency of unmodified tumor-derived exosomes publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.12.013 – volume: 4 start-page: 26316 year: 2015 ident: 10.1016/j.addr.2016.02.006_bb0275 article-title: Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting publication-title: J. Extracellular Vesicles doi: 10.3402/jev.v4.26316 |
| SSID | ssj0012760 |
| Score | 2.6856768 |
| SecondaryResourceType | review_article |
| Snippet | Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 148 |
| SubjectTerms | Animals biodistribution Drug Carriers - metabolism drug delivery Drug Delivery Systems - methods exosomes Extracellular vesicles Extracellular Vesicles - metabolism Humans isolation microvesicles nanomedicine targeting |
| Title | Extracellular vesicles for drug delivery |
| URI | https://dx.doi.org/10.1016/j.addr.2016.02.006 https://www.ncbi.nlm.nih.gov/pubmed/26928656 https://www.proquest.com/docview/1826659477 |
| Volume | 106 |
| WOSCitedRecordID | wos000387525500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8294 dateEnd: 20171031 omitProxy: false ssIdentifier: ssj0012760 issn: 0169-409X databaseCode: AIEXJ dateStart: 19950701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZru0FfxtbdskvxYIRB62L5IlmPYbhsI83McEfehGxLXbvETW2nJP9-kiU7ydaW7mEvJggrETonh3P7zgfAhwylYcD81EYKtuznMtwhMPVszxVMxj1Z5olmZP4Qj0bheExiU2ivGjoBXBThYkFm_1XUck0KW0Fn_0Hc3ZfKBflZCl0-pdjl816CjxZ1yVQ-vmkwveZV0_jWtBPm5fzsIOcT1YuxUc4dtJ0AG28YXEvndf9guRZwfL7e1XuiSbqi6ZStMqMxUxMYfrHpTGfeS4Pe10Wfn4qWZWLo2b6z5VShaE7WMxAQKSiexmAaoxliaVVdTVZ8xG9Yay2tg9ZUKq7NobTphHri5l8mXWcXLo6kIVbzWyHSM1ZvmJ89-kaPT4dDmkTjpD-7shW1mCrBG56VLbDj4oBI07cz-BKNv3bFJhdrMHl7ZIOt0m2Af_7sbf7LbfFJ46ckT8BjE2BYA60YT8EDXuyBR5pydLkH-rGeVb48tJIV9K46tPpWvJpivnwGPm7okdXqkSX1yFJaYrVa8hycHkfJp8-2odWwMy9AtU0cnCPsuynGoSIuY4qxgKeZ8JCAIc997OY55JwHRGR-DpEIReYEjavtY0G8F2C7uCz4K2AhLCAkKRGYyUgTkRDBzEtRiliaOiL0egC2l0UzM3NeUZ9MaNtceEHVBVN1wdRxqbzgHjjo9sz0xJU73w5aGVDjM2pfkEr9uXPf-1ZgVBpUdZus4JfziqqAGwXEx7gHXmpJdudwEVFIbvT6HrvfgN3Vn-Ut2K7LOX8HHmbX9XlV7oMtPA73jSb-Bpsynyc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+vesicles+for+drug+delivery&rft.jtitle=Advanced+drug+delivery+reviews&rft.au=Vader%2C+Pieter&rft.au=Mol%2C+Emma+A&rft.au=Pasterkamp%2C+Gerard&rft.au=Schiffelers%2C+Raymond+M&rft.date=2016-11-15&rft.issn=1872-8294&rft.eissn=1872-8294&rft.volume=106&rft.issue=Pt+A&rft.spage=148&rft_id=info:doi/10.1016%2Fj.addr.2016.02.006&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-409X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-409X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-409X&client=summon |