Extracellular vesicles for drug delivery

Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained consider...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced drug delivery reviews Jg. 106; H. Pt A; S. 148 - 156
Hauptverfasser: Vader, Pieter, Mol, Emma A., Pasterkamp, Gerard, Schiffelers, Raymond M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 15.11.2016
Schlagworte:
ISSN:0169-409X, 1872-8294, 1872-8294
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained considerable scientific interest. EVs may have multiple advantages over currently available drug delivery vehicles, such as their ability to overcome natural barriers, their intrinsic cell targeting properties, and stability in the circulation. However, therapeutic applications of EVs as drug delivery systems have been limited due to a lack of methods for scalable EV isolation and efficient drug loading. Furthermore, in order to achieve targeted drug delivery, their intrinsic cell targeting properties should be tuned through EV engineering. Here, we review and discuss recent progress and remaining challenges in the development of EVs as drug delivery vehicles. [Display omitted]
AbstractList Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained considerable scientific interest. EVs may have multiple advantages over currently available drug delivery vehicles, such as their ability to overcome natural barriers, their intrinsic cell targeting properties, and stability in the circulation. However, therapeutic applications of EVs as drug delivery systems have been limited due to a lack of methods for scalable EV isolation and efficient drug loading. Furthermore, in order to achieve targeted drug delivery, their intrinsic cell targeting properties should be tuned through EV engineering. Here, we review and discuss recent progress and remaining challenges in the development of EVs as drug delivery vehicles.Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained considerable scientific interest. EVs may have multiple advantages over currently available drug delivery vehicles, such as their ability to overcome natural barriers, their intrinsic cell targeting properties, and stability in the circulation. However, therapeutic applications of EVs as drug delivery systems have been limited due to a lack of methods for scalable EV isolation and efficient drug loading. Furthermore, in order to achieve targeted drug delivery, their intrinsic cell targeting properties should be tuned through EV engineering. Here, we review and discuss recent progress and remaining challenges in the development of EVs as drug delivery vehicles.
Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained considerable scientific interest. EVs may have multiple advantages over currently available drug delivery vehicles, such as their ability to overcome natural barriers, their intrinsic cell targeting properties, and stability in the circulation. However, therapeutic applications of EVs as drug delivery systems have been limited due to a lack of methods for scalable EV isolation and efficient drug loading. Furthermore, in order to achieve targeted drug delivery, their intrinsic cell targeting properties should be tuned through EV engineering. Here, we review and discuss recent progress and remaining challenges in the development of EVs as drug delivery vehicles. [Display omitted]
Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained considerable scientific interest. EVs may have multiple advantages over currently available drug delivery vehicles, such as their ability to overcome natural barriers, their intrinsic cell targeting properties, and stability in the circulation. However, therapeutic applications of EVs as drug delivery systems have been limited due to a lack of methods for scalable EV isolation and efficient drug loading. Furthermore, in order to achieve targeted drug delivery, their intrinsic cell targeting properties should be tuned through EV engineering. Here, we review and discuss recent progress and remaining challenges in the development of EVs as drug delivery vehicles.
Author Schiffelers, Raymond M.
Mol, Emma A.
Vader, Pieter
Pasterkamp, Gerard
Author_xml – sequence: 1
  givenname: Pieter
  surname: Vader
  fullname: Vader, Pieter
  email: pvader@umcutrecht.nl
  organization: Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
– sequence: 2
  givenname: Emma A.
  surname: Mol
  fullname: Mol, Emma A.
  organization: Department of Experimental Cardiology, University Medical Center Utrecht, the Netherlands, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
– sequence: 3
  givenname: Gerard
  surname: Pasterkamp
  fullname: Pasterkamp, Gerard
  organization: Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
– sequence: 4
  givenname: Raymond M.
  orcidid: 0000-0002-1012-9815
  surname: Schiffelers
  fullname: Schiffelers, Raymond M.
  email: r.schiffelers@umcutrecht.nl
  organization: Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26928656$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1rwzAQhkVpaT7aP9CheMxiV5JtyYIuJaQfEOjSQjehSKei4NipZIfm31cmydIh0x3c-xx3zwRdNm0DCN0RnBFM2MM6U8b4jMY-wzTDmF2gMak4TSsqiks0jgORFlh8jdAkhDXGhHKGr9GIMkErVrIxmi1-O6801HVfK5_sIDhdQ0hs6xPj--_EQO124Pc36MqqOsDtsU7R5_PiY_6aLt9f3uZPy1TnJetSgblhvKArzivBc6JyjEtYaZszSyowBafGEAAohdWFIcxWVuOyLEpGCm5FPkWzw96tb396CJ3cuDDcpxpo-yBJRRkrRcF5jN4fo_1qA0Zuvdsov5en72KgOgS0b0PwYKV2nepc28SfXS0JloNIuZaDSDmIlJjKKDKi9B962n4WejxAEAXtHHgZtINGg3EedCdN687hf5C-ioc
CitedBy_id crossref_primary_10_1038_s41388_021_01896_1
crossref_primary_10_1007_s11914_019_00537_7
crossref_primary_10_1038_s41598_025_95908_9
crossref_primary_10_3390_ijms19123859
crossref_primary_10_2147_IJN_S307843
crossref_primary_10_3390_cells11101670
crossref_primary_10_1016_j_drudis_2017_08_012
crossref_primary_10_1186_s12951_024_02518_0
crossref_primary_10_3389_fcvm_2024_1399738
crossref_primary_10_3390_cancers16050923
crossref_primary_10_3389_fcvm_2022_789203
crossref_primary_10_1016_j_biomaterials_2021_120946
crossref_primary_10_2174_1570180819666220610140616
crossref_primary_10_1016_j_bioactmat_2022_10_016
crossref_primary_10_1016_j_nano_2019_102014
crossref_primary_10_3390_ijms22189896
crossref_primary_10_1186_s12951_024_03079_y
crossref_primary_10_1016_j_bcp_2017_12_020
crossref_primary_10_1088_2516_1091_ac73c9
crossref_primary_10_1016_j_xphs_2024_12_014
crossref_primary_10_1016_j_jconrel_2018_06_015
crossref_primary_10_1039_D0NR00362J
crossref_primary_10_1016_j_colsurfb_2021_112163
crossref_primary_10_1038_aps_2017_12
crossref_primary_10_1007_s12274_020_2931_5
crossref_primary_10_3390_gels6040038
crossref_primary_10_3390_bioengineering12010092
crossref_primary_10_3390_ijms23147668
crossref_primary_10_3390_cells8090965
crossref_primary_10_3389_fimmu_2021_716407
crossref_primary_10_1016_j_phrs_2023_106880
crossref_primary_10_1186_s12951_022_01330_y
crossref_primary_10_3390_jnt4030014
crossref_primary_10_3390_ijms22041624
crossref_primary_10_1016_j_biomaterials_2023_122242
crossref_primary_10_1016_j_biopha_2024_117248
crossref_primary_10_1186_s12929_024_01096_5
crossref_primary_10_1016_j_bioactmat_2024_05_039
crossref_primary_10_1038_s41598_018_30786_y
crossref_primary_10_1002_adbi_201800079
crossref_primary_10_1186_s12943_019_0975_5
crossref_primary_10_1021_acs_jpcb_5c00472
crossref_primary_10_3389_fmolb_2021_699929
crossref_primary_10_3390_cancers15133507
crossref_primary_10_1016_j_bios_2020_112510
crossref_primary_10_1038_s41598_017_07265_x
crossref_primary_10_3389_fcell_2021_790722
crossref_primary_10_3389_fimmu_2024_1402468
crossref_primary_10_1186_s12951_023_01952_w
crossref_primary_10_1186_s40635_023_00491_w
crossref_primary_10_3390_cancers12113165
crossref_primary_10_3390_cancers13225669
crossref_primary_10_3390_cells7080093
crossref_primary_10_3389_fimmu_2024_1296061
crossref_primary_10_1016_j_ijbiomac_2025_145463
crossref_primary_10_3389_fimmu_2022_943321
crossref_primary_10_1515_bams_2021_0183
crossref_primary_10_1007_s13534_023_00334_3
crossref_primary_10_2217_bmm_2019_0368
crossref_primary_10_3390_polym15020318
crossref_primary_10_1002_advs_201901293
crossref_primary_10_1016_j_bioactmat_2022_11_011
crossref_primary_10_1039_D2RA07863E
crossref_primary_10_1002_anie_201909927
crossref_primary_10_1097_PRS_0000000000006046
crossref_primary_10_1039_D3NR05524H
crossref_primary_10_1007_s00774_022_01362_2
crossref_primary_10_1088_1361_6528_ac49bf
crossref_primary_10_3389_fmolb_2024_1447953
crossref_primary_10_1038_s41598_022_15524_9
crossref_primary_10_1016_j_intimp_2024_113620
crossref_primary_10_3390_ijms222212204
crossref_primary_10_1080_17435889_2025_2500913
crossref_primary_10_1093_ndt_gfac233
crossref_primary_10_3390_biomedicines10081978
crossref_primary_10_3390_ijms231911312
crossref_primary_10_1016_j_jconrel_2023_08_043
crossref_primary_10_1186_s13045_020_00987_y
crossref_primary_10_1016_j_addr_2023_114824
crossref_primary_10_1016_j_jddst_2020_102098
crossref_primary_10_1016_j_nantod_2021_101143
crossref_primary_10_3389_fnmol_2018_00434
crossref_primary_10_1038_s41598_017_13469_y
crossref_primary_10_3389_fbioe_2022_1077028
crossref_primary_10_1016_j_ejpb_2019_10_005
crossref_primary_10_1186_s12967_022_03392_w
crossref_primary_10_1002_adtp_202300161
crossref_primary_10_3390_pharmaceutics15030718
crossref_primary_10_1016_j_cej_2018_03_101
crossref_primary_10_3389_fphar_2019_00751
crossref_primary_10_1002_jex2_97
crossref_primary_10_1186_s12943_017_0755_z
crossref_primary_10_3390_pharmaceutics15051439
crossref_primary_10_1002_JLB_3MIR0221_099R
crossref_primary_10_1186_s12935_025_03795_x
crossref_primary_10_1186_s11658_024_00581_x
crossref_primary_10_1002_adma_202201054
crossref_primary_10_1002_bmm2_12018
crossref_primary_10_1002_adma_201706616
crossref_primary_10_3390_pharmaceutics11030113
crossref_primary_10_1016_j_jconrel_2023_08_040
crossref_primary_10_26599_NR_2025_94907176
crossref_primary_10_1016_j_canlet_2023_216141
crossref_primary_10_1080_20415990_2024_2415281
crossref_primary_10_1002_adbi_201700044
crossref_primary_10_3389_fmats_2023_1152378
crossref_primary_10_1007_s42247_024_00666_5
crossref_primary_10_1016_j_ijpharm_2018_10_032
crossref_primary_10_1208_s12248_018_0200_2
crossref_primary_10_3389_fmicb_2018_01502
crossref_primary_10_1002_smll_201801674
crossref_primary_10_1002_adhm_202300584
crossref_primary_10_1016_j_bbcan_2024_189244
crossref_primary_10_2147_IJN_S432279
crossref_primary_10_1016_j_biomaterials_2019_119606
crossref_primary_10_1016_j_pneurobio_2021_102022
crossref_primary_10_1002_cbin_12014
crossref_primary_10_1016_j_semcancer_2021_02_010
crossref_primary_10_1186_s40635_024_00701_z
crossref_primary_10_3390_cancers13153700
crossref_primary_10_1002_cac2_12377
crossref_primary_10_3390_nano11071788
crossref_primary_10_3390_pharmaceutics15030937
crossref_primary_10_1016_j_jconrel_2024_02_037
crossref_primary_10_3390_cancers13071711
crossref_primary_10_3390_cells8121509
crossref_primary_10_1016_j_jconrel_2023_08_059
