Reduced Complexity Superresolution for Low-Bitrate Video Compression

Evolving video applications impose requirements for high image quality, low bitrate, and/or small computational cost. This paper combines state-of-the-art coding and superresolution (SR) techniques to improve video compression both in terms of coding efficiency and complexity. The proposed approach...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems for video technology Vol. 26; no. 2; pp. 332 - 345
Main Authors: Georgis, Georgios, Lentaris, George, Reisis, Dionysios
Format: Journal Article
Language:English
Published: New York IEEE 01.02.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1051-8215, 1558-2205
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Evolving video applications impose requirements for high image quality, low bitrate, and/or small computational cost. This paper combines state-of-the-art coding and superresolution (SR) techniques to improve video compression both in terms of coding efficiency and complexity. The proposed approach improves a generic decimation-quantization compression scheme by introducing low complexity single-image SR techniques for rescaling the data at the decoder side and by jointly exploring/optimizing the downsampling/upsampling processes. The enhanced scheme achieves improvement of the quality and system's complexity compared with conventional codecs and can be easily modified to meet various diverse requirements, such as effectively supporting any off-the-shelf video codec, for instance H.264/Advanced Video Coding or High Efficiency Video Coding. Our approach builds on studying the generic scheme's parameterization with common rescaling techniques to achieve 2.4-dB peak signal-to-noise ratio (PSNR) quality improvement at low-bitrates compared with the conventional codecs and proposes a novel SR algorithm to advance the critical bitrate at the level of 10 Mb/s. The evaluation of the SR algorithm includes the comparison of its performance to other image rescaling solutions of the literature. The results show quality improvement by 5-dB PSNR over straightforward interpolation techniques and computational time reduction by three orders of magnitude when compared with the highly involved methods of the field. Therefore, our algorithm proves to be most suitable for use in reduced complexity downsampled compression schemes.
AbstractList Evolving video applications impose requirements for high image quality, low bitrate, and/or small computational cost. This paper combines state-of-the-art coding and superresolution (SR) techniques to improve video compression both in terms of coding efficiency and complexity. The proposed approach improves a generic decimation-quantization compression scheme by introducing low complexity single-image SR techniques for rescaling the data at the decoder side and by jointly exploring/optimizing the downsampling/upsampling processes. The enhanced scheme achieves improvement of the quality and system's complexity compared with conventional codecs and can be easily modified to meet various diverse requirements, such as effectively supporting any off-the-shelf video codec, for instance H.264/Advanced Video Coding or High Efficiency Video Coding. Our approach builds on studying the generic scheme's parameterization with common rescaling techniques to achieve 2.4-dB peak signal-to-noise ratio (PSNR) quality improvement at low-bitrates compared with the conventional codecs and proposes a novel SR algorithm to advance the critical bitrate at the level of 10 Mb/s. The evaluation of the SR algorithm includes the comparison of its performance to other image rescaling solutions of the literature. The results show quality improvement by 5-dB PSNR over straightforward interpolation techniques and computational time reduction by three orders of magnitude when compared with the highly involved methods of the field. Therefore, our algorithm proves to be most suitable for use in reduced complexity downsampled compression schemes.
Evolving video applications impose requirements for high image quality, low bitrate, and/or small computational cost. This paper combines state-of-the-art coding and superresolution (SR) techniques to improve video compression both in terms of coding efficiency and complexity. The proposed approach improves a generic decimation-quantization compression scheme by introducing low complexity single-image SR techniques for rescaling the data at the decoder side and by jointly exploring/optimizing the downsampling/upsampling processes. The enhanced scheme achieves improvement of the quality and syste's complexity compared with conventional codecs and can be easily modified to meet various diverse requirements, such as effectively supporting any off-the-shelf video codec, for instance H.264/Advanced Video Coding or High Efficiency Video Coding. Our approach builds on studying the generic scheme's parameterization with common rescaling techniques to achieve 2.4-dB peak signal-to-noise ratio (PSNR) quality improvement at low-bitrates compared with the conventional codecs and proposes a novel SR algorithm to advance the critical bitrate at the level of 10 Mb/s. The evaluation of the SR algorithm includes the comparison of its performance to other image rescaling solutions of the literature. The results show quality improvement by 5-dB PSNR over straightforward interpolation techniques and computational time reduction by three orders of magnitude when compared with the highly involved methods of the field. Therefore, our algorithm proves to be most suitable for use in reduced complexity downsampled compression schemes.
Author Lentaris, George
Georgis, Georgios
Reisis, Dionysios
Author_xml – sequence: 1
  givenname: Georgios
  surname: Georgis
  fullname: Georgis, Georgios
  email: ggeorgis@phys.uoa.gr
  organization: Department of PhysicsElectronics Laboratory, National and Kapodistrian University of Athens, Athens, Greece
– sequence: 2
  givenname: George
  surname: Lentaris
  fullname: Lentaris, George
  email: glentaris@phys.uoa.gr
  organization: Department of PhysicsElectronics Laboratory, National and Kapodistrian University of Athens, Athens, Greece
– sequence: 3
  givenname: Dionysios
  surname: Reisis
  fullname: Reisis, Dionysios
  email: dreisis@phys.uoa.gr
  organization: Department of PhysicsElectronics Laboratory, National and Kapodistrian University of Athens, Athens, Greece
BookMark eNp9kLtOwzAUQC1UJJ4_AEskFpYUXz9iZ4TylCohQelqpc6NZJTGwU4E_D0JrRg6MF0P5_henSMyaXyDhJwBnQLQ_Goxe10upoyCnDKuc8FhjxyClDpljMrJ8KYSUs1AHpCjGN8pBaGFOiS3L1j2Fstk5tdtjV-u-05e-xZDwOjrvnO-SSofkrn_TG9cF4oOk6Ur0f8KAxQH4oTsV0Ud8XQ7j8nb_d1i9pjOnx-eZtfz1HKZdamSqHieoVUA3KJYcbDCWraymq_QViVoVQrNC5VLXVaSQ05lgbRkVSGEovyYXG7-bYP_6DF2Zu2ixbouGvR9NKAho5LlKhvQix303fehGa4zDJTgjOb0XwqUVowpxse1bEPZ4GMMWJk2uHURvg1QM-Y3v_nNmN9s8w-S3pGs64qx5xDR1f-r5xvVIeLfLkWpFLnkP28kk7o
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2019_2960084
crossref_primary_10_1007_s11063_022_10816_7
crossref_primary_10_1007_s10586_021_03391_4
crossref_primary_10_1007_s11554_016_0619_6
crossref_primary_10_1016_j_sigpro_2024_109878
crossref_primary_10_1016_j_image_2021_116355
crossref_primary_10_1109_TIP_2023_3310344
crossref_primary_10_1109_TMM_2019_2919433
crossref_primary_10_1016_j_image_2022_116754
crossref_primary_10_1016_j_image_2025_117277
crossref_primary_10_1016_j_micpro_2018_05_008
crossref_primary_10_1109_TCSVT_2018_2878952
crossref_primary_10_1109_TCSVT_2024_3379971
crossref_primary_10_1109_TIP_2018_2806281
crossref_primary_10_1016_j_image_2024_117172
crossref_primary_10_1109_TCSVT_2022_3176934
Cites_doi 10.1109/TIP.2009.2022440
10.1109/DCC.2008.81
10.1007/978-1-4419-6184-6_3
10.1109/TCSVT.2011.2130390
10.1109/TIP.2012.2214050
10.1109/TIP.2011.2108306
10.1117/12.840257
10.1109/ICASSP.1993.319830
10.1109/TCSVT.2013.2278146
10.1117/1.OE.52.7.071505
10.1109/ICECS.2011.6122201
10.1109/TCSVT.2007.898655
10.1109/83.650118
10.1109/ICCV.1998.710815
10.1109/MSP.2003.1203207
10.1109/TIP.2003.816023
10.1109/ICDSP.2013.6622833
10.1016/j.dsp.2012.10.002
10.1016/j.image.2008.04.002
10.1117/1.JEI.21.1.013011
10.1016/1049-9652(91)90045-L
10.1109/PCS.2012.6213283
10.1007/s11045-007-0019-y
10.1109/TASSP.1981.1163711
10.1109/TCSVT.2010.2087454
10.1109/TIP.2006.877415
10.1007/978-3-642-10467-1_101
10.1155/2013/395915
10.1109/TIP.2010.2050625
10.1007/978-3-642-11686-5_5
10.1109/TIP.2010.2080278
10.1109/ICCV.2013.241
10.1117/12.660794
10.1109/TIP.2003.819861
10.1109/TCSVT.2012.2221191
10.1109/TIP.2004.834669
10.1111/j.1467-8659.2004.00752.x
10.1007/s11265-010-0554-x
10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TCSVT.2015.2389431
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 345
ExternalDocumentID 4047518451
10_1109_TCSVT_2015_2389431
7005495
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
F28
FR3
ID FETCH-LOGICAL-c356t-75e7396ec7113ce4b31c4cc2bc83becfd187d483a7958df531905ae0d2fa44703
IEDL.DBID RIE
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370935900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-8215
IngestDate Thu Oct 02 18:01:21 EDT 2025
Mon Jun 30 10:16:12 EDT 2025
Sun Jun 29 15:13:39 EDT 2025
Tue Nov 18 20:45:16 EST 2025
Sat Nov 29 01:44:07 EST 2025
Wed Aug 27 02:22:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords High-definition video
single image
superresolution (SR)
video compression
low-complexity codecs
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-75e7396ec7113ce4b31c4cc2bc83becfd187d483a7958df531905ae0d2fa44703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1787227230
PQPubID 85433
PageCount 14
ParticipantIDs proquest_miscellaneous_1816052976
crossref_primary_10_1109_TCSVT_2015_2389431
ieee_primary_7005495
proquest_journals_1787227230
crossref_citationtrail_10_1109_TCSVT_2015_2389431
proquest_journals_2174320906
PublicationCentury 2000
PublicationDate 2016-Feb.