crossref_primary_10_1038_s41598_019_41100_9
crossref_primary_10_3390_pharmaceutics15051453
crossref_primary_10_1016_j_heliyon_2024_e30238
crossref_primary_10_1002_smtd_202301178
crossref_primary_10_1016_j_plipres_2017_03_001
crossref_primary_10_3390_ijms252313121
crossref_primary_10_1016_j_chemphyslip_2020_105009
crossref_primary_10_1016_j_ijpharm_2024_124096
crossref_primary_10_1124_jpet_119_257097
crossref_primary_10_1186_s13229_020_00366_x
crossref_primary_10_1093_asj_sjad139
crossref_primary_10_1016_j_biopha_2024_116128
crossref_primary_10_3390_antiox11061194
crossref_primary_10_1039_D3BM01170D
crossref_primary_10_1016_j_nantod_2020_101066
crossref_primary_10_1016_j_ijpharm_2019_118802
crossref_primary_10_1155_2021_1490732
crossref_primary_10_3390_biomedicines12030489
crossref_primary_10_1016_j_addr_2021_05_006
crossref_primary_10_1016_j_cophys_2025_100815
crossref_primary_10_3390_pharmaceutics12121146
crossref_primary_10_1016_j_apsb_2020_12_014
crossref_primary_10_1016_j_placenta_2021_04_001
crossref_primary_10_1002_jev2_12305
crossref_primary_10_1186_s13287_024_03952_5
crossref_primary_10_1007_s40778_024_00241_y
crossref_primary_10_1186_s12951_023_02073_0
crossref_primary_10_1016_j_brainres_2022_147840
crossref_primary_10_1016_j_lfs_2022_120935
crossref_primary_10_1016_j_colsurfb_2024_113951
crossref_primary_10_1016_j_bbrc_2022_01_051
crossref_primary_10_2147_JIR_S339113
crossref_primary_10_1002_bit_28909
crossref_primary_10_1016_j_semcancer_2021_02_006
crossref_primary_10_1016_j_jddst_2025_106647
crossref_primary_10_1186_s12951_021_01192_w
crossref_primary_10_1016_j_bbagen_2019_129486
crossref_primary_10_1073_pnas_2025451118
crossref_primary_10_1016_j_saa_2023_123346
crossref_primary_10_1186_s12943_025_02372_0
crossref_primary_10_3390_ijms251910401
crossref_primary_10_3389_fmed_2024_1420281
crossref_primary_10_3389_fphar_2022_1026386
crossref_primary_10_1016_j_addr_2022_114324
crossref_primary_10_1186_s13075_021_02420_2
crossref_primary_10_1002_admi_202200357
crossref_primary_10_1016_j_jddst_2019_03_009
crossref_primary_10_1016_j_freeradbiomed_2024_12_006
crossref_primary_10_3390_pharmaceutics11060285
crossref_primary_10_3389_fcimb_2020_00417
crossref_primary_10_3390_cancers13174435
crossref_primary_10_3390_pharmaceutics15051418
crossref_primary_10_3389_fphys_2021_707429
crossref_primary_10_1016_j_jconrel_2023_08_010
crossref_primary_10_1002_bit_27606
crossref_primary_10_1002_adhm_201900847
crossref_primary_10_3390_life14121584
crossref_primary_10_3390_biomedicines9030275
crossref_primary_10_1016_j_jconrel_2018_09_019
crossref_primary_10_1016_j_jcyt_2019_01_001
crossref_primary_10_1186_s11658_023_00507_z
crossref_primary_10_1002_advs_202102441
crossref_primary_10_1038_s41420_020_00367_y
crossref_primary_10_3389_fimmu_2022_836922
crossref_primary_10_3390_ijms21072299
crossref_primary_10_1002_ctm2_204
crossref_primary_10_1016_j_biomaterials_2021_121234
crossref_primary_10_3389_fcell_2020_553444
crossref_primary_10_1016_j_oraloncology_2020_104916
crossref_primary_10_1080_1061186X_2018_1491977
crossref_primary_10_1093_rb_rbaa019
crossref_primary_10_3390_ijms26062491
crossref_primary_10_1002_smll_202312153
crossref_primary_10_3390_cancers14051160
crossref_primary_10_1002_jev2_12469
crossref_primary_10_1016_j_ccr_2020_213506
crossref_primary_10_3390_pharmaceutics14122564
crossref_primary_10_1002_anbr_202500008
crossref_primary_10_1002_EXP_20230139
crossref_primary_10_1016_j_jare_2025_08_003
crossref_primary_10_1002_imt2_86
crossref_primary_10_1002_adtp_202400051
crossref_primary_10_1038_s41598_021_85833_y
crossref_primary_10_3390_ijms24076467
crossref_primary_10_1038_s41598_017_14725_x
crossref_primary_10_1155_2023_7059289
crossref_primary_10_1007_s00280_021_04348_5
crossref_primary_10_1021_acsnano_8b02053
crossref_primary_10_1002_hep4_1300
crossref_primary_10_1186_s12929_023_00972_w
crossref_primary_10_1016_j_eng_2025_06_042
crossref_primary_10_3390_ijms232315236
crossref_primary_10_2174_0929867325666180831150259
crossref_primary_10_1039_D0BM01735C
crossref_primary_10_1186_s12967_023_04729_9
crossref_primary_10_1002_jev2_12245
crossref_primary_10_1016_j_semcancer_2023_11_003
crossref_primary_10_1038_s41598_021_87891_8
crossref_primary_10_1002_jev2_12248
crossref_primary_10_1039_D0BM00427H
crossref_primary_10_1007_s40820_022_00818_4
crossref_primary_10_1016_j_phrs_2025_107890
crossref_primary_10_1016_j_bioactmat_2021_12_006
crossref_primary_10_1080_17425247_2024_2306877
crossref_primary_10_1016_j_lfs_2021_120216
crossref_primary_10_1016_j_colsurfb_2018_10_056
crossref_primary_10_1080_1061186X_2021_1929257
crossref_primary_10_1002_sctm_17_0055
crossref_primary_10_1016_j_biomaterials_2017_05_003
crossref_primary_10_1002_adtp_202000259
crossref_primary_10_1080_20013078_2020_1809766
crossref_primary_10_3390_ijms20020299
crossref_primary_10_1007_s00774_017_0860_5
crossref_primary_10_1186_s40580_024_00434_5
crossref_primary_10_5500_wjt_v10_i11_330
crossref_primary_10_3389_fchem_2020_00009
crossref_primary_10_1002_advs_202100460
crossref_primary_10_3389_fimmu_2018_00738
crossref_primary_10_1088_1748_605X_ad525c
crossref_primary_10_1016_j_heliyon_2024_e27025
crossref_primary_10_1186_s40779_024_00521_y
crossref_primary_10_1038_s42003_025_08749_7
crossref_primary_10_1038_s41392_024_01735_1
crossref_primary_10_1038_s41582_025_01080_z
crossref_primary_10_1080_10717544_2020_1748758
crossref_primary_10_3390_ijms22158163
crossref_primary_10_1016_j_matdes_2023_112067
crossref_primary_10_3389_fbioe_2022_1023700
crossref_primary_10_1016_j_jddst_2025_107453
crossref_primary_10_3389_fphar_2025_1550208
crossref_primary_10_1109_TNB_2023_3284090
crossref_primary_10_3390_v12050564
crossref_primary_10_1038_nrcardio_2017_7
crossref_primary_10_3390_v16010094
crossref_primary_10_1002_mco2_259
crossref_primary_10_1016_j_cej_2024_156638
crossref_primary_10_1051_e3sconf_202339101133
crossref_primary_10_1038_s41467_019_11718_4
crossref_primary_10_1016_j_ejmech_2021_113372
crossref_primary_10_2147_IJN_S497428
crossref_primary_10_1016_j_biopha_2020_110237
crossref_primary_10_1186_s40348_025_00190_4
crossref_primary_10_1016_j_tibtech_2020_05_012
crossref_primary_10_1002_wnan_1523
crossref_primary_10_1016_j_jconrel_2023_06_011
crossref_primary_10_1093_cvr_cvac031
crossref_primary_10_3390_biology14010027
crossref_primary_10_3390_biom14010052
crossref_primary_10_3390_pharmaceutics13111931
crossref_primary_10_1016_j_jconrel_2023_07_059
crossref_primary_10_1186_s12951_025_03352_8
crossref_primary_10_1055_s_0041_1731294
crossref_primary_10_3389_fcell_2022_898394
crossref_primary_10_3390_cells10081992
crossref_primary_10_1186_s12964_023_01103_6
crossref_primary_10_1039_D4FO04321A
crossref_primary_10_1186_s12951_022_01641_0
crossref_primary_10_1093_rb_rbad108
crossref_primary_10_1016_j_phymed_2025_156376
crossref_primary_10_3390_biomedicines13010147
crossref_primary_10_1016_j_jddst_2022_103219
crossref_primary_10_1002_adtp_201900111
crossref_primary_10_1002_jev2_12283
crossref_primary_10_3390_membranes11080619
crossref_primary_10_1111_cpr_12659
crossref_primary_10_1002_bies_201800245
crossref_primary_10_1007_s00011_025_02053_0
crossref_primary_10_1016_j_addr_2021_113974
crossref_primary_10_1016_j_biopha_2023_115992
crossref_primary_10_1002_adhm_202100596
crossref_primary_10_1016_j_jconrel_2020_06_036
crossref_primary_10_1016_j_jconrel_2024_11_060
crossref_primary_10_1002_adhm_202101202
crossref_primary_10_1016_j_jconrel_2022_10_019
crossref_primary_10_1186_s12951_018_0388_4
crossref_primary_10_1038_s41467_020_20723_x
crossref_primary_10_1186_s13036_024_00425_4
crossref_primary_10_3389_fphys_2022_895322
crossref_primary_10_1016_j_apmt_2023_101834
crossref_primary_10_3390_pharmaceutics13060768
crossref_primary_10_1016_j_canlet_2022_215668
crossref_primary_10_3389_fphar_2022_882243
crossref_primary_10_1016_j_apsb_2022_11_014
crossref_primary_10_1007_s13206_025_00232_z
crossref_primary_10_1007_s13346_023_01370_3
crossref_primary_10_1016_j_biopha_2023_115744
crossref_primary_10_1038_s41598_023_30180_3
crossref_primary_10_1186_s12964_022_00889_1
crossref_primary_10_1016_j_cell_2020_02_001
crossref_primary_10_1016_j_trac_2018_07_014
crossref_primary_10_52711_0974_360X_2022_00655
crossref_primary_10_1002_ange_201909927
crossref_primary_10_29413_ABS_2025_10_1_3
crossref_primary_10_1016_j_addr_2018_03_008
crossref_primary_10_1016_j_indcrop_2025_121850
crossref_primary_10_3389_fphar_2022_985030
crossref_primary_10_1039_D1BM00928A
crossref_primary_10_2147_IJN_S449388
crossref_primary_10_1002_advs_202003505
crossref_primary_10_1002_advs_202003747
crossref_primary_10_2147_IJN_S263756
crossref_primary_10_3389_fimmu_2022_1042983
crossref_primary_10_3390_ijms22168580
crossref_primary_10_1016_j_biomaterials_2021_120761
crossref_primary_10_1016_j_colsurfb_2024_114357
crossref_primary_10_1016_j_tice_2024_102549
crossref_primary_10_1016_j_bioactmat_2024_11_016
crossref_primary_10_1016_j_jconrel_2020_09_028
crossref_primary_10_1016_j_actbio_2019_07_006
crossref_primary_10_3390_nano9050660
crossref_primary_10_3390_ijms22063130
crossref_primary_10_1007_s12274_017_1561_z
crossref_primary_10_1088_1748_605X_abaaa2
crossref_primary_10_1002_EXP_20240109
crossref_primary_10_3390_nano11010002
crossref_primary_10_1093_rb_rbac064
crossref_primary_10_1016_j_jconrel_2018_12_022
crossref_primary_10_1186_s12967_025_06817_4
crossref_primary_10_3389_fgene_2022_891465
crossref_primary_10_1016_j_bcp_2021_114714
crossref_primary_10_1016_j_jconrel_2021_01_018
crossref_primary_10_1080_17425247_2020_1752179
crossref_primary_10_3389_fbioe_2020_00019
crossref_primary_10_1016_j_tibtech_2018_11_012
crossref_primary_10_1161_HYPERTENSIONAHA_121_17574
crossref_primary_10_1007_s12015_022_10455_4
crossref_primary_10_2174_1381612825666190701143845
crossref_primary_10_3390_nano10091838
crossref_primary_10_1007_s11033_024_09302_1
crossref_primary_10_3390_ph14080734
crossref_primary_10_1016_j_expneurol_2024_114730
crossref_primary_10_1007_s11596_024_2939_2
crossref_primary_10_1016_j_ymeth_2019_11_012
crossref_primary_10_1016_j_apsb_2023_08_033
crossref_primary_10_1038_s41467_023_37226_0
crossref_primary_10_1186_s12967_024_04981_7
crossref_primary_10_1177_20417314211059624
crossref_primary_10_1002_adma_202005709
crossref_primary_10_1002_mco2_70386
crossref_primary_10_3390_cells11111845
crossref_primary_10_1016_j_jconrel_2020_08_018
crossref_primary_10_3390_ijms221910553
crossref_primary_10_1002_smll_202106241
crossref_primary_10_1038_s41570_022_00404_7
crossref_primary_10_1016_j_apsb_2022_12_013
crossref_primary_10_3389_fimmu_2021_768771
crossref_primary_10_3389_fimmu_2020_01912
crossref_primary_10_1016_j_addr_2021_113954
crossref_primary_10_3389_fphar_2020_538137
crossref_primary_10_3389_fonc_2024_1292083
crossref_primary_10_1016_j_ymeth_2019_10_005
crossref_primary_10_1002_elps_202200133
crossref_primary_10_1016_j_actbio_2018_12_045
crossref_primary_10_3892_ijo_2019_4745
crossref_primary_10_1007_s40005_024_00699_2