2016-2-00
20160201
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-Feb.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref36
nguyen (ref14) 2008
ref30
ref11
ref10
ref2
pan (ref19) 2012
ref1
ref17
(ref38) 2008
ref16
(ref39) 2013
ref18
ref24
ref46
ref23
ref45
ref26
ref25
qin (ref31) 2009; 18
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
villena (ref33) 2009
ref4
ref3
ref6
ref5
ref40
dong (ref32) 2009
References_xml – ident: ref26
  doi: 10.1109/TIP.2009.2022440
– start-page: 1624
  year: 2008
  ident: ref14
  article-title: Adaptive downsampling/upsampling for better video compression at low bit rate
  publication-title: Proc IEEE Int Symp Circuits Syst
– ident: ref15
  doi: 10.1109/DCC.2008.81
– ident: ref1
  doi: 10.1007/978-1-4419-6184-6_3
– ident: ref17
  doi: 10.1109/TCSVT.2011.2130390
– ident: ref46
  doi: 10.1109/TIP.2012.2214050
– ident: ref37
  doi: 10.1109/TIP.2011.2108306
– ident: ref6
  doi: 10.1117/12.840257
– start-page: 152
  year: 2009
  ident: ref33
  article-title: Bayesian super-resolution image reconstruction using an $\ell 1$ prior
  publication-title: Proc 6th Int Symp Image Signal Process Anal (ISPA)
– ident: ref4
  doi: 10.1109/ICASSP.1993.319830
– ident: ref21
  doi: 10.1109/TCSVT.2013.2278146
– ident: ref18
  doi: 10.1117/1.OE.52.7.071505
– start-page: 349
  year: 2009
  ident: ref32
  article-title: Nonlocal back-projection for adaptive image enlargement
  publication-title: Proc 16th IEEE Int Conf Image Process (ICIP)
– ident: ref41
  doi: 10.1109/ICECS.2011.6122201
– ident: ref13
  doi: 10.1109/TCSVT.2007.898655
– ident: ref24
  doi: 10.1109/83.650118
– ident: ref44
  doi: 10.1109/ICCV.1998.710815
– ident: ref7
  doi: 10.1109/MSP.2003.1203207
– ident: ref5
  doi: 10.1109/TIP.2003.816023
– ident: ref27
  doi: 10.1109/ICDSP.2013.6622833
– volume: 18
  start-page: 13007-1
  year: 2009
  ident: ref31
  article-title: Video superresolution reconstruction based on subpixel registration and iterative back projection
  publication-title: J Electron Imag
– ident: ref34
  doi: 10.1016/j.dsp.2012.10.002
– ident: ref3
  doi: 10.1016/j.image.2008.04.002
– start-page: 139
  year: 2012
  ident: ref19
  article-title: Sparse spatio-temporal representation with adaptive regularized dictionaries for super-resolution based video coding
  publication-title: Proc Data Compress Conf (DCC)
– ident: ref20
  doi: 10.1117/1.JEI.21.1.013011
– ident: ref30
  doi: 10.1016/1049-9652(91)90045-L
– ident: ref23
  doi: 10.1109/PCS.2012.6213283
– ident: ref12
  doi: 10.1007/s11045-007-0019-y
– ident: ref28
  doi: 10.1109/TASSP.1981.1163711
– ident: ref9
  doi: 10.1109/TCSVT.2010.2087454
– ident: ref11
  doi: 10.1109/TIP.2006.877415
– ident: ref16
  doi: 10.1007/978-3-642-10467-1_101
– year: 2008
  ident: ref38
  publication-title: H 264/AVC JM Reference Software
– ident: ref40
  doi: 10.1155/2013/395915
– ident: ref36
  doi: 10.1109/TIP.2010.2050625
– ident: ref22
  doi: 10.1007/978-3-642-11686-5_5
– ident: ref35
  doi: 10.1109/TIP.2010.2080278
– year: 2013
  ident: ref39
  publication-title: H 265/HEVC HM Reference Software
– ident: ref42
  doi: 10.1109/ICCV.2013.241