crossref_primary_10_2217_nnm_2020_0064
crossref_primary_10_1080_14737140_2017_1322511
crossref_primary_10_3390_foods13101492
crossref_primary_10_1016_j_matdes_2023_112240
crossref_primary_10_3389_fmolb_2020_00139
crossref_primary_10_1080_14686996_2019_1629835
crossref_primary_10_3390_ph14040289
crossref_primary_10_1016_j_prp_2024_155785
crossref_primary_10_1007_s12265_023_10438_x
crossref_primary_10_1007_s12672_024_00974_6
crossref_primary_10_1016_j_biomaterials_2020_120282
crossref_primary_10_1155_2022_1872933
crossref_primary_10_1002_adhm_201801604
crossref_primary_10_3390_nano10112172
crossref_primary_10_1039_D4BM00410H
crossref_primary_10_1007_s13346_024_01698_4
crossref_primary_10_1016_j_ymthe_2017_03_021
crossref_primary_10_1186_s12951_024_02580_8
crossref_primary_10_1088_1361_6528_ad5690
crossref_primary_10_1016_j_critrevonc_2022_103628
crossref_primary_10_3390_pharmaceutics15112623
crossref_primary_10_1039_D3BM02017G
crossref_primary_10_1002_adfm_201703482
crossref_primary_10_2174_0113816128303695240512141729
crossref_primary_10_1038_s41551_022_00989_w
crossref_primary_10_1089_adt_2024_045
crossref_primary_10_3390_cancers11020136
crossref_primary_10_3390_ijms20030567
crossref_primary_10_3389_fphar_2018_00817
crossref_primary_10_3390_membranes12050464
crossref_primary_10_1002_adhm_202300404
crossref_primary_10_1002_ar_24186
crossref_primary_10_1016_j_biomaterials_2020_120546
crossref_primary_10_1016_j_phrs_2023_106796
crossref_primary_10_2217_nnm_2018_0286
crossref_primary_10_2147_IJN_S526945
crossref_primary_10_1016_j_pmatsci_2024_101375
crossref_primary_10_3390_futurepharmacol5030048
crossref_primary_10_1007_s11481_020_09981_0
crossref_primary_10_3389_fbioe_2019_00452
crossref_primary_10_1016_j_foodchem_2024_139034
crossref_primary_10_3389_fmedt_2021_678593
crossref_primary_10_3390_cells14060409
crossref_primary_10_1007_s13346_021_01087_1
crossref_primary_10_2174_0115672018289883240226113353
crossref_primary_10_3389_fchem_2022_910341
crossref_primary_10_1016_j_molliq_2022_118549
crossref_primary_10_1016_j_cellsig_2024_111433
crossref_primary_10_1016_j_jconrel_2020_12_005
crossref_primary_10_3390_bioengineering9110671
crossref_primary_10_1007_s00289_020_03531_7
crossref_primary_10_1016_j_ccr_2021_214111
crossref_primary_10_3389_fnagi_2023_1184435
crossref_primary_10_1016_j_biomaterials_2024_122829
crossref_primary_10_1134_S1062359024610991
crossref_primary_10_1080_10717544_2023_2184315
crossref_primary_10_1371_journal_pone_0258599
crossref_primary_10_1038_s41551_019_0405_4
crossref_primary_10_3390_ijms24097833
crossref_primary_10_1016_j_omtn_2019_03_008
crossref_primary_10_1016_j_cej_2025_166067
crossref_primary_10_3390_bioengineering7040124
crossref_primary_10_1016_j_bbrc_2023_05_024
crossref_primary_10_1016_j_foodhyd_2019_04_006
crossref_primary_10_1186_s11671_019_3139_z
crossref_primary_10_1016_j_ijpharm_2025_125753
crossref_primary_10_3390_bioengineering9110662
crossref_primary_10_3390_ijms252212346
crossref_primary_10_3390_pharmaceutics15030891
crossref_primary_10_1039_D2FO00876A
crossref_primary_10_1016_j_matdes_2025_114275
crossref_primary_10_1016_j_xphs_2023_10_017
crossref_primary_10_1016_j_jconrel_2016_09_016
crossref_primary_10_1007_s12195_022_00738_8
crossref_primary_10_3389_fbioe_2025_1609673
crossref_primary_10_3390_cells14020132
crossref_primary_10_1016_j_intimp_2024_112442
crossref_primary_10_1038_s41598_018_32535_7
crossref_primary_10_1111_jcmm_70723
crossref_primary_10_1039_D4BM00159A
crossref_primary_10_3390_biom13081209
crossref_primary_10_1007_s11033_024_10157_9
crossref_primary_10_1007_s00280_018_3586_8
crossref_primary_10_3389_fbioe_2021_645039
crossref_primary_10_1021_acsbiomaterials_9b00417
crossref_primary_10_1186_s12964_019_0423_6
crossref_primary_10_1016_j_jddst_2022_104088
crossref_primary_10_1016_j_jconrel_2023_11_011
crossref_primary_10_1016_j_ymthe_2020_11_030
crossref_primary_10_1177_15330338211041203
crossref_primary_10_3390_cells8121652
crossref_primary_10_1002_btm2_10284
crossref_primary_10_3390_bioengineering9110675
crossref_primary_10_1002_ddr_22091
crossref_primary_10_1016_j_addr_2022_114294
crossref_primary_10_3390_ijms222011187
crossref_primary_10_1016_j_jconrel_2025_113620
crossref_primary_10_1111_exd_13451
crossref_primary_10_1007_s11154_021_09680_y
crossref_primary_10_1002_eji_202350916
crossref_primary_10_1039_D0BM00804D
crossref_primary_10_1016_j_actbio_2020_11_001
crossref_primary_10_1016_j_actbio_2020_06_029
crossref_primary_10_3390_ijms23147986
crossref_primary_10_3390_pharmaceutics15020663
crossref_primary_10_3389_fimmu_2023_1153901
crossref_primary_10_1016_j_ccr_2024_216328
crossref_primary_10_1016_j_jconrel_2020_12_039
crossref_primary_10_1039_D1NR02706A
crossref_primary_10_3389_fimmu_2020_01509
crossref_primary_10_1016_j_cej_2025_161819
crossref_primary_10_3389_fphar_2016_00533
crossref_primary_10_1080_15384047_2025_2541991
crossref_primary_10_1038_srep38743
crossref_primary_10_3390_ijms24010250
crossref_primary_10_1002_jex2_70030
crossref_primary_10_1038_s41587_022_01491_z
crossref_primary_10_1007_s00259_022_05696_x
crossref_primary_10_1016_j_tips_2020_07_001
crossref_primary_10_1016_j_jconrel_2020_11_062
crossref_primary_10_1016_j_addr_2020_04_004
crossref_primary_10_3390_bioengineering6010007
crossref_primary_10_1016_j_biomaterials_2019_119707
crossref_primary_10_3390_ijms21197362
crossref_primary_10_1016_j_ejpb_2021_12_012
crossref_primary_10_1111_jnc_16108
crossref_primary_10_1080_10717544_2018_1425774
crossref_primary_10_1016_j_omtn_2019_12_004
crossref_primary_10_1016_j_snb_2020_128917
crossref_primary_10_3389_fbioe_2022_1043130
crossref_primary_10_2147_IJN_S444582
crossref_primary_10_1371_journal_ppat_1009508
crossref_primary_10_1016_j_talanta_2022_123625
crossref_primary_10_1002_jex2_70054
crossref_primary_10_1016_j_nantod_2022_101531
crossref_primary_10_1038_s42003_024_07364_2
crossref_primary_10_3389_fcell_2020_00573
crossref_primary_10_1186_s13287_022_03142_1
crossref_primary_10_1016_j_devcel_2016_04_019
crossref_primary_10_1016_j_jelechem_2018_11_015
crossref_primary_10_1002_rmv_2562
crossref_primary_10_3390_pharmaceutics15051327
crossref_primary_10_3390_ijms21186680
crossref_primary_10_1016_j_biopha_2024_117754
crossref_primary_10_1186_s40478_024_01777_0
crossref_primary_10_3389_fcell_2021_734720
crossref_primary_10_1016_j_transci_2017_07_015
crossref_primary_10_3390_ijms24119368
crossref_primary_10_1002_biot_201800528
crossref_primary_10_3390_cancers11081147
crossref_primary_10_1021_acs_jafc_4c11183
crossref_primary_10_1039_D1BM00862E
crossref_primary_10_1039_D3NR01667F
crossref_primary_10_1002_adtp_201900201
crossref_primary_10_1038_s42003_021_02965_7
crossref_primary_10_3390_pharmaceutics15072011
crossref_primary_10_1016_j_biopha_2023_115284
crossref_primary_10_1016_j_biopha_2023_115048
crossref_primary_10_3390_jfb16010025
crossref_primary_10_1080_10717544_2018_1513609
crossref_primary_10_1016_j_biomaterials_2020_119925
crossref_primary_10_1007_s11033_022_07169_8
crossref_primary_10_1080_08982104_2020_1850776
crossref_primary_10_1016_j_cancergen_2020_12_006
crossref_primary_10_1007_s10735_017_9711_x
crossref_primary_10_1039_D0NR07349K
crossref_primary_10_1080_20013078_2017_1286095
crossref_primary_10_1016_j_kint_2021_04_039
crossref_primary_10_26599_NTM_2022_9130013
crossref_primary_10_3389_fcell_2024_1372847
crossref_primary_10_1093_ckj_sfad196
crossref_primary_10_1155_2021_6696894
crossref_primary_10_1016_j_jconrel_2017_07_023
crossref_primary_10_3390_jcm14155515
crossref_primary_10_3389_fendo_2017_00194
crossref_primary_10_5812_jjcmb_136652
crossref_primary_10_1016_j_addr_2021_114108
crossref_primary_10_1021_acsami_5c06927
crossref_primary_10_1038_nrg_2016_106
crossref_primary_10_1038_s42003_021_02364_y
crossref_primary_10_1016_j_ijpharm_2022_121791
crossref_primary_10_3389_fbioe_2025_1600227
crossref_primary_10_3389_fnano_2022_939197
crossref_primary_10_1016_j_semcancer_2022_04_004
crossref_primary_10_3390_pharmaceutics17040508
crossref_primary_10_1039_D0BM01696A
crossref_primary_10_1016_j_ejpb_2021_05_024
crossref_primary_10_1186_s12933_025_02603_0
crossref_primary_10_3389_fonc_2022_884369
crossref_primary_10_3390_ijms22041729
crossref_primary_10_1002_wnan_1594
crossref_primary_10_1016_j_jconrel_2020_03_039
crossref_primary_10_2147_IJN_S502591
crossref_primary_10_3389_fbioe_2021_752019
crossref_primary_10_3389_fcell_2021_751079
crossref_primary_10_1186_s12951_023_02050_7
crossref_primary_10_3389_fphar_2020_01016
crossref_primary_10_1007_s10544_019_0396_7
crossref_primary_10_1186_s12935_020_01526_y
crossref_primary_10_1016_j_bios_2025_117275
crossref_primary_10_3390_ijms22189726
crossref_primary_10_1002_advs_202301440
crossref_primary_10_1186_s13287_023_03275_x
crossref_primary_10_1016_j_jconrel_2017_07_001
crossref_primary_10_1002_jev2_12434
crossref_primary_10_3390_cells11182772
crossref_primary_10_1186_s12951_022_01342_8
crossref_primary_10_1016_j_polymer_2019_121634
crossref_primary_10_1007_s00018_017_2637_3
crossref_primary_10_1016_j_jconrel_2022_06_011
crossref_primary_10_1016_j_theriogenology_2022_10_027
crossref_primary_10_1016_j_jconrel_2022_12_013
crossref_primary_10_1016_j_biomaterials_2023_122303
crossref_primary_10_1016_j_intimp_2020_107198
crossref_primary_10_3390_pharmaceutics10040218
crossref_primary_10_3390_biomedicines11010201
crossref_primary_10_1002_sctm_18_0226
crossref_primary_10_1002_mco2_192
crossref_primary_10_1039_D1BM01751A
crossref_primary_10_1002_cbin_11494
crossref_primary_10_1063_5_0157913
crossref_primary_10_3390_pharmaceutics16081028
crossref_primary_10_1002_btm2_10756
crossref_primary_10_1093_burnst_tkab043
crossref_primary_10_1016_j_cej_2020_125939
crossref_primary_10_1039_D1BM01142A
crossref_primary_10_3390_ijms221910467
crossref_primary_10_1002_adfm_202302579
crossref_primary_10_1002_nano_202100142
crossref_primary_10_3390_ijms22126417
crossref_primary_10_1016_j_bioana_2024_05_002
crossref_primary_10_3389_fbioe_2022_1053217
crossref_primary_10_1080_14756366_2022_2155816
crossref_primary_10_3390_nano11061481
crossref_primary_10_1002_clt2_12138
crossref_primary_10_1186_s12943_019_0981_7
crossref_primary_10_1007_s13205_025_04345_y
crossref_primary_10_3390_ijms252413488
crossref_primary_10_1016_j_omtn_2021_04_006
crossref_primary_10_1007_s12013_025_01730_5
crossref_primary_10_3390_v12050486
crossref_primary_10_1007_s10529_023_03376_w
crossref_primary_10_1016_j_actaastro_2019_04_045
crossref_primary_10_3390_pharmaceutics12121171
crossref_primary_10_1016_j_mtbio_2025_101646
crossref_primary_10_1016_j_impact_2020_100261
crossref_primary_10_3390_ijms25073645
crossref_primary_10_1002_med_21453
crossref_primary_10_3389_fimmu_2024_1328145
crossref_primary_10_1016_j_ejpb_2019_08_009
crossref_primary_10_1016_j_jiec_2023_02_015
crossref_primary_10_1016_j_biotechadv_2021_107814
crossref_primary_10_1155_2018_4851949
crossref_primary_10_1016_j_apsb_2022_02_030
crossref_primary_10_1002_adma_201605604
crossref_primary_10_1016_j_addr_2021_04_012
crossref_primary_10_3390_pharmaceutics17091131
crossref_primary_10_3390_molecules26061544
crossref_primary_10_1039_D3BM00893B
crossref_primary_10_1016_j_colsurfb_2018_07_007
crossref_primary_10_3389_fncel_2019_00530
crossref_primary_10_3390_cells11131989
crossref_primary_10_1039_C8BM01449C
crossref_primary_10_1002_adhm_202200142
crossref_primary_10_1016_j_lfs_2025_123813
crossref_primary_10_7759_cureus_80200
crossref_primary_10_1016_j_ijpharm_2020_119478
crossref_primary_10_1096_fj_202002777RR
crossref_primary_10_1016_j_acthis_2025_152270
crossref_primary_10_1002_INMD_20240126
crossref_primary_10_1016_j_biomaterials_2021_121160
crossref_primary_10_3389_fbioe_2023_1170212
crossref_primary_10_3390_vetsci9110609
crossref_primary_10_1007_s12015_020_10002_z
crossref_primary_10_1016_j_addr_2021_113891
crossref_primary_10_3389_fcvm_2021_758050
crossref_primary_10_1016_j_nano_2022_102625
crossref_primary_10_2147_IJN_S436774
crossref_primary_10_1002_jev2_12371
crossref_primary_10_1038_nature22341
crossref_primary_10_1016_j_biomaterials_2022_121438
crossref_primary_10_3390_pharmaceutics17050600
crossref_primary_10_1002_smll_202007796
crossref_primary_10_1016_j_neuroscience_2020_05_046
crossref_primary_10_1002_jev2_12389
crossref_primary_10_1016_j_actbio_2018_03_046
crossref_primary_10_3390_cells11233873
crossref_primary_10_1002_ird3_77
crossref_primary_10_1016_j_jconrel_2024_09_053
crossref_primary_10_1002_jcp_27615
crossref_primary_10_1016_j_jconrel_2017_09_019
crossref_primary_10_1002_adhm_202403903
crossref_primary_10_1002_adma_201707112
crossref_primary_10_1016_j_apsb_2022_08_020
crossref_primary_10_1002_wnan_1885
crossref_primary_10_1016_j_apsb_2020_04_004
crossref_primary_10_1016_j_ejpb_2024_114500
crossref_primary_10_3390_cancers14143550
crossref_primary_10_1093_ecco_jcc_jjz184
crossref_primary_10_3389_fmed_2018_00178
crossref_primary_10_1016_j_addr_2021_03_017
crossref_primary_10_1177_20417314241312563
crossref_primary_10_1016_j_addr_2021_03_016
crossref_primary_10_1186_s12935_023_02985_9
crossref_primary_10_3389_fonc_2024_1482087
crossref_primary_10_1016_j_omtn_2018_11_009
crossref_primary_10_1016_j_addr_2021_03_012
crossref_primary_10_1002_jev2_70006
crossref_primary_10_1016_j_nano_2022_102607
crossref_primary_10_1039_D1NR04999B
crossref_primary_10_1002_jev2_70005
crossref_primary_10_1016_j_bbrc_2025_151707
crossref_primary_10_1016_j_actbio_2018_03_043
crossref_primary_10_1016_j_colsurfa_2019_124033
crossref_primary_10_3390_cells10112887
crossref_primary_10_1111_1759_7714_13175
crossref_primary_10_1002_advs_202004929
crossref_primary_10_1016_j_biomaterials_2019_01_024
crossref_primary_10_1039_D0NR00523A
crossref_primary_10_1016_j_jconrel_2022_05_062
crossref_primary_10_1038_s41569_020_00499_9
crossref_primary_10_1016_j_ymthe_2019_10_016
crossref_primary_10_1016_j_bbcan_2021_188539
crossref_primary_10_3389_fonc_2023_1172292
crossref_primary_10_1016_j_scib_2023_11_055
crossref_primary_10_1155_2021_6681771
crossref_primary_10_1208_s12248_024_00889_8
crossref_primary_10_1016_j_jconrel_2022_04_019
crossref_primary_10_1002_jev2_12163
crossref_primary_10_1002_pmic_202300063
crossref_primary_10_1016_j_lfs_2023_121830
crossref_primary_10_3390_ijms26125766
crossref_primary_10_7717_peerj_10062
crossref_primary_10_1002_prca_70023
crossref_primary_10_1111_aji_13312
crossref_primary_10_1007_s00018_021_03973_w
crossref_primary_10_1021_jacs_3c13123
crossref_primary_10_1039_D1QM00717C
crossref_primary_10_1002_adhm_202401990
crossref_primary_10_1016_j_phrs_2023_106957
crossref_primary_10_4155_fmc_2018_0214
crossref_primary_10_1016_j_addr_2020_08_010
crossref_primary_10_3390_cancers15030701
crossref_primary_10_1038_nrgastro_2017_113
crossref_primary_10_1016_j_jconrel_2021_08_038
crossref_primary_10_1186_s13062_023_00429_y
crossref_primary_10_3390_biology11020177
crossref_primary_10_1002_smll_202106569
crossref_primary_10_1002_adfm_201909890
crossref_primary_10_1080_1061186X_2024_2449482
crossref_primary_10_1089_ten_teb_2020_0222
crossref_primary_10_3390_nano11030570
crossref_primary_10_1039_D3BM01980B
crossref_primary_10_1016_j_biopha_2022_114046
crossref_primary_10_2217_epi_2019_0081
crossref_primary_10_3390_pharmaceutics14102236
crossref_primary_10_1016_j_tranon_2022_101439
crossref_primary_10_1590_1984_3143_ar2025_0049
crossref_primary_10_1016_j_ymthe_2018_03_019
crossref_primary_10_1016_j_jsps_2024_102124
crossref_primary_10_1016_j_biomaterials_2020_120369
crossref_primary_10_1016_j_phrs_2020_105322
crossref_primary_10_1007_s12015_021_10185_z
crossref_primary_10_1016_j_jconrel_2023_12_050
crossref_primary_10_3390_molecules27041303
crossref_primary_10_2174_0109298673276581231210170332
crossref_primary_10_1002_advs_202002787
crossref_primary_10_1186_s12951_024_02779_9
crossref_primary_10_3390_ijms26136448
crossref_primary_10_3390_ma18071440
crossref_primary_10_1002_ctm2_70002
crossref_primary_10_3390_cells11010043
crossref_primary_10_3389_fbioe_2020_01010
crossref_primary_10_1186_s13578_022_00786_7
crossref_primary_10_1039_D2CS00317A
crossref_primary_10_3390_antiox11010078
crossref_primary_10_1134_S0026893324010102
crossref_primary_10_1016_j_ijbiomac_2023_127131
crossref_primary_10_3390_molecules25030689
crossref_primary_10_2147_IJN_S465959
crossref_primary_10_1016_j_ijpharm_2020_119627
crossref_primary_10_1182_bloodadvances_2023012464
crossref_primary_10_3390_ijms21207688
crossref_primary_10_1016_j_biomaterials_2017_10_012
crossref_primary_10_1016_j_ijpx_2025_100360
crossref_primary_10_1002_ajoc_202500053
crossref_primary_10_3390_pharmaceutics14102252
crossref_primary_10_1038_gt_2017_8
crossref_primary_10_1038_s41551_017_0119_4
crossref_primary_10_1016_j_ijbiomac_2023_127145
crossref_primary_10_1002_jex2_138
crossref_primary_10_1016_j_addr_2021_113829
crossref_primary_10_1016_j_prp_2024_155446
crossref_primary_10_3390_ijms25179149
crossref_primary_10_3390_ijms26104857
crossref_primary_10_1016_j_jconrel_2022_03_036
crossref_primary_10_1007_s12274_021_3868_z
crossref_primary_10_1016_j_lfs_2023_121646
crossref_primary_10_1016_j_lfs_2020_118871
crossref_primary_10_1016_j_nantod_2024_102336
crossref_primary_10_1097_MS9_0000000000001473
crossref_primary_10_3390_bios13010050
crossref_primary_10_1016_j_intimp_2025_115045
crossref_primary_10_3389_fimmu_2020_571897
crossref_primary_10_1016_j_clim_2019_06_006
crossref_primary_10_1002_cac2_12518
crossref_primary_10_1186_s13036_024_00470_z
crossref_primary_10_3389_fonc_2025_1586083
crossref_primary_10_1016_j_omtn_2023_05_002
crossref_primary_10_1186_s12929_022_00798_y
crossref_primary_10_1016_j_jconrel_2018_05_015
crossref_primary_10_1002_adfm_202100088
crossref_primary_10_1146_annurev_arplant_081720_010616
crossref_primary_10_3390_polym13203492
crossref_primary_10_1016_j_phrs_2024_107260
crossref_primary_10_1002_adma_202314354
crossref_primary_10_1016_j_mtbio_2025_102345
crossref_primary_10_1080_17435889_2024_2391267
crossref_primary_10_3389_fimmu_2022_982040
crossref_primary_10_1002_biof_70021
crossref_primary_10_1080_01652176_2024_2363626
crossref_primary_10_1016_j_exer_2024_109936
crossref_primary_10_1016_j_nbd_2021_105445
crossref_primary_10_3390_cells14070548
crossref_primary_10_1016_j_ymthe_2019_12_007
crossref_primary_10_1016_j_intimp_2024_111845
crossref_primary_10_1016_j_bioactmat_2022_02_019
crossref_primary_10_1016_j_biomaterials_2025_123214
crossref_primary_10_1155_2021_9983900
crossref_primary_10_1016_j_addr_2021_113843
crossref_primary_10_1016_j_bioactmat_2022_02_013
crossref_primary_10_1038_s41388_020_01521_7
crossref_primary_10_1016_j_ijantimicag_2023_106969
crossref_primary_10_3390_ijms221910890
crossref_primary_10_1111_cns_14355
crossref_primary_10_1016_j_chempr_2023_03_012
crossref_primary_10_1186_s13578_022_00784_9
crossref_primary_10_1007_s12272_023_01477_8
crossref_primary_10_1017_neu_2023_27
crossref_primary_10_1016_j_jconrel_2023_10_034
crossref_primary_10_1016_j_jconrel_2023_10_031
crossref_primary_10_2147_IJN_S458397
Cites_doi 10.1074/jbc.M110.107821
10.1016/j.jconrel.2012.04.038
10.1016/S0022-1759(02)00330-7
10.1038/mt.2010.254
10.1016/S1054-3589(08)60246-X
10.1038/nbt.1807
10.1093/nar/gks463
10.1021/nn404945r
10.1146/annurev-cellbio-101512-122326
10.1038/mt.2011.164
10.1016/j.jconrel.2013.08.014
10.1038/mt.2012.161
10.1016/j.biomaterials.2014.02.003
10.1186/1471-2164-12-S3-S18
10.1186/1479-5876-3-9
10.1038/mt.2010.105
10.1038/ncomms2282
10.1080/08982100802309552
10.1021/nn402232g
10.1074/jbc.M111.288662
10.1016/j.biomaterials.2015.04.028
10.3402/jev.v4.27269
10.1002/immu.200310028
10.1038/leu.2014.41
10.1016/j.jconrel.2014.11.029
10.1095/biolreprod.111.095760
10.1007/s10544-012-9642-y
10.1016/j.biomaterials.2013.11.083
10.1016/0005-2736(94)90005-1
10.1016/j.nano.2014.11.009
10.1016/j.celrep.2014.08.027
10.3402/jev.v2i0.20389
10.3402/jev.v4.29685
10.1038/srep10721
10.1186/1479-5876-3-10
10.1016/j.jconrel.2015.09.031
10.1083/jcb.201211138
10.1016/j.jconrel.2016.01.009
10.1016/j.jconrel.2014.07.042
10.1038/nbt.3045
10.1038/ncb1725
10.1248/bpb.34.13
10.1093/clinchem/48.10.1647
10.1016/j.jconrel.2015.03.033
10.1038/ncb3169
10.1038/ncb1800
10.1074/jbc.M114.621383
10.3390/ph6050659
10.3402/jev.v4.30087
10.1016/j.jconrel.2014.07.049
10.1016/j.ab.2013.12.001
10.1016/j.jconrel.2011.11.021
10.1016/j.nano.2015.01.003
10.1021/nl5047494
10.1016/j.chroma.2014.10.026
10.3402/jev.v3.23430
10.1038/ncb1596
10.1016/j.molcel.2010.06.010
10.1016/S0022-1759(00)00321-5
10.1136/gutjnl-2011-300449
10.1002/jps.2600700412
10.1038/mtna.2011.2
10.1093/intimm/dxh267
10.1517/14712598.2015.977250
10.1038/mt.2012.180
10.1016/j.ymeth.2015.02.019
10.1073/pnas.0403453101
10.1038/mt.2008.1
10.1038/35078107
10.3402/jev.v4.26238
10.1517/14712598.5.6.737
10.1038/sj.leu.2404132
10.1073/pnas.0914843107
10.1016/j.jconrel.2014.12.013
10.3402/jev.v4.26316
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright © 2016 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright © 2016 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.addr.2016.02.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Pharmacy, Therapeutics, & Pharmacology
EISSN 1872-8294
EndPage 156
ExternalDocumentID 26928656
10_1016_j_addr_2016_02_006
S0169409X16300576
Genre Journal Article
Review
GroupedDBID ---
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATCM
AAXUO
ABFNM
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ABZDS
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSP
SSU
SSZ
T5K
TEORI
~G-
--K
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGRDE
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMT
HVGLF
HX~
HZ~
R2-
SEW
SPT
WUQ
Y6R
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c356t-907d6742b7789731a3005ebcf36f18ed472dd1eee59fc4d16f8fc055456147f93
ISICitedReferencesCount 995
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000387525500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-409X
1872-8294
IngestDate Sun Sep 28 01:41:33 EDT 2025
Wed Feb 19 02:43:08 EST 2025
Sat Nov 29 07:24:21 EST 2025
Tue Nov 18 21:55:50 EST 2025
Fri Feb 23 02:29:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt A
Keywords biodistribution
targeting
exosomes
Extracellular vesicles
nanomedicine
isolation
microvesicles
drug delivery
Language English
License Copyright © 2016 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c356t-907d6742b7789731a3005ebcf36f18ed472dd1eee59fc4d16f8fc055456147f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1012-9815
PMID 26928656
PQID 1826659477
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1826659477
pubmed_primary_26928656
crossref_citationtrail_10_1016_j_addr_2016_02_006
crossref_primary_10_1016_j_addr_2016_02_006
elsevier_sciencedirect_doi_10_1016_j_addr_2016_02_006
PublicationCentury 2000
PublicationDate 2016-11-15
PublicationDateYYYYMMDD 2016-11-15
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Advanced drug delivery reviews
PublicationTitleAlternate Adv Drug Deliv Rev
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nordin, Lee, Vader, Mager, Johansson, Heusermann, Wiklander, Hallbrink, Seow, Bultema, Gilthorpe, Davies, Fairchild, Gabrielsson, Meisner-Kober, Lehtio, Smith, Wood, El Andaloussi (bb0175) May 2015; 11
Zhang, Liu, Chen, Li, Li, Bian, Sun, Lu, Yin, Cai, Sun, Wang, Ba, Wang, Wang, Yang, Liu, Xu, Yan, Zhang, Zen, Zhang (bb0200) 2010; 39
Hellwinkel, Redzic, Harland, Gunaydin, Anchordoquy, Graner (bb0330) Sep. 18 2015
Urbanelli, Buratta, Sagini, Ferrara, Lanni, Emiliani (bb0075) 2015; 10
Hood, Scott, Wickline (bb0260) 2014; 448
Fuhrmann, Serio, Mazo, Nair, Stevens (bb0270) 2015; 205
Mizrak, Bolukbasi, Ozdener, Brenner, Madlener, Erkan, Strobel, Breakefield, Saydam (bb0385) 2013; 21
Caby, Lankar, Vincendeau-Scherrer, Raposo, Bonnerot (bb0060) 2005; 17
van der Meel, Fens, Vader, van Solinge, Eniola-Adefeso, Schiffelers (bb0295) 2014; 195
Tsui, Ng, Lo (bb0090) 2002; 48
Ogawa, Miura, Harazono, Kanai-Azuma, Akimoto, Kawakami, Yamaguchi, Toda, Endo, Tsubuki, Yanoshita (bb0070) 2011; 34
Kosaka, Iguchi, Yoshioka, Hagiwara, Takeshita, Ochiya (bb0190) 2012; 287
Ashcroft, de Sonneville, Yuana, Osanto, Bertina, Kuil, Oosterkamp (bb0150) 2012; 14
Bolukbasi, Mizrak, Ozdener, Madlener, Strobel, Erkan, Fan, Breakefield, Saydam (bb0030) 2012; 1
Zhuang, Xiang, Grizzle, Sun, Zhang, Axtell, Ju, Mu, Zhang, Steinman, Miller, Zhang (bb0100) 2011; 19
Lamparski, Metha-Damani, Yao, Patel, Hsu, Ruegg, Le Pecq (bb0155) 2002; 270
Imai, Takahashi, Nishikawa, Kato, Morishita, Yamashita, Matsumoto, Charoenviriyakul, Takakura (bb0285) 2015; 4
Wiklander, Nordin, O'Loughlin, Gustafsson, Corso, Mager, Vader, Lee, Sork, Seow, Heldring, Alvarez-Erviti, Smith, Le Blanc, Macchiarini, Jungebluth, Wood, Andaloussi (bb0275) 2015; 4
Koppers-Lalic, Hackenberg, Bijnsdorp, van Eijndhoven, Sadek, Sie, Zini, Middeldorp, Ylstra, de Menezes, Wurdinger, Meijer, Pegtel (bb0025) 2014; 8
Skog, Wurdinger, van Rijn, Meijer, Gainche, Sena-Esteves, Curry, Carter, Krichevsky, Breakefield (bb0050) 2008; 10
Pegtel, Cosmopoulos, Thorley-Lawson, van Eijndhoven, Hopmans, Lindenberg, de Gruijl, Wurdinger, Middeldorp (bb0045) 2010; 107
Yoon, Jo, Jeong, Kim, Jeong, Park (bb0400) 2015; 59
Escudier, Dorval, Chaput, Andre, Caby, Novault, Flament, Leboulaire, Borg, Amigorena, Boccaccio, Bonnerot, Dhellin, Movassagh, Piperno, Robert, Serra, Valente, Le Pecq, Spatz, Lantz, Tursz, Angevin, Zitvogel (bb0110) 2005; 3
Alvarez-Erviti, Seow, Yin, Betts, Lakhal, Wood (bb0095) 2011; 29
Pan, Ramakrishnaiah, Henry, Fouraschen, de Ruiter, Kwekkeboom, Tilanus, Janssen, van der Laan (bb0195) 2012; 61
Lener, Gimona, Aigner, Borger, Buza s, Camussi, Chaput, Chatterjee, Court, Del Portillo, O'Driscoll, Fais, Falcon-Perez, Felderhoff-Mueser, Fraile, Gho, Gorgens, Gupta, Hendrix, Hermann, Hill, Hochberg, Horn, de Kleijn, Kordelas, Kramer, Kramer-Albers, Laner-Plamberger, Laitinen, Leonardi, Lorenowicz, Lim, Lotvall, Maguire, Marcilla, Nazarenko, Ochiya, Patel, Pedersen, Pocsfalvi, Pluchino, Quesenberry, Reischl, Rivera, Sanzenbacher, Schallmoser, Slaper-Cortenbach, Strunk, Tonn, Vader, van Balkom, Wauben, Andaloussi, Thery, Rohde, Giebel (bb0125) 2015; 4
Lai, Mardini, Ericsson, Prabhakar, Maguire, Chen, Tannous, Breakefield (bb0280) 2014; 8
Haney, Klyachko, Zhao, Gupta, Plotnikova, He, Patel, Piroyan, Sokolsky, Kabanov, Batrakova (bb0265) 2015; 207
van Dommelen, Vader, Lakhal, Kooijmans, van Solinge, Wood, Schiffelers (bb0020) 2012; 161
Kordelas, Rebmann, Ludwig, Radtke, Ruesing, Doeppner, Epple, Horn, Beelen, Giebel (bb0340) 2014; 28
Senyei, Reich, Gonczy, Widder (bb0370) 1981; 70
Monguio-Tortajada, Lauzurica-Valdemoros, Borras (bb0335) 2014; 5
Pascucci, Cocce, Bonomi, Ami, Ceccarelli, Ciusani, Vigano, Locatelli, Sisto, Doglia, Parati, Bernardo, Muraca, Alessandri, Bondiolotti, Pessina (bb0215) 2014; 192
Valadi, Ekstrom, Bossios, Sjostrand, Lee, Lotvall (bb0035) 2007; 9
Ratajczak, Miekus, Kucia, Zhang, Reca, Dvorak, Ratajczak (bb0040) 2006; 20
Raposo, Stoorvogel (bb0015) 2013; 200
Moghimi, Hamad (bb0310) 2008; 18
Marcus, Leonard (bb0105) 2013; 6
Morse, Garst, Osada, Khan, Hobeika, Clay, Valente, Shreeniwas, Sutton, Delcayre, Hsu, Le Pecq, Lyerly (bb0115) 2005; 3
Smyth, Kullberg, Malik, Smith-Jones, Graner, Anchordoquy (bb0300) 2015; 199
Tang, Zhang, Zhang, Xu, Liu, Ma, Lv, Li, Katirai, Shen, Zhang, Feng, Ye, Huang (bb0220) 2012; 3
Gould, Raposo (bb0010) 2013; 2
Akao, Iio, Itoh, Noguchi, Itoh, Ohtsuki, Naoe (bb0205) 2011; 19
Al-Nedawi, Meehan, Micallef, Lhotak, May, Guha, Rak (bb0055) 2008; 10
Costa-Silva, Aiello, Ocean, Singh, Zhang, Thakur, Becker, Hoshino, Mark, Molina, Xiang, Zhang, Theilen, Garcia-Santos, Williams, Ararso, Huang, Rodrigues, Shen, Labori, Lothe, Kure, Hernandez, Doussot, Ebbesen, Grandgenett, Hollingsworth, Jain, Mallya, Batra, Jarnagin, Schwartz, Matei, Peinado, Stanger, Bromberg, Lyden (bb0345) 2015; 17
Bala, Csak, Momen-Heravi, Lippai, Kodys, Catalano, Satishchandran, Ambros, Szabo (bb0290) 2015; 5
Heinemann, Ilmer, Silva, Hawke, Recio, Vorontsova, Alt, Vykoukal (bb0160) 2014; 1371
(bb0085) 2014; 32
Saari, Lazaro-Ibanez, Viitala, Vuorimaa-Laukkanen, Siljander, Yliperttula (bb0235) 2015; 220
Sun, Zhuang, Xiang, Liu, Zhang, Liu, Barnes, Grizzle, Miller, Zhang (bb0230) 2010; 18
Aalberts, van Dissel-Emiliani, van Adrichem, van Wijnen, Wauben, Stout, Stoorvogel (bb0135) 2012; 86
Hung, Leonard (bb0355) 2015; 290
Zhang, Li, Yu, Zhu, Li, Gu, Zhang, Zen (bb0390) 2014; 35
Kosaka, Iguchi, Yoshioka, Takeshita, Matsuki, Ochiya (bb0185) 2010; 285
Clayton, Harris, Court, Mason, Morgan (bb0315) 2003; 33
Wahlgren, De, Brisslert, Vaziri Sani, Telemo, Sunnerhagen, Valadi (bb0245) 2012; 40
Taylor, Shah (bb0140) 2015; 87
Clayton, Court, Navabi, Adams, Mason, Hobot, Newman, Jasani (bb0145) 2001; 247
Widder, Senyei, Ranney (bb0365) 1979; 16
Lasser (bb0080) 2015; 15
Silva, Luciani, Gazeau, Aubertin, Bonneau, Chauvierre, Letourneur, Wilhelm (bb0375) 2015; 11
Boing, van der Pol, Grootemaat, Coumans, Sturk, Nieuwland (bb0165) 2014; 3
Chaput, Taieb, Andre, Zitvogel (bb0325) 2005; 5
Welton, Webber, Botos, Jones, Clayton (bb0170) 2015; 4
Lee, Kim, Jeong, Lee, Goh, Kim, Kim, Park (bb0225) 2015; 15
Colombo, Raposo, Thery (bb0005) 2014; 30
Dai, Wei, Wu, Zhou, Wei, Huang, Li (bb0120) 2008; 16
Batagov, Kuznetsov, Kurochkin (bb0210) 2011; 12
Whitehead, Wu, Hvam, Aslan, Dong, Dyrskjot, Ostenfeld, Moghimi, Howard (bb0320) 2015; 4
Pisitkun, Shen, Knepper (bb0065) 2004; 101
Thery, Amigorena, Raposo, Clayton (bb0130) 2006
Tian, Li, Song, Ji, Zhu, Anderson, Wei, Nie (bb0350) 2014; 35
Elbashir, Harborth, Lendeckel, Yalcin, Weber, Tuschl (bb0180) 2001; 411
Ohno, Takanashi, Sudo, Ueda, Ishikawa, Matsuyama, Fujita, Mizutani, Ohgi, Ochiya, Gotoh, Kuroda (bb0360) 2013; 21
Kim, Haney, Zhao, Mahajan, Deygen, Klyachko, Inskoe, Piroyan, Sokolsky, Okolie, Hingtgen, Kabanov, Batrakova (bb0240) Nov. 14 2015
Maeda (bb0380) 2012; 164
Jang, Kim, Yoon, Choi, Roh, Park, Nilsson, Lotvall, Kim, Gho (bb0395) 2013; 7
Kooijmans, Stremersch, Braeckmans, de Smedt, Hendrix, Wood, Schiffelers, Raemdonck, Vader (bb0250) 2013; 172
Stoicheva, Hui (bb0255) 1994; 1195
Kooijmans, Fliervoet, van der Meel, Fens, Heijnen, van Bergen En Henegouwen, Vader, Schiffelers (bb0305) 2016; 224
Clayton (10.1016/j.addr.2016.02.006_bb0145) 2001; 247
Lener (10.1016/j.addr.2016.02.006_bb0125) 2015; 4
Aalberts (10.1016/j.addr.2016.02.006_bb0135) 2012; 86
Kosaka (10.1016/j.addr.2016.02.006_bb0190) 2012; 287
Raposo (10.1016/j.addr.2016.02.006_bb0015) 2013; 200
Costa-Silva (10.1016/j.addr.2016.02.006_bb0345) 2015; 17
Escudier (10.1016/j.addr.2016.02.006_bb0110) 2005; 3
Sun (10.1016/j.addr.2016.02.006_bb0230) 2010; 18
Pascucci (10.1016/j.addr.2016.02.006_bb0215) 2014; 192
Elbashir (10.1016/j.addr.2016.02.006_bb0180) 2001; 411
Hellwinkel (10.1016/j.addr.2016.02.006_bb0330) 2015
Lamparski (10.1016/j.addr.2016.02.006_bb0155) 2002; 270
Zhang (10.1016/j.addr.2016.02.006_bb0200) 2010; 39
Pan (10.1016/j.addr.2016.02.006_bb0195) 2012; 61
Akao (10.1016/j.addr.2016.02.006_bb0205) 2011; 19
Colombo (10.1016/j.addr.2016.02.006_bb0005) 2014; 30
Ratajczak (10.1016/j.addr.2016.02.006_bb0040) 2006; 20
Koppers-Lalic (10.1016/j.addr.2016.02.006_bb0025) 2014; 8
Valadi (10.1016/j.addr.2016.02.006_bb0035) 2007; 9
Chaput (10.1016/j.addr.2016.02.006_bb0325) 2005; 5
Zhuang (10.1016/j.addr.2016.02.006_bb0100) 2011; 19
Ohno (10.1016/j.addr.2016.02.006_bb0360) 2013; 21
Kosaka (10.1016/j.addr.2016.02.006_bb0185) 2010; 285
Heinemann (10.1016/j.addr.2016.02.006_bb0160) 2014; 1371
Welton (10.1016/j.addr.2016.02.006_bb0170) 2015; 4
Moghimi (10.1016/j.addr.2016.02.006_bb0310) 2008; 18
Batagov (10.1016/j.addr.2016.02.006_bb0210) 2011; 12
Fuhrmann (10.1016/j.addr.2016.02.006_bb0270) 2015; 205
Skog (10.1016/j.addr.2016.02.006_bb0050) 2008; 10
Marcus (10.1016/j.addr.2016.02.006_bb0105) 2013; 6
Whitehead (10.1016/j.addr.2016.02.006_bb0320) 2015; 4
Tian (10.1016/j.addr.2016.02.006_bb0350) 2014; 35
(10.1016/j.addr.2016.02.006_bb0085) 2014; 32
Kooijmans (10.1016/j.addr.2016.02.006_bb0305) 2016; 224
Dai (10.1016/j.addr.2016.02.006_bb0120) 2008; 16
Saari (10.1016/j.addr.2016.02.006_bb0235) 2015; 220
Al-Nedawi (10.1016/j.addr.2016.02.006_bb0055) 2008; 10
Tang (10.1016/j.addr.2016.02.006_bb0220) 2012; 3
Taylor (10.1016/j.addr.2016.02.006_bb0140) 2015; 87
Gould (10.1016/j.addr.2016.02.006_bb0010) 2013; 2
Thery (10.1016/j.addr.2016.02.006_bb0130) 2006
Stoicheva (10.1016/j.addr.2016.02.006_bb0255) 1994; 1195
Kim (10.1016/j.addr.2016.02.006_bb0240) 2015
Mizrak (10.1016/j.addr.2016.02.006_bb0385) 2013; 21
Yoon (10.1016/j.addr.2016.02.006_bb0400) 2015; 59
Wiklander (10.1016/j.addr.2016.02.006_bb0275) 2015; 4
Nordin (10.1016/j.addr.2016.02.006_bb0175) 2015; 11
Clayton (10.1016/j.addr.2016.02.006_bb0315) 2003; 33
Morse (10.1016/j.addr.2016.02.006_bb0115) 2005; 3
Senyei (10.1016/j.addr.2016.02.006_bb0370) 1981; 70
Jang (10.1016/j.addr.2016.02.006_bb0395) 2013; 7
Kooijmans (10.1016/j.addr.2016.02.006_bb0250) 2013; 172
Caby (10.1016/j.addr.2016.02.006_bb0060) 2005; 17
Bala (10.1016/j.addr.2016.02.006_bb0290) 2015; 5
Widder (10.1016/j.addr.2016.02.006_bb0365) 1979; 16
Zhang (10.1016/j.addr.2016.02.006_bb0390) 2014; 35
Ashcroft (10.1016/j.addr.2016.02.006_bb0150) 2012; 14
Hood (10.1016/j.addr.2016.02.006_bb0260) 2014; 448
Alvarez-Erviti (10.1016/j.addr.2016.02.006_bb0095) 2011; 29
Imai (10.1016/j.addr.2016.02.006_bb0285) 2015; 4
Pisitkun (10.1016/j.addr.2016.02.006_bb0065) 2004; 101
Tsui (10.1016/j.addr.2016.02.006_bb0090) 2002; 48
van der Meel (10.1016/j.addr.2016.02.006_bb0295) 2014; 195
Haney (10.1016/j.addr.2016.02.006_bb0265) 2015; 207
Kordelas (10.1016/j.addr.2016.02.006_bb0340) 2014; 28
Boing (10.1016/j.addr.2016.02.006_bb0165) 2014; 3
Lee (10.1016/j.addr.2016.02.006_bb0225) 2015; 15
Hung (10.1016/j.addr.2016.02.006_bb0355) 2015; 290
Maeda (10.1016/j.addr.2016.02.006_bb0380) 2012; 164
Smyth (10.1016/j.addr.2016.02.006_bb0300) 2015; 199
Wahlgren (10.1016/j.addr.2016.02.006_bb0245) 2012; 40
Silva (10.1016/j.addr.2016.02.006_bb0375) 2015; 11
Pegtel (10.1016/j.addr.2016.02.006_bb0045) 2010; 107
van Dommelen (10.1016/j.addr.2016.02.006_bb0020) 2012; 161
Ogawa (10.1016/j.addr.2016.02.006_bb0070) 2011; 34
Lasser (10.1016/j.addr.2016.02.006_bb0080) 2015; 15
Bolukbasi (10.1016/j.addr.2016.02.006_bb0030) 2012; 1
Monguio-Tortajada (10.1016/j.addr.2016.02.006_bb0335) 2014; 5
Lai (10.1016/j.addr.2016.02.006_bb0280) 2014; 8
Urbanelli (10.1016/j.addr.2016.02.006_bb0075) 2015; 10
References_xml – volume: 86
  start-page: 82
  year: 2012
  ident: bb0135
  article-title: Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin A1, and GLIPR2 in humans
  publication-title: Biol. Reprod.
– volume: 12
  start-page: S18
  year: 2011
  ident: bb0210
  article-title: Identification of nucleotide patterns enriched in secreted RNAs as putative cis-acting elements targeting them to exosome nano-vesicles
  publication-title: BMC Genomics
– volume: 101
  start-page: 13368
  year: 2004
  end-page: 13373
  ident: bb0065
  article-title: Identification and proteomic profiling of exosomes in human urine
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 4
  start-page: 30087
  year: 2015
  ident: bb0125
  article-title: Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper
  publication-title: J. Extracellular Vesicles
– volume: 11
  start-page: 879
  year: May 2015
  end-page: 883
  ident: bb0175
  article-title: Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties
  publication-title: Nanomed.: Nanotechnol., Biol. Med.
– volume: 287
  start-page: 1397
  year: 2012
  end-page: 1405
  ident: bb0190
  article-title: Competitive interactions of cancer cells and normal cells via secretory microRNAs
  publication-title: J. Biol. Chem.
– volume: 1371
  start-page: 125
  year: 2014
  end-page: 135
  ident: bb0160
  article-title: Benchtop isolation and characterization of functional exosomes by sequential filtration
  publication-title: J. Chromatogr. A
– volume: 1
  year: 2012
  ident: bb0030
  article-title: miR-1289 and "Zipcode"-like Sequence Enrich mRNAs in Microvesicles
  publication-title: Mol. Ther.–Nucleic Acids
– volume: 10
  start-page: 10
  year: 2015
  end-page: 27
  ident: bb0075
  article-title: Exosome-based strategies for Diagnosis and Therapy, Recent patents on CNS drug discovery
– volume: 61
  start-page: 1330
  year: 2012
  end-page: 1339
  ident: bb0195
  article-title: Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi)
  publication-title: Gut
– volume: 3
  year: 2014
  ident: bb0165
  article-title: Single-step isolation of extracellular vesicles by size-exclusion chromatography
  publication-title: J. Extracellular Vesicles
– volume: 5
  start-page: 737
  year: 2005
  end-page: 747
  ident: bb0325
  article-title: The potential of exosomes in immunotherapy
  publication-title: Expert. Opin. Biol. Ther.
– volume: 107
  start-page: 6328
  year: 2010
  end-page: 6333
  ident: bb0045
  article-title: Functional delivery of viral miRNAs via exosomes
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 15
  start-page: 103
  year: 2015
  end-page: 117
  ident: bb0080
  article-title: Exosomes in diagnostic and therapeutic applications: biomarker, vaccine and RNA interference delivery vehicle
  publication-title: Expert. Opin. Biol. Ther.
– volume: 40
  start-page: e130
  year: 2012
  ident: bb0245
  article-title: Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes
  publication-title: Nucleic Acids Res.
– volume: 6
  start-page: 659
  year: 2013
  end-page: 680
  ident: bb0105
  article-title: FedExosomes: Engineering Therapeutic Biological Nanoparticles that Truly Deliver
  publication-title: Pharmaceuticals (Basel)
– volume: 5
  start-page: 416
  year: 2014
  ident: bb0335
  article-title: Tolerance in organ transplantation: from conventional immunosuppression to extracellular vesicles
  publication-title: Front. Immunol.
– volume: 10
  start-page: 619
  year: 2008
  end-page: 624
  ident: bb0055
  article-title: Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells
  publication-title: Nat. Cell Biol.
– volume: 448
  start-page: 41
  year: 2014
  end-page: 49
  ident: bb0260
  article-title: Maximizing exosome colloidal stability following electroporation
  publication-title: Anal. Biochem.
– volume: 8
  start-page: 483
  year: 2014
  end-page: 494
  ident: bb0280
  article-title: Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter
  publication-title: ACS Nano
– volume: 200
  start-page: 373
  year: 2013
  end-page: 383
  ident: bb0015
  article-title: Extracellular vesicles: Exosomes, microvesicles, and friends
  publication-title: J. Cell Biol.
– volume: 7
  start-page: 7698
  year: 2013
  end-page: 7710
  ident: bb0395
  article-title: Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors
  publication-title: ACS Nano
– start-page: 22
  year: 2006
  ident: bb0130
  article-title: Isolation and characterization of exosomes from cell culture supernatants and biological fluids
  publication-title: Curr. Protoc. Cell Biol.
– volume: 205
  start-page: 35
  year: 2015
  end-page: 44
  ident: bb0270
  article-title: Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins
  publication-title: J. Control. Release
– volume: 3
  start-page: 10
  year: 2005
  ident: bb0110
  article-title: Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial
  publication-title: J. Transl. Med.
– volume: 33
  start-page: 522
  year: 2003
  end-page: 531
  ident: bb0315
  article-title: Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59
  publication-title: Eur. J. Immunol.
– volume: 2
  year: 2013
  ident: bb0010
  article-title: As we wait: coping with an imperfect nomenclature for extracellular vesicles
  publication-title: J. Extracellular Vesicles
– volume: 5
  start-page: 10721
  year: 2015
  ident: bb0290
  article-title: Biodistribution and function of extracellular miRNA-155 in mice
  publication-title: Sci. Rep.
– volume: 17
  start-page: 816
  year: 2015
  end-page: 826
  ident: bb0345
  article-title: Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver
  publication-title: Nat. Cell Biol.
– volume: 35
  start-page: 4390
  year: 2014
  end-page: 4400
  ident: bb0390
  article-title: Microvesicle-mediated delivery of transforming growth factor beta1 siRNA for the suppression of tumor growth in mice
  publication-title: Biomaterials
– volume: 16
  start-page: 782
  year: 2008
  end-page: 790
  ident: bb0120
  article-title: Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer
  publication-title: Mol. Ther.
– volume: 18
  start-page: 1606
  year: 2010
  end-page: 1614
  ident: bb0230
  article-title: A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes
  publication-title: Mol. Ther.
– volume: 207
  start-page: 18
  year: 2015
  end-page: 30
  ident: bb0265
  article-title: Exosomes as drug delivery vehicles for Parkinson's disease therapy
  publication-title: J. Control. Release
– volume: 28
  start-page: 970
  year: 2014
  end-page: 973
  ident: bb0340
  article-title: MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease
  publication-title: Leukemia
– volume: 247
  start-page: 163
  year: 2001
  end-page: 174
  ident: bb0145
  article-title: Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry
  publication-title: J. Immunol. Methods
– volume: 270
  start-page: 211
  year: 2002
  end-page: 226
  ident: bb0155
  article-title: Production and characterization of clinical grade exosomes derived from dendritic cells
  publication-title: J. Immunol. Methods
– volume: 290
  start-page: 8166
  year: 2015
  end-page: 8172
  ident: bb0355
  article-title: Stabilization of exosome-targeting peptides via engineered glycosylation
  publication-title: J. Biol. Chem.
– volume: 1195
  start-page: 31
  year: 1994
  end-page: 38
  ident: bb0255
  article-title: Electrofusion of cell-size liposomes
  publication-title: Biochim. Biophys. Acta
– volume: 59
  start-page: 12
  year: 2015
  end-page: 20
  ident: bb0400
  article-title: Generation of nanovesicles with sliced cellular membrane fragments for exogenous material delivery
  publication-title: Biomaterials
– volume: 220
  start-page: 727
  year: 2015
  end-page: 737
  ident: bb0235
  article-title: Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells
  publication-title: J. Control. Release
– volume: 18
  start-page: 195
  year: 2008
  end-page: 209
  ident: bb0310
  article-title: Liposome-mediated triggering of complement cascade
  publication-title: J. Liposome Res.
– volume: 19
  start-page: 1769
  year: 2011
  end-page: 1779
  ident: bb0100
  article-title: Treatment of Brain Inflammatory Diseases by Delivering Exosome Encapsulated Anti-inflammatory Drugs From the Nasal Region to the Brain
  publication-title: Mol. Ther.
– volume: 224
  start-page: 77
  year: 2016
  end-page: 85
  ident: bb0305
  article-title: PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time
  publication-title: J. Control. Release
– volume: 172
  start-page: 229
  year: 2013
  end-page: 238
  ident: bb0250
  article-title: Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles
  publication-title: J. Control. Release
– volume: 30
  start-page: 255
  year: 2014
  end-page: 289
  ident: bb0005
  article-title: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 87
  start-page: 3
  year: 2015
  end-page: 10
  ident: bb0140
  article-title: Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes
  publication-title: Methods
– volume: 164
  start-page: 138
  year: 2012
  end-page: 144
  ident: bb0380
  article-title: Macromolecular therapeutics in cancer treatment: the EPR effect and beyond
  publication-title: J. Control. Release
– volume: 32
  start-page: 961
  year: 2014
  ident: bb0085
  publication-title: Time to deliver
– volume: 21
  start-page: 101
  year: 2013
  end-page: 108
  ident: bb0385
  article-title: Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth
  publication-title: Mol. Ther.
– volume: 192
  start-page: 262
  year: 2014
  end-page: 270
  ident: bb0215
  article-title: Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery
  publication-title: J. Control. Release
– volume: 161
  start-page: 635
  year: 2012
  end-page: 644
  ident: bb0020
  article-title: Microvesicles and exosomes: Opportunities for cell-derived membrane vesicles in drug delivery
  publication-title: J. Control. Release
– volume: 17
  start-page: 879
  year: 2005
  end-page: 887
  ident: bb0060
  article-title: Exosomal-like vesicles are present in human blood plasma
  publication-title: Int. Immunol.
– volume: 39
  start-page: 133
  year: 2010
  end-page: 144
  ident: bb0200
  article-title: Secreted monocytic miR-150 enhances targeted endothelial cell migration
  publication-title: Mol. Cell
– volume: 48
  start-page: 1647
  year: 2002
  end-page: 1653
  ident: bb0090
  article-title: Stability of endogenous and added RNA in blood specimens, serum, and plasma
  publication-title: Clin. Chem.
– volume: 8
  start-page: 1649
  year: 2014
  end-page: 1658
  ident: bb0025
  article-title: Nontemplated Nucleotide Additions Distinguish the Small RNA Composition in Cells from Exosomes
  publication-title: Cell Rep.
– volume: 29
  year: 2011
  ident: bb0095
  article-title: Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes
  publication-title: Nat. Biotechnol.
– volume: 411
  start-page: 494
  year: 2001
  end-page: 498
  ident: bb0180
  article-title: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells
  publication-title: Nature
– volume: 3
  year: 2012
  ident: bb0220
  article-title: Delivery of chemotherapeutic drugs in tumour cell-derived microparticles
  publication-title: Nat. Commun.
– volume: 4
  start-page: 29685
  year: 2015
  ident: bb0320
  article-title: Tumour exosomes display differential mechanical and complement activation properties dependent on malignant state: implications in endothelial leakiness
  publication-title: J. Extracellular Vesicles
– volume: 34
  start-page: 13
  year: 2011
  end-page: 23
  ident: bb0070
  article-title: Proteomic Analysis of Two Types of Exosomes in Human Whole Saliva
  publication-title: Biol. Pharm. Bull.
– volume: 70
  start-page: 389
  year: 1981
  end-page: 391
  ident: bb0370
  article-title: In vivo kinetics of magnetically targeted low-dose doxorubicin
  publication-title: J. Pharm. Sci.
– volume: 199
  start-page: 145
  year: 2015
  end-page: 155
  ident: bb0300
  article-title: Biodistribution and delivery efficiency of unmodified tumor-derived exosomes
  publication-title: J. Control. Release
– volume: 285
  start-page: 17442
  year: 2010
  end-page: 17452
  ident: bb0185
  article-title: Secretory mechanisms and intercellular transfer of microRNAs in living cells
  publication-title: J. Biol. Chem.
– volume: 20
  start-page: 847
  year: 2006
  end-page: 856
  ident: bb0040
  article-title: Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery
  publication-title: Leukemia
– volume: 14
  start-page: 641
  year: 2012
  end-page: 649
  ident: bb0150
  article-title: Determination of the size distribution of blood microparticles directly in plasma using atomic force microscopy and microfluidics
  publication-title: Biomed. Microdevices
– year: Sep. 18 2015
  ident: bb0330
  article-title: Glioma-derived extracellular vesicles selectively suppress immune responses
  publication-title: Neuro Oncol.
– volume: 16
  start-page: 213
  year: 1979
  end-page: 271
  ident: bb0365
  article-title: Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumor agents
  publication-title: Adv. Pharmacol. Chemother.
– volume: 195
  start-page: 72
  year: 2014
  end-page: 85
  ident: bb0295
  article-title: Extracellular vesicles as drug delivery systems: Lessons from the liposome field
  publication-title: J. Control. Release
– volume: 19
  start-page: 395
  year: 2011
  end-page: 399
  ident: bb0205
  article-title: Microvesicle-mediated RNA molecule delivery system using monocytes/macrophages
  publication-title: Mol. Ther.
– year: Nov. 14 2015
  ident: bb0240
  article-title: Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells
  publication-title: Nanomed.: Nanotechnol., Biol. Med.
– volume: 35
  start-page: 2383
  year: 2014
  end-page: 2390
  ident: bb0350
  article-title: A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy
  publication-title: Biomaterials
– volume: 3
  start-page: 9
  year: 2005
  ident: bb0115
  article-title: A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer
  publication-title: J. Transl. Med.
– volume: 21
  start-page: 185
  year: 2013
  end-page: 191
  ident: bb0360
  article-title: Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells
  publication-title: Mol. Ther.
– volume: 4
  start-page: 27269
  year: 2015
  ident: bb0170
  article-title: Ready-made chromatography columns for extracellular vesicle isolation from plasma
  publication-title: J. Extracellular Vesicles
– volume: 15
  start-page: 2938
  year: 2015
  end-page: 2944
  ident: bb0225
  article-title: Liposome-Based Engineering of Cells To Package Hydrophobic Compounds in Membrane Vesicles for Tumor Penetration
  publication-title: Nano Lett.
– volume: 4
  start-page: 26238
  year: 2015
  ident: bb0285
  article-title: Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice
  publication-title: J. Extracellular Vesicles
– volume: 11
  start-page: 645
  year: 2015
  end-page: 655
  ident: bb0375
  article-title: Combining magnetic nanoparticles with cell derived microvesicles for drug loading and targeting
  publication-title: Nanomed.: Nanotechnol., Biol. Med.
– volume: 9
  start-page: 654
  year: 2007
  end-page: 659
  ident: bb0035
  article-title: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells
  publication-title: Nat. Cell Biol.
– volume: 10
  start-page: 1470
  year: 2008
  end-page: 1476
  ident: bb0050
  article-title: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers
  publication-title: Nat. Cell Biol.
– volume: 4
  start-page: 26316
  year: 2015
  ident: bb0275
  article-title: Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting
  publication-title: J. Extracellular Vesicles
– volume: 285
  start-page: 17442
  year: 2010
  ident: 10.1016/j.addr.2016.02.006_bb0185
  article-title: Secretory mechanisms and intercellular transfer of microRNAs in living cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.107821
– volume: 164
  start-page: 138
  year: 2012
  ident: 10.1016/j.addr.2016.02.006_bb0380
  article-title: Macromolecular therapeutics in cancer treatment: the EPR effect and beyond
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2012.04.038
– volume: 270
  start-page: 211
  year: 2002
  ident: 10.1016/j.addr.2016.02.006_bb0155
  article-title: Production and characterization of clinical grade exosomes derived from dendritic cells
  publication-title: J. Immunol. Methods
  doi: 10.1016/S0022-1759(02)00330-7
– volume: 19
  start-page: 395
  year: 2011
  ident: 10.1016/j.addr.2016.02.006_bb0205
  article-title: Microvesicle-mediated RNA molecule delivery system using monocytes/macrophages
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2010.254
– volume: 16
  start-page: 213
  year: 1979
  ident: 10.1016/j.addr.2016.02.006_bb0365
  article-title: Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumor agents
  publication-title: Adv. Pharmacol. Chemother.
  doi: 10.1016/S1054-3589(08)60246-X
– volume: 29
  year: 2011
  ident: 10.1016/j.addr.2016.02.006_bb0095
  article-title: Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1807
– volume: 40
  start-page: e130
  year: 2012
  ident: 10.1016/j.addr.2016.02.006_bb0245
  article-title: Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks463
– volume: 8
  start-page: 483
  year: 2014
  ident: 10.1016/j.addr.2016.02.006_bb0280
  article-title: Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter
  publication-title: ACS Nano
  doi: 10.1021/nn404945r
– volume: 30
  start-page: 255
  year: 2014
  ident: 10.1016/j.addr.2016.02.006_bb0005
  article-title: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-101512-122326
– volume: 19
  start-page: 1769
  year: 2011
  ident: 10.1016/j.addr.2016.02.006_bb0100
  article-title: Treatment of Brain Inflammatory Diseases by Delivering Exosome Encapsulated Anti-inflammatory Drugs From the Nasal Region to the Brain
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2011.164
– volume: 5
  start-page: 416
  year: 2014
  ident: 10.1016/j.addr.2016.02.006_bb0335
  article-title: Tolerance in organ transplantation: from conventional immunosuppression to extracellular vesicles
  publication-title: Front. Immunol.
– volume: 172
  start-page: 229
  year: 2013
  ident: 10.1016/j.addr.2016.02.006_bb0250
  article-title: Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2013.08.014
– volume: 21
  start-page: 101
  year: 2013
  ident: 10.1016/j.addr.2016.02.006_bb0385
  article-title: Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2012.161
– volume: 35
  start-page: 4390
  year: 2014
  ident: 10.1016/j.addr.2016.02.006_bb0390
  article-title: Microvesicle-mediated delivery of transforming growth factor beta1 siRNA for the suppression of tumor growth in mice
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.02.003
– volume: 12
  start-page: S18
  issue: Suppl. 3
  year: 2011
  ident: 10.1016/j.addr.2016.02.006_bb0210
  article-title: Identification of nucleotide patterns enriched in secreted RNAs as putative cis-acting elements targeting them to exosome nano-vesicles
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-S3-S18
– volume: 3
  start-page: 9
  year: 2005
  ident: 10.1016/j.addr.2016.02.006_bb0115
  article-title: A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer
  publication-title: J. Transl. Med.
  doi: 10.1186/1479-5876-3-9
– volume: 18
  start-page: 1606
  year: 2010
  ident: 10.1016/j.addr.2016.02.006_bb0230
  article-title: A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2010.105
– volume: 3
  year: 2012
  ident: 10.1016/j.addr.2016.02.006_bb0220
  article-title: Delivery of chemotherapeutic drugs in tumour cell-derived microparticles
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2282
– volume: 18
  start-page: 195
  year: 2008
  ident: 10.1016/j.addr.2016.02.006_bb0310
  article-title: Liposome-mediated triggering of complement cascade
  publication-title: J. Liposome Res.
  doi: 10.1080/08982100802309552
– volume: 7
  start-page: 7698
  year: 2013
  ident: 10.1016/j.addr.2016.02.006_bb0395
  article-title: Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors
  publication-title: ACS Nano
  doi: 10.1021/nn402232g
– volume: 287
  start-page: 1397
  year: 2012
  ident: 10.1016/j.addr.2016.02.006_bb0190
  article-title: Competitive interactions of cancer cells and normal cells via secretory microRNAs
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.288662
– volume: 59
  start-page: 12
  year: 2015
  ident: 10.1016/j.addr.2016.02.006_bb0400
  article-title: Generation of nanovesicles with sliced cellular membrane fragments for exogenous material delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.04.028
– volume: 4
  start-page: 27269
  year: 2015
  ident: 10.1016/j.addr.2016.02.006_bb0170
  article-title: Ready-made chromatography columns for extracellular vesicle isolation from plasma
  publication-title: J. Extracellular Vesicles
  doi: 10.3402/jev.v4.27269
– volume: 33
  start-page: 522
  year: 2003
  ident: 10.1016/j.addr.2016.02.006_bb0315
  article-title: Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59
  publication-title: Eur. J. Immunol.
  doi: 10.1002/immu.200310028
– volume: 28
  start-page: 970
  year: 2014
  ident: 10.1016/j.addr.2016.02.006_bb0340
  article-title: MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease
  publication-title: Leukemia
  doi: 10.1038/leu.2014.41
– volume: 205
  start-page: 35
  year: 2015
  ident: 10.1016/j.addr.2016.02.006_bb0270
  article-title: Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2014.11.029
– volume: 86
  start-page: 82
  year: 2012
  ident: 10.1016/j.addr.2016.02.006_bb0135
  article-title: Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin A1, and GLIPR2 in humans
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.111.095760
– volume: 14
  start-page: 641
  year: 2012
  ident: 10.1016/j.addr.2016.02.006_bb0150
  article-title: Determination of the size distribution of blood microparticles directly in plasma using atomic force microscopy and microfluidics
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-012-9642-y
– volume: 35
  start-page: 2383
  year: 2014
  ident: 10.1016/j.addr.2016.02.006_bb0350
  article-title: A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.11.083
– volume: 1195
  start-page: 31
  year: 1994
  ident: 10.1016/j.addr.2016.02.006_bb0255
  article-title: Electrofusion of cell-size liposomes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(94)90005-1
– volume: 11
  start-page: 645
  year: 2015
  ident: 10.1016/j.addr.2016.02.006_bb0375
  article-title: Combining magnetic nanoparticles with cell derived microvesicles for drug loading and targeting
  publication-title: Nanomed.: Nanotechnol., Biol. Med.
  doi: 10.1016/j.nano.2014.11.009
– volume: 8
  start-page: 1649
  year: 2014
  ident: 10.1016/j.addr.2016.02.006_bb0025
  article-title: Nontemplated Nucleotide Additions Distinguish the Small RNA Composition in Cells from Exosomes
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.08.027
– volume: 2
  year: 2013
  ident: 10.1016/j.addr.2016.02.006_bb0010
  article-title: As we wait: coping with an imperfect nomenclature for extracellular vesicles
  publication-title: J. Extracellular Vesicles
  doi: 10.3402/jev.v2i0.20389
– volume: 4
  start-page: 29685
  year: 2015
  ident: 10.1016/j.addr.2016.02.006_bb0320
  article-title: Tumour exosomes display differential mechanical and complement activation properties dependent on malignant state: implications in endothelial leakiness
  publication-title: J. Extracellular Vesicles
  doi: 10.3402/jev.v4.29685
– year: 2015
  ident: 10.1016/j.addr.2016.02.006_bb0240
  article-title: Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells
  publication-title: Nanomed.: Nanotechnol., Biol. Med.
– volume: 5
  start-page: 10721
  year: 2015
  ident: 10.1016/j.addr.2016.02.006_bb0290
  article-title: Biodistribution and function of extracellular miRNA-155 in mice
  publication-title: Sci. Rep.
  doi: 10.1038/srep10721
– volume: 10
  start-page: 10
  year: 2015
  ident: 10.1016/j.addr.2016.02.006_bb0075
– volume: 3
  start-page: 10
  year: 2005
  ident: 10.1016/j.addr.2016.02.006_bb0110
  article-title: Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial
  publication-title: J. Transl. Med.
  doi: 10.1186/1479-5876-3-10
– volume: 220
  start-page: 727
  year: 2015
  ident: 10.1016/j.addr.2016.02.006_bb0235
  article-title: Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2015.09.031
– volume: 200
  start-page: 373
  year: 2013
  ident: 10.1016/j.addr.2016.02.006_bb0015
  article-title: Extracellular vesicles: Exosomes, microvesicles, and friends
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201211138
– volume: 224
  start-page: 77
  year: 2016
  ident: 10.1016/j.addr.2016.02.006_bb0305
  article-title: PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2016.01.009
– volume: 192
  start-page: 262
  year: 2014
  ident: 10.1016/j.addr.2016.02.006_bb0215
  article-title: Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2014.07.042
– volume: 32
  start-page: 961
  year: 2014
  ident: 10.1016/j.addr.2016.02.006_bb0085
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3045
– volume: 10
  start-page: 619
  year: 2008
  ident: 10.1016/j.addr.2016.02.006_bb0055
  article-title: Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1725
– volume: 34
  start-page: 13
  year: 2011
  ident: 10.1016/j.addr.2016.02.006_bb0070
  article-title: Proteomic Analysis of Two Types of Exosomes in Human Whole Saliva
  publication-title: Biol. Pharm. Bull.
  doi: 10.1248/bpb.34.13
– volume: 48
  start-page: 1647
  year: 2002
  ident: 10.1016/j.addr.2016.02.006_bb0090
  article-title: Stability of endogenous and added RNA in blood specimens, serum, and plasma
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/48.10.1647
– volume: 207
  start-page: 18
  year: 2015
  ident: 10.1016/j.addr.2016.02.006_bb0265
  article-title: Exosomes as drug delivery vehicles for Parkinson's disease therapy
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2015.03.033
– volume: 17
  start-page: 816
  year: 2015
  ident: 10.1016/j.addr.2016.02.006_bb0345
  article-title: Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3169
– volume: 10
  start-page: 1470
  year: 2008
  ident: 10.1016/j.addr.2016.02.006_bb0050
  article-title: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1800
– year: 2015
  ident: 10.1016/j.addr.2016.02.006_bb0330
  article-title: Glioma-derived extracellular vesicles selectively suppress immune responses
  publication-title: Neuro Oncol.
– volume: 290
  start-page: 8166
  year: 2015
  ident: 10.1016/j.addr.2016.02.006_bb0355
  article-title: Stabilization of exosome-targeting peptides via engineered glycosylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.621383
– volume: 6
  start-page: 659
  year: 2013
  ident: 10.1016/j.addr.2016.02.006_bb0105
  article-title: FedExosomes: Engineering Therapeutic Biological Nanoparticles that Truly Deliver
  publication-title: Pharmaceuticals (Basel)
  doi: 10.3390/ph6050659
– volume: 4
  start-page: 30087
  year: 2015
  ident: 10.1016/j.addr.2016.02.006_bb0125
  article-title: Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper
  publication-title: J. Extracellular Vesicles
  doi: 10.3402/jev.v4.30087
– volume: 195
  start-page: 72
  year: 2014
  ident: 10.1016/j.addr.2016.02.006_bb0295
  article-title: Extracellular vesicles as drug delivery systems: Lessons from the liposome field
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2014.07.049
– volume: 448
  start-page: 41
  year: 2014
  ident: 10.1016/j.addr.2016.02.006_bb0260
  article-title: Maximizing exosome colloidal stability following electroporation
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2013.12.001
– volume: 161
  start-page: 635
  year: 2012
  ident: 10.1016/j.addr.2016.02.006_bb0020
  article-title: Microvesicles and exosomes: Opportunities for cell-derived membrane vesicles in drug delivery
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2011.11.021
– volume: 11
  start-page: 879
  issue: 4
  year: 2015
  ident: 10.1016/j.addr.2016.02.006_bb0175
  article-title: Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties
  publication-title: Nanomed.: Nanotechnol., Biol. Med.
  doi: 10.1016/j.nano.2015.01.003
– volume: 15
  start-page: 2938
  year: 2015
  ident: 10.1016/j.addr.2016.02.006_bb0225
  article-title: Liposome-Based Engineering of Cells To Package Hydrophobic Compounds in Membrane Vesicles for Tumor Penetration
  publication-title: Nano Lett.
  doi: 10.1021/nl5047494
– volume: 1371
  start-page: 125
  year: 2014
  ident: 10.1016/j.addr.2016.02.006_bb0160
  article-title: Benchtop isolation and characterization of functional exosomes by sequential filtration
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2014.10.026
– volume: 3
  year: 2014
  ident: 10.1016/j.addr.2016.02.006_bb0165
  article-title: Single-step isolation of extracellular vesicles by size-exclusion chromatography
  publication-title: J. Extracellular Vesicles
  doi: 10.3402/jev.v3.23430
– volume: 9
  start-page: 654
  year: 2007
  ident: 10.1016/j.addr.2016.02.006_bb0035
  article-title: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1596
– start-page: 22
  year: 2006
  ident: 10.1016/j.addr.2016.02.006_bb0130
  article-title: Isolation and characterization of exosomes from cell culture supernatants and biological fluids
  publication-title: Curr. Protoc. Cell Biol.
– volume: 39
  start-page: 133
  year: 2010
  ident: 10.1016/j.addr.2016.02.006_bb0200
  article-title: Secreted monocytic miR-150 enhances targeted endothelial cell migration
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.06.010
– volume: 247
  start-page: 163
  year: 2001
  ident: 10.1016/j.addr.2016.02.006_bb0145
  article-title: Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry
  publication-title: J. Immunol. Methods
  doi: 10.1016/S0022-1759(00)00321-5
– volume: 61
  start-page: 1330
  year: 2012
  ident: 10.1016/j.addr.2016.02.006_bb0195
  article-title: Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi)
  publication-title: Gut
  doi: 10.1136/gutjnl-2011-300449
– volume: 70
  start-page: 389
  year: 1981
  ident: 10.1016/j.addr.2016.02.006_bb0370
  article-title: In vivo kinetics of magnetically targeted low-dose doxorubicin
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.2600700412
– volume: 1
  year: 2012
  ident: 10.1016/j.addr.2016.02.006_bb0030
  article-title: miR-1289 and "Zipcode"-like Sequence Enrich mRNAs in Microvesicles
  publication-title: Mol. Ther.–Nucleic Acids
  doi: 10.1038/mtna.2011.2
– volume: 17
  start-page: 879
  year: 2005
  ident: 10.1016/j.addr.2016.02.006_bb0060
  article-title: Exosomal-like vesicles are present in human blood plasma
  publication-title: Int. Immunol.
  doi: 10.1093/intimm/dxh267
– volume: 15
  start-page: 103
  year: 2015
  ident: 10.1016/j.addr.2016.02.006_bb0080
  article-title: Exosomes in diagnostic and therapeutic applications: biomarker, vaccine and RNA interference delivery vehicle
  publication-title: Expert. Opin. Biol. Ther.
  doi: 10.1517/14712598.2015.977250
– volume: 21
  start-page: 185
  year: 2013
  ident: 10.1016/j.addr.2016.02.006_bb0360
  article-title: Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2012.180
– volume: 87
  start-page: 3
  year: 2015
  ident: 10.1016/j.addr.2016.02.006_bb0140
  article-title: Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes
  publication-title: Methods
  doi: 10.1016/j.ymeth.2015.02.019
– volume: 101
  start-page: 13368
  year: 2004
  ident: 10.1016/j.addr.2016.02.006_bb0065
  article-title: Identification and proteomic profiling of exosomes in human urine
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0403453101
– volume: 16
  start-page: 782
  year: 2008
  ident: 10.1016/j.addr.2016.02.006_bb0120
  article-title: Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2008.1
– volume: 411
  start-page: 494
  year: 2001
  ident: 10.1016/j.addr.2016.02.006_bb0180
  article-title: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells
  publication-title: Nature
  doi: 10.1038/35078107
– volume: 4
  start-page: 26238
  year: 2015
  ident: 10.1016/j.addr.2016.02.006_bb0285
  article-title: Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice
  publication-title: J. Extracellular Vesicles
  doi: 10.3402/jev.v4.26238
– volume: 5
  start-page: 737
  year: 2005
  ident: 10.1016/j.addr.2016.02.006_bb0325
  article-title: The potential of exosomes in immunotherapy
  publication-title: Expert. Opin. Biol. Ther.
  doi: 10.1517/14712598.5.6.737
– volume: 20
  start-page: 847
  year: 2006
  ident: 10.1016/j.addr.2016.02.006_bb0040
  article-title: Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery
  publication-title: Leukemia
  doi: 10.1038/sj.leu.2404132
– volume: 107
  start-page: 6328
  year: 2010
  ident: 10.1016/j.addr.2016.02.006_bb0045
  article-title: Functional delivery of viral miRNAs via exosomes
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0914843107
– volume: 199
  start-page: 145
  year: 2015
  ident: 10.1016/j.addr.2016.02.006_bb0300
  article-title: Biodistribution and delivery efficiency of unmodified tumor-derived exosomes
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2014.12.013
– volume: 4
  start-page: 26316
  year: 2015
  ident: 10.1016/j.addr.2016.02.006_bb0275
  article-title: Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting
  publication-title: J. Extracellular Vesicles
  doi: 10.3402/jev.v4.26316
SSID ssj0012760
Score 2.6856768
SecondaryResourceType review_article
Snippet Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 148
SubjectTerms Animals
biodistribution
Drug Carriers - metabolism
drug delivery
Drug Delivery Systems - methods
exosomes
Extracellular vesicles
Extracellular Vesicles - metabolism
Humans
isolation
microvesicles
nanomedicine
targeting
Title Extracellular vesicles for drug delivery
URI https://dx.doi.org/10.1016/j.addr.2016.02.006
https://www.ncbi.nlm.nih.gov/pubmed/26928656
https://www.proquest.com/docview/1826659477
Volume 106
WOSCitedRecordID wos000387525500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8294
  dateEnd: 20171031
  omitProxy: false
  ssIdentifier: ssj0012760
  issn: 0169-409X
  databaseCode: AIEXJ
  dateStart: 19950701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdru8FeRtd9ZVuLB6MM2hRbtvXxGErKNtZiRlbyJmRL6trFbrCdkvz3kyzZSTpStoe9GGPLH9zvfD6d7n4HwEeRSYV4qr-0KNUTFJOUQyiJ-1giKgjPJG8ohS6_4YsLMh7TxKU1V007AVwUZD6n0_8KtT6mwTals_8Ad3dTfUDva9D1VsOut38F_HBel9zE45sE0ztZNYlvTTqhKGdXR0JOTC7G2nLuoM0EWBvh6lo6r_uSCwtwcr2a1Xtum3QN85wvI6MJNwwMv3g-tZH30lXv20Wfn6Yty8S1Z_vOF7mpojlfjUAEyJTi2RrME2mtJsEabGi7FXdm1Ucr-pPU7g2snQwsveYf9tuGEm5OtNU1ZK0BsoSqaHWwFvc0b8CDiJrC2ntU2s3PuT21BXYgjqm2dzuDL8Px126FCWLkuyIqm-93_5GGJtrdZJPPsmlO0vgmo13wzE0qvIFVhufgkSz2wBPbZnSxBw4Ty0--OPZGy3K76tg79JIlc_niBfi0pjteqzue1h3PaIbXasZL8ONsODr93HetNPpZGKO6T30sEI5gijExzcq46VIg00yFSAVEighDIQIpZUxVFokAKaIyP27c6wgrGr4C28VtId8AT4owlRAKBXka4VSkKg0jnwcxESojAvVA0AqLZY5n3rQ7mbA2ofCGGVkzI2vmQ6Zl3QNH3TVTy7Ly4Oi4xYA5P9H6f0yr0YPXfWgBY9qIGmnyQt7OKmYm2SimEcY98Noi2b1HqwRvN555B54uP4v3YLsuZ3IfPM7u6uuqPABbeEwOnPr9Bi0dl3k
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+vesicles+for+drug+delivery&rft.jtitle=Advanced+drug+delivery+reviews&rft.au=Vader%2C+Pieter&rft.au=Mol%2C+Emma+A&rft.au=Pasterkamp%2C+Gerard&rft.au=Schiffelers%2C+Raymond+M&rft.date=2016-11-15&rft.eissn=1872-8294&rft.volume=106&rft.issue=Pt+A&rft.spage=148&rft_id=info:doi/10.1016%2Fj.addr.2016.02.006&rft_id=info%3Apmid%2F26928656&rft.externalDocID=26928656
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-409X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-409X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-409X&client=summon