– ident: ref10
  doi: 10.1117/12.660794
– ident: ref45
  doi: 10.1109/TIP.2003.819861
– ident: ref2
  doi: 10.1109/TCSVT.2012.2221191
– ident: ref25
  doi: 10.1109/TIP.2004.834669
– ident: ref43
  doi: 10.1111/j.1467-8659.2004.00752.x
– ident: ref8
  doi: 10.1007/s11265-010-0554-x
– ident: ref29
  doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
SSID ssj0014847
Score 2.319154
Snippet Evolving video applications impose requirements for high image quality, low bitrate, and/or small computational cost. This paper combines state-of-the-art...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 332
SubjectTerms Algorithms
Bit rate
Codec
Codecs
Coding
Complexity
Complexity theory
Computational efficiency
Computing time
Decoding
Encoding
high definition video
Image coding
Image compression
Image quality
Interpolation
low-complexity codecs
Noise levels
Parameterization
Parametrization
PSNR
Quality
Reduction
Rescaling
Signal quality
singleimage
State of the art
Super-resolution
Video compression
Title Reduced Complexity Superresolution for Low-Bitrate Video Compression
URI https://ieeexplore.ieee.org/document/7005495
https://www.proquest.com/docview/1787227230
https://www.proquest.com/docview/2174320906
https://www.proquest.com/docview/1816052976
Volume 26
WOSCitedRecordID wos000370935900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-m-KAPfk1xflHBN83WNGmTPPqJD0PEzbG30iVXGEgruin-9yZZVxSH4FshSRvuI3fX--UO4DQxWW7FgBGV04hwnUuSWbtADMvFyEqUGXmU76Ar7u_lcKgeGnBe34VBRA8-w7Z79Ll8U-qp-1XWEc7BUPESLAmRzO5q1RkDLn0zMesuUCKtHZtfkAlVp3_VG_QdiituWwOlOKM_jJDvqvLrKPb25XbjfzvbhPXKjwwuZozfggYW27D2rbpgE64fXVlWNIHTeVf3cvIZ9KYv6NpxVAIXWJc16JYf5HLsq9QGg7HB0i-Y4WOLHXi6velf3ZGqaQLRLE4mRMQomEpQC0qZRj5iVHOto5GWzPIrN1QKwyXLhIqlyZ0KhnGGoYnyjHPLtV1YLsoC9yDQOoxRauOwoNzGZRnlRnAdJpIriZK2gM6pmOqqorhrbPGc-sgiVKmnfOoon1aUb8FZveZlVk_jz9lNR-t6ZkXmFhzOmZVWKveWUnv0RJGwIdXCYR96RaEKkxac1MNWl1yCJCuwnNpXSJq4zKdI9hd_-ABW7fYq1PYhLE9ep3gEK_p9Mn57PfYC-QUF4NyD
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9tY9LGAww6tEJhQeKNuY1jJ7YfoVAVUSpES9W3KLUvUiWUVF0L4r_Hdt1oiGoSb5FsJ9Z9-O5y598BvMlMUVoxYESVNCFcl5IU1i4Qw0qxsBJlFr7KdzYS47Gcz9XXI7hp7sIgoi8-w6579Ll8U-ut-1XWE87BUOkxPHCds8JtrSZnwKVvJ2YdBkqktWT7KzKx6k37k9nU1XGlXWuiFGf0LzPk-6r8cxh7CzN4_H97u4BHwZOM3u1Y_wSOsHoKD-_gC7bgwzcHzIomclrvkC83v6PJdoWuIUcQucg6rdGo_kXeLz1ObTRbGqz9gl2FbHUJ3wcfp_0hCW0TiGZptiEiRcFUhlpQyjTyBaOaa50stGSWY6WhUhguWSFUKk3plDBOC4xNUhacW749g5OqrvAKIq3jFKU2rhqU28isoNwIruNMciVR0jbQPRVzHTDFXWuLH7mPLWKVe8rnjvJ5oHwb3jZrVjtEjXtntxytm5mBzG3o7JmVB6W7zak9fJJE2KDq4LAPvpJYxVkbXjfDVptciqSosN7aV0iaudynyJ4f_vA1nA2nX0b56NP48ws4t1sNNdwdONmst_gSTvXPzfJ2_coL5x-q8d_M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+Complexity+Superresolution+for+Low-Bitrate+Video+Compression&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Georgis%2C+Georgios&rft.au=Lentaris%2C+George&rft.au=Reisis%2C+Dionysios&rft.date=2016-02-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=26&rft.issue=2&rft.spage=332&rft.epage=345&rft_id=info:doi/10.1109%2FTCSVT.2015.2389431&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2015_2389431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon