Role of small interfering RNA (siRNA) in targeting ocular neovascularization: A review
Ocular neovascularization (NV) plays a central role in the pathogenesis of various ocular diseases including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa and may lead to loss of vision if not controlled in time. Several clinical trials elucidate the ce...
Gespeichert in:
| Veröffentlicht in: | Experimental eye research Jg. 202; S. 108329 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Elsevier Ltd
01.01.2021
|
| Schlagworte: | |
| ISSN: | 0014-4835, 1096-0007, 1096-0007 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Ocular neovascularization (NV) plays a central role in the pathogenesis of various ocular diseases including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa and may lead to loss of vision if not controlled in time. Several clinical trials elucidate the central role of vascular endothelial growth factor (VEGF) in the pathogenesis of the ocular neovascularization. The advent and extensive use of ocular anti-VEGF therapy heralded a new age in the treatment of retinal vascular and exudative diseases. RNA interference (RNAi) can be used to inhibit the in-vitro and in-vivo expression of specific genes and thus provides an extremely useful method for investigating gene activity with minimal toxicity. siRNA targeting VEGF overcomes many drawbacks associated with the conventional treatment available for the treatment of ocular neovascularization. However, delivery methods that protect the siRNA against degradation and are appropriate for long-term care will help increase the effectiveness of RNAi-based anti-VEGF ocular therapies. Several nanotechnology approaches have been explored by formulation scientists for delivery of siRNA to the eye; targeting particularly VEGF for the treatment of NV. This review mainly focuses on current updates in various pre-clinical and clinical siRNA strategies for targeting VEGF involved in the development of ocular neovascularization.
•Ocular NV plays a central role in the pathogenesis of various ocular diseases.•Ocular NV is usually associated with loss of vision in diabetic retinopathy and age-related macular degeneration.•VEGF and its isoforms are recognized as the principal targets for the treatment of ocular NV.•siRNA strategies to downregulate VEGF are being explored.•Several nanotechnology approaches are employed for the delivery of VEGF siRNA in the treatment of ocular NV. |
|---|---|
| AbstractList | Ocular neovascularization (NV) plays a central role in the pathogenesis of various ocular diseases including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa and may lead to loss of vision if not controlled in time. Several clinical trials elucidate the central role of vascular endothelial growth factor (VEGF) in the pathogenesis of the ocular neovascularization. The advent and extensive use of ocular anti-VEGF therapy heralded a new age in the treatment of retinal vascular and exudative diseases. RNA interference (RNAi) can be used to inhibit the in-vitro and in-vivo expression of specific genes and thus provides an extremely useful method for investigating gene activity with minimal toxicity. siRNA targeting VEGF overcomes many drawbacks associated with the conventional treatment available for the treatment of ocular neovascularization. However, delivery methods that protect the siRNA against degradation and are appropriate for long-term care will help increase the effectiveness of RNAi-based anti-VEGF ocular therapies. Several nanotechnology approaches have been explored by formulation scientists for delivery of siRNA to the eye; targeting particularly VEGF for the treatment of NV. This review mainly focuses on current updates in various pre-clinical and clinical siRNA strategies for targeting VEGF involved in the development of ocular neovascularization.
•Ocular NV plays a central role in the pathogenesis of various ocular diseases.•Ocular NV is usually associated with loss of vision in diabetic retinopathy and age-related macular degeneration.•VEGF and its isoforms are recognized as the principal targets for the treatment of ocular NV.•siRNA strategies to downregulate VEGF are being explored.•Several nanotechnology approaches are employed for the delivery of VEGF siRNA in the treatment of ocular NV. Ocular neovascularization (NV) plays a central role in the pathogenesis of various ocular diseases including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa and may lead to loss of vision if not controlled in time. Several clinical trials elucidate the central role of vascular endothelial growth factor (VEGF) in the pathogenesis of the ocular neovascularization. The advent and extensive use of ocular anti-VEGF therapy heralded a new age in the treatment of retinal vascular and exudative diseases. RNA interference (RNAi) can be used to inhibit the in-vitro and in-vivo expression of specific genes and thus provides an extremely useful method for investigating gene activity with minimal toxicity. siRNA targeting VEGF overcomes many drawbacks associated with the conventional treatment available for the treatment of ocular neovascularization. However, delivery methods that protect the siRNA against degradation and are appropriate for long-term care will help increase the effectiveness of RNAi-based anti-VEGF ocular therapies. Several nanotechnology approaches have been explored by formulation scientists for delivery of siRNA to the eye; targeting particularly VEGF for the treatment of NV. This review mainly focuses on current updates in various pre-clinical and clinical siRNA strategies for targeting VEGF involved in the development of ocular neovascularization.Ocular neovascularization (NV) plays a central role in the pathogenesis of various ocular diseases including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa and may lead to loss of vision if not controlled in time. Several clinical trials elucidate the central role of vascular endothelial growth factor (VEGF) in the pathogenesis of the ocular neovascularization. The advent and extensive use of ocular anti-VEGF therapy heralded a new age in the treatment of retinal vascular and exudative diseases. RNA interference (RNAi) can be used to inhibit the in-vitro and in-vivo expression of specific genes and thus provides an extremely useful method for investigating gene activity with minimal toxicity. siRNA targeting VEGF overcomes many drawbacks associated with the conventional treatment available for the treatment of ocular neovascularization. However, delivery methods that protect the siRNA against degradation and are appropriate for long-term care will help increase the effectiveness of RNAi-based anti-VEGF ocular therapies. Several nanotechnology approaches have been explored by formulation scientists for delivery of siRNA to the eye; targeting particularly VEGF for the treatment of NV. This review mainly focuses on current updates in various pre-clinical and clinical siRNA strategies for targeting VEGF involved in the development of ocular neovascularization. Ocular neovascularization (NV) plays a central role in the pathogenesis of various ocular diseases including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa and may lead to loss of vision if not controlled in time. Several clinical trials elucidate the central role of vascular endothelial growth factor (VEGF) in the pathogenesis of the ocular neovascularization. The advent and extensive use of ocular anti-VEGF therapy heralded a new age in the treatment of retinal vascular and exudative diseases. RNA interference (RNAi) can be used to inhibit the in-vitro and in-vivo expression of specific genes and thus provides an extremely useful method for investigating gene activity with minimal toxicity. siRNA targeting VEGF overcomes many drawbacks associated with the conventional treatment available for the treatment of ocular neovascularization. However, delivery methods that protect the siRNA against degradation and are appropriate for long-term care will help increase the effectiveness of RNAi-based anti-VEGF ocular therapies. Several nanotechnology approaches have been explored by formulation scientists for delivery of siRNA to the eye; targeting particularly VEGF for the treatment of NV. This review mainly focuses on current updates in various pre-clinical and clinical siRNA strategies for targeting VEGF involved in the development of ocular neovascularization. |
| ArticleNumber | 108329 |
| Author | Singh, Kavita Supe, Shibani Upadhya, Archana |
| Author_xml | – sequence: 1 givenname: Shibani orcidid: 0000-0001-5188-0130 surname: Supe fullname: Supe, Shibani – sequence: 2 givenname: Archana orcidid: 0000-0002-6331-5179 surname: Upadhya fullname: Upadhya, Archana – sequence: 3 givenname: Kavita surname: Singh fullname: Singh, Kavita email: kavita.singh@nmims.edu, kspharma05@gmail.com |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33198953$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kM1uGyEURlHlqrbTvkAXEctkMS4MMwxE2VhW8yNZrRS13SIG7kRY48EB7LR9-jBxsskiq4s-vnMFZ44mgx8Aoa-ULCih_NtmAX8hLEpSjoFgpfyAZpRIXhBCmgmaEUKrohKsnqJ5jJucsqqpPqEpY1QKWbMZ-nPne8C-w3Gr-x67IUHoILjhHt_9WOKz6PI4zzlOOtxDGi-82fc64AH8Qcfns_uvk_PDBV7iAAcHj5_Rx073Eb68zBP0--r7r9VNsf55fbtargvDap6KhhAJlbRt3RoOwtS2Fh20dd2JzjZtq8umIlxQsNJ23AgquKiaxkqhm1Zzy07Q2XHvLviHPcSkti4a6HudX7ePqqw4ZZJzIXP19KW6b7dg1S64rQ7_1KuLXBDHggk-xgCdMi49_ysF7XpFiRq1q40atatRuzpqz2j5Bn3d_i50eYQgC8rSgorGwWDAugAmKevde_gTd5abHg |
| CitedBy_id | crossref_primary_10_3390_cells12091280 crossref_primary_10_3390_ijms25105479 crossref_primary_10_1016_j_ijbiomac_2025_144151 crossref_primary_10_1016_j_omtn_2024_102236 crossref_primary_10_4239_wjd_v12_i7_1116 crossref_primary_10_1016_j_jtos_2024_01_002 crossref_primary_10_1002_advs_202401710 crossref_primary_10_1002_btm2_10499 crossref_primary_10_1016_j_exer_2022_109036 crossref_primary_10_1002_advs_202407340 crossref_primary_10_2147_IJN_S521960 crossref_primary_10_1186_s11658_022_00368_y crossref_primary_10_1007_s13346_022_01281_9 crossref_primary_10_1016_j_ejpb_2024_114296 crossref_primary_10_1007_s13346_024_01772_x crossref_primary_10_1155_2022_7680513 crossref_primary_10_1186_s12951_023_01992_2 crossref_primary_10_1002_mco2_583 |
| Cites_doi | 10.1080/713816122 10.2174/1567201812666150817123049 10.1038/sj.gt.3302838 10.1016/j.nano.2008.06.001 10.3390/pharmaceutics11070317 10.1111/j.1600-0420.2006.00659.x 10.1038/nrd2742 10.1586/eop.13.17 10.4137/OED.S4878 10.3390/pharmaceutics12010039 10.1016/S0002-9394(14)75794-0 10.1076/ceyr.23.1.1.5422 10.1016/j.exer.2013.01.015 10.1007/978-1-4939-6361-4 10.1136/bjophthalmol-2011-300654 10.1016/j.nano.2020.102181 10.1167/iovs.10-5891 10.1038/nrd.2015.17 10.1023/A:1023238530504 10.1016/S0161-6420(96)30420-X 10.1093/emboj/cdf470 10.1097/IAE.0b013e31804b3e15 10.1159/000107502 10.1016/j.cell.2019.01.021 10.1042/BSR20180552 10.1016/j.chemphyslip.2010.01.001 10.1038/35053110 10.1042/BST0350047 10.1016/S2214-109X(13)70113-X 10.1038/sj.onc.1206773 10.1016/j.ebiom.2015.09.042 10.1016/j.ejpb.2015.02.027 10.1016/j.ajpath.2012.06.006 10.3390/pharmaceutics12030269 10.1016/j.survophthal.2017.10.006 10.1016/S1046-2023(02)00023-3 10.3390/jfb6020379 10.1097/00006982-200402000-00018 10.1016/j.phrs.2015.11.027 10.1038/35078107 10.1056/NEJM199412013312203 10.1155/2015/892043 10.1002/jcp.21566 10.1167/iovs.05-0165 10.1111/bph.12330 10.1038/sj.gt.3302641 10.1186/1754-1611-6-7 10.1046/j.1432-0436.2001.680406.x 10.4103/0301-4738.36476 10.1016/j.addr.2009.08.004 10.1002/biot.201100054 10.1038/nsmb780 10.1016/j.jconrel.2015.01.030 10.1080/02713680500514636 10.1016/S0092-8674(00)81402-6 10.1016/j.ijbiomac.2015.09.014 10.2174/0929867033457467 10.1093/nar/gkm437 10.2337/dc11-1909 10.1517/14712598.3.1.45 10.1016/j.ajo.2010.02.006 10.1038/cgt.2016.4 10.3390/nano7040077 10.1002/jps.21458 10.1016/S0002-9440(10)65607-6 10.1016/j.prostaglandins.2007.05.001 10.1002/mabi.201600051 10.1038/35888 10.1158/0008-5472.CAN-07-6577 10.1097/IAE.0000000000000583 10.1167/iovs.03-0106 10.1089/jop.2011.0116 10.2174/1567201813666160816105408 10.2147/IJN.S24447 10.1021/acs.molpharmaceut.6b00148 10.1038/sj.bjc.6604929 10.1016/j.phrs.2016.07.042 10.1091/mbc.e06-09-0780 10.1016/j.drudis.2019.05.005 10.1167/iovs.02-0807 10.1038/eye.2012.106 10.2174/156652308786070989 10.1016/j.jconrel.2013.01.018 10.1007/s11095-006-9224-x 10.1016/S0168-3659(99)00090-5 10.1016/j.ophtha.2012.03.043 10.1039/C7NR03142D 10.1167/iovs.14-14433 10.1016/j.ijpharm.2017.04.008 10.1089/hum.2008.928 10.1080/20022727.2018.1488497 10.1016/j.sjopt.2018.05.002 10.1038/nrc2966 10.1016/j.biomaterials.2014.02.006 10.1038/nmat2626 10.1167/iovs.13-13449 10.1016/S0002-9440(10)63267-1 10.1007/s00109-013-0993-5 10.2174/157339912800840488 10.3109/10837450.2013.836217 10.3109/02713681003597230 10.1039/C4CC04969A 10.1016/j.preteyeres.2006.09.002 10.1007/s12041-009-0068-0 10.1016/j.ophtha.2012.07.038 10.1002/dvdy.10163 10.1016/j.biomaterials.2012.01.030 10.1021/acsami.7b04971 10.1007/978-1-4939-4011-0 10.1016/j.drudis.2008.09.012 10.1167/iovs.07-1077 10.1016/S2214-109X(13)70145-1 10.2174/1381612821666150531164540 10.1016/j.tibtech.2010.07.009 10.1016/j.jconrel.2015.09.066 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.exer.2020.108329 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1096-0007 |
| ExternalDocumentID | 33198953 10_1016_j_exer_2020_108329 S001448352030587X |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- --K --M .55 .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29G 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AAAJQ AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXLA AAXUO ABBQC ABCQJ ABFNM ABJNI ABLJU ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGEKW AGHFR AGUBO AGWIK AGYEJ AHHHB AHPSJ AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CAG CJTIS COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEA HMK HMO HMQ HVGLF HZ~ IHE J1W KOM L7B LCYCR LG5 LUGTX LZ2 M29 M2U M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SPCBC SSH SSI SSN SSZ T5K TEORI WUQ X7M XPP ZA5 ZGI ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c356t-7009e49db5bc6e8c5d58feb55f8fd7bba2740681ed9df6c81868477d98a7ba6d3 |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000608184800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0014-4835 1096-0007 |
| IngestDate | Mon Sep 29 06:27:59 EDT 2025 Thu Apr 03 06:59:16 EDT 2025 Sat Nov 29 07:31:43 EST 2025 Tue Nov 18 21:32:26 EST 2025 Fri Feb 23 02:39:14 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ocular cular siRNA delivery Ethylene glycol PubChem CID: 9033 PubChem CID: 24847767 Vascular endothelial growth factor (VEGF) PubChem CID: 174 PEG2000 DSPE Ocular neovascularization (NV) Small interfering RNA (siRNA) Poly-l-lysine PubChem CID: 447078 lysine PubChem CID: 21896651 Polyethylenimine 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine Cationic polymer PubChem CID: 162282 PubChem CID 5962 Liposomes Polyplexes, Lipoplexes, siRNA formulations, Diabetic retinopathy, Age-related macular degeneration, Patents on siRNA against ocular NV, Clinical trials Chitosan PubChem CID 406952 Hyaluronic acid |
| Language | English |
| License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c356t-7009e49db5bc6e8c5d58feb55f8fd7bba2740681ed9df6c81868477d98a7ba6d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-6331-5179 0000-0001-5188-0130 |
| PMID | 33198953 |
| PQID | 2461396689 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2461396689 pubmed_primary_33198953 crossref_citationtrail_10_1016_j_exer_2020_108329 crossref_primary_10_1016_j_exer_2020_108329 elsevier_sciencedirect_doi_10_1016_j_exer_2020_108329 |
| PublicationCentury | 2000 |
| PublicationDate | January 2021 2021-01-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Experimental eye research |
| PublicationTitleAlternate | Exp Eye Res |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Miller, Le Couter, Strauss, Ferrara (bib65) 2013; 120 Campbell, Ying, Kuesters, Hemphill (bib13) 2009; 98 Stewart (bib105) 2012; 96 Audouy, Hoekstra (bib8) 2001; 18 Pitkänen, Ruponen, Nieminen, Urtti (bib83) 2003; 20 Xu, Shen, Wang, Wang, Liu, Tao, Qi (bib120) 2016; 13 Kim, Tang, Biswas, Xu, Schiffelers, Xie, Ansari, Scaria, Woodle, Lu, Rouse (bib51) 2004; 165 Liu, Liu, Ma, Wang, Zhang (bib59) 2011; 52 Neely, Gardner (bib72) 1998; 153 Al-Kharashi (bib3) 2018; 32 Chen, Lu, Yeh, Shiau, Chiang (bib18) 2011; 6 Petrova, Mäkinen, Mäkelä, Saarela, Virtanen, Ferrell, Finegold, Kerjaschki, Ylä-Herttuala, Alitalo (bib81) 2002; 21 Amadio, Govoni, Pascale (bib5) 2016; 103 Mishima, Watabe, Saito, Yoshimatsu, Imaizumi, Masui, Hirashima, Morisada, Oike, Araie, Niwa, Kubo, Suda, Miyazono (bib66) 2007; 18 Nagy, Chang, Dvorak, Dvorak (bib70) 2009; 100 Xu, Boylan, Suk, Wang, Nance, Yang, McDonnell, Cone, Duh, Hanes (bib121) 2013; 167 Ryoo, Lee, Lee, Hong, Kim, Lee, Woo, Park, Kim (bib94) 2017; 9 Mok, Lee, Park, Park (bib67) 2010; 9 de la Fuente, Seijo, Alonso (bib22) 2008; 49 Burnett, Rossi, Tiemann (bib12) 2011; 6 Stewart (bib104) 2012; 8 Garba, Mousa (bib35) 2010; 2 Nguyen, Schachar, Nduaka, Sperling, Klamerus, Chi-Burris, Yan, Paggiarino, Rosenblatt, Aitchison, Erlich, Monet Clinical Study Group (bib74) 2012; 119 Hong, Harvey, Noh, Schacht, Hirakawa, Detmar, Oliver (bib44) 2002; 225 Ding, Su, Wang, Zhang, Chen, Wang, Li, Wang (bib25) 2017; 9 Usui, Ishida, Yamashiro, Kaji, Poulaki, Moore, Moore, Amano, Horikawa, Dartt, Golding, Shima, Adamis (bib113) 2004; 45 Godbey, Wu, Mikos (bib36) 1999; 60 Naik, Mukhopadhyay, Ganguli (bib71) 2009; 14 Jiang, Zhang, Tang, Li, Chen (bib48) 2020; 12561 Kaiser, Symons, Shah, Quinlan, Tabandeh, Do, Reisen, Lockridge, Short, Guerciolini, Nguyen, Sirna-027 Study Investigators (bib49) 2010; 150 Chen, Yeh, Shiau, Chiang, Lu (bib19) 2013; 8 Fire, Xu, Montgomery, Kostas, Driver, Mello (bib33) 1998; 391 Ferrara, Adamis (bib32) 2016; 15 Murata, Takanami, Shimizu, Kubota, Horiuchi, Habano, Ma, Sato (bib69) 2006; 31 Shinde, Shete, Nair, Singh (bib100) 2014; 19 Tolentino, Miller, Gragoudas, Jakobiec, Flynn, Chatzstefanou, Ferrara, Adamis (bib110) 1996; 103 Campochiaro (bib14) 2013; 91 Sarett, Nelson, Duvall (bib95) 2015; 218 Whitehead, Langer, Anderson (bib117) 2009; 8 Campochiaro, Hackett (bib15) 2003; 22 Roberts, Ezzat, Andaloussi, Weinberg (bib93) 2016 Xue, Guo, Wen, Wong (bib122) 2015; 21 Nguyen, Schachar, Nduaka, Sperling, Basile, Klamerus, Chi-Burris, Yan, Paggiarino, Rosenblatt, Khan, Aitchison, Erlich (bib73) 2012; 26 Apte, Chen, Ferrara (bib7) 2019; 176 Elbashir, Harborth, Weber, Tuschl (bib29) 2002; 26 Koo, Moon, Han, Na, Huh, Park, Woo, Park, Chan Kwon, Kim, Kim (bib53) 2012; 33 Singh, Kotla, Kumar, Rao (bib102) 2015; 2 de Fougerolles (bib21) 2008; 19 Kawamura, Li, Harper, Bates, Claesson-Welsh (bib50) 2008; 68 Shegokar, Al Shaal, Mishra (bib98) 2011; 66 Peeters, Sanders, Demeester, De Smedt (bib80) 2007; 35 Lares, Rossi, Ouellet (bib55) 2010; 28 Mao, Sun, Kissel (bib62) 2010; 62 Yau, Rogers, Kawasaki, Lamoureux, Kowalski, Bek, Chen, Dekker, Fletcher, Grauslund, Haffner, Hamman, Ikram, Kayama, Klein, Klein, Krishnaiah, Mayurasakorn, O'Hare, Orchard, Porta, Rema, Roy, Sharma, Shaw, Taylor, Tielsch, Varma, Wang, Wang, West, Xu, Yasuda, Zhang, Mitchell, Wong, Meta-Analysis for Eye Disease META-EYE Study Group (bib123) 2012; 35 Fakhr, Zare, Teimoori-Toolabi (bib31) 2016; 23 Jiang, Xia, Xu, Xiong, Song, Xiong, Li (bib47) 2009; 218 Hennig, Goepferich (bib42) 2015; 95 Shen, Samul, Silva, Akiyama, Liu, Saishin, Hackett, Zinnen, Kossen, Fosnaugh, Vargeese, Gomez, Bouhana, Aitchison, Pavco, Campochiaro (bib99) 2006; 13 Westerhout, Berkhout (bib116) 2007; 35 Deng, Cao, Zhang, Hu, Yin, Zhou, Xiao, Yang, Sheng, Wu, Zeng (bib24) 2014; 35 Zhang, Wang, Hui, Hu, Wang, Zhou, Du (bib126) 2007; 221 Popescu, Pricopie, Totir, Iancu, Yasyn, Alexandrescu (bib84) 2015; 8 Bourne, Stevens, White, Smith, Flaxman, Price, Jonas, Keeffe, Leasher, Naidoo, Pesudovs, Resnikoff, Taylor (bib10) 2013; 1 Seta, Patil, Bellner, Mezentsev, Kemp, Dunn, Schwartzman (bib96) 2007; 84 Shajari, Mansoori, Davudian, Mohammadi, Baradaran (bib97) 2017; 14 Tekie, Atyabi, Soleimani, Arefian, Atashi, Kiani, Khoshayand, Amini, Dinarvand (bib107) 2015; 81 Amadio, Pascale, Cupri, Pignatello, Osera, D'Agata, D'Amico, Leggio, Ruozi, Govoni, Drago, Bucolo (bib6) 2016; 111 Chaharband, Daftarian, Kanavi, Varshochian, Hajiramezanali, Norouzi, Arefian, Atyabi, Dinarvand (bib17) 2020; 26 Cavallaro, Sardo, Craparo, Porsio, Giammona (bib16) 2017; 525 Li, Huang (bib58) 2006; 13 Thakur, Fitzpatrick, Zaman, Kugathasan, Muirhead, Hortelano, Sheardown (bib108) 2012; 6 Wang, Rajala, Rajala (bib115) 2015; 6 Ishida, Usui, Yamashiro, Kaji, Ahmed, Carrasquillo, Amano, Hida, Oguchi, Adamis (bib46) 2003; 44 Kvanta (bib54) 2006; 84 Haley, Zamore (bib39) 2004; 11 Reischl, Zimmer (bib89) 2009; 5 Montier, Benvegnu, Jaffres, Yaouanc, Lehn (bib68) 2008; 8 Golan, Goldstein, Loewenstei (bib37) 2013 Pecot, Calin, Coleman, Lopez-Berestein, Sood (bib78) 2011; 11 Mastyugin, Mosaed, Bonazzi, Dunn, Schwartzman (bib64) 2001; 23 Osipova, Sharoyko, Zashikhina, Zakharova, Tennikova, Urtti, Korzhikova-Vlakh (bib76) 2020; 12 Reich, Fosnot, Kuroki, Tang, Yang, Maguire, Bennett, Tolentino (bib88) 2003; 9 Lee, Huang, Rittenhouse, Jessen (bib56) 2012; 28 Bernstein, Caudy, Hammond, Hannon (bib9) 2001; 409 Adamis, Miller, Bernal, D'Amico, Folkman, Yeo, Yeo (bib1) 1994; 118 Qazi, Maddula, Ambati (bib85) 2009; 88 Varela-Fernández, Díaz-Tomé, Luaces-Rodríguez, Conde-Penedo, García-Otero, Luzardo-Álvarez, Fernández-Ferreiro, Otero-Espinar (bib114) 2020; 12 Triantafylla, Massa, Dardabounis, Gatzioufas, Kozobolis, Ioannakis, Perente, Panos (bib112) 2014; 8 Tolentino, Brucker, Fosnot, Ying, Wu, Malik, Wan, Reich (bib109) 2004; 24 Liu, Romano, Steger, Kaye, Hamill, Willoughby (bib60) 2018; 63 Zhang, Ma (bib127) 2007; 26 Pilipenko, Korzhikov-Vlakh, Sharoyko, Zhang, Schäfer-Korting, Rühl, Zoschke, Tennikova (bib82) 2019; 11 Brey, McIntire (bib11) 2008 Huang, Chau (bib45) 2019; 24 Martens, Remaut, Deschout, Engbersen, Hennink, van Steenbergen, Demeester, De Smedt, Braeckmans (bib63) 2015; 202 Emerson, Lauer, Flaxel, Wilson, Francis, Stout, Emerson, Schlesinger, Nolte, Klein (bib30) 2007; 27 Wong, Su, Li, Cheung, Klein, Cheng, Wong (bib119) 2014; 2 Dreyfuss, Giordano, Regatieri (bib26) 2015; 2015 Duvvuri, Majumdar, Mitra (bib27) 2003; 3 Nicolazzi, Garinot, Mignet, Scherman, Bessodes (bib75) 2003; 10 Toth, Stevenson, Chakravarthy (bib111) 2015; 35 Hirschi, Goodell (bib43) 2001; 68 Al-Shabrawey, Elsherbiny, Nussbaum, Othman, Megyerdi, Tawfik (bib4) 2013; 8 Rao (bib87) 2010; 163 WHO (bib118) 2019 Soker, Takashima, Miao, Neufeld, Klagsbrun (bib103) 1998; 92 Kim, D'Amore (bib52) 2012; 181 Lee, Ryoo, Han, Hong, Park, Park, Kim, Sim, Kim, Woo, Park, Kim (bib57) 2016; 13 Liu, Peng (bib61) 2016 Park, Shukla (bib77) 2013; 110 Aiello, Avery, Arrigg, Keyt, Jampel, Shah, Pasquale, Thieme, Iwamoto, Park (bib2) 1994; 331 Guzman-Aranguez, Loma, Pintor (bib38) 2013; 170 Conners, Stoltz, Davis, Dunn, Abraham, Levere, Laniado-Schwartzman (bib20) 1995; 36 Tatiparti, Sau, Kashaw, Iyer (bib106) 2017; 7 Zakeri, Kouhbanani, Beheshtkhoo, Beigi, Mousavi, Hashemi, Karimi Zade, Amani, Savardashtaki, Mirzaei, Jahandideh, Movahedpour (bib124) 2018; 9 Han, Park, Nam, Lee (bib40) 2014; 50 Raja, Katas, Amjad (bib86) 2019; 14 Han, Son, Son, Kim, Yhee, Lee, Choi, Joo, Lee, Lee, Kim, Kim, Kwon, Kim, Kim (bib41) 2016; 16 Peeters, Sanders, Braeckmans, Boussery, Van de Voorde, De Smedt, Demeester (bib79) 2005; 46 Rittenhouse, Johnson, Vicini, Hirakawa, Kalabat, Yang, Huang, Basile (bib91) 2014; 55 Rho, Choi, Seo, Lee, Joo (bib90) 2015; 56 Fu, Xin (bib34) 2019; 39 Rivest, Phivilay, Julien, Bélanger, Tremblay, Émond, Calon (bib92) 2007; 24 Zuo, Fan, Wang, Gu, Xu (bib128) 2010; 35 Dejneka, Wan, Bond, Kornbrust, Reich (bib23) 2008; 14 Shukla, Namperumalsamy, Goldbaum, Cunningham (bib101) 2007; 55 Elbashir, Harborth, Lendeckel, Yalcin, Weber, Tuschl (bib28) 2001; 411 Li (10.1016/j.exer.2020.108329_bib58) 2006; 13 Neely (10.1016/j.exer.2020.108329_bib72) 1998; 153 Zhang (10.1016/j.exer.2020.108329_bib127) 2007; 26 Liu (10.1016/j.exer.2020.108329_bib61) 2016 Brey (10.1016/j.exer.2020.108329_bib11) 2008 Yau (10.1016/j.exer.2020.108329_bib123) 2012; 35 Miller (10.1016/j.exer.2020.108329_bib65) 2013; 120 Mok (10.1016/j.exer.2020.108329_bib67) 2010; 9 Martens (10.1016/j.exer.2020.108329_bib63) 2015; 202 Liu (10.1016/j.exer.2020.108329_bib59) 2011; 52 Park (10.1016/j.exer.2020.108329_bib77) 2013; 110 Rho (10.1016/j.exer.2020.108329_bib90) 2015; 56 Raja (10.1016/j.exer.2020.108329_bib86) 2019; 14 Campochiaro (10.1016/j.exer.2020.108329_bib15) 2003; 22 Ryoo (10.1016/j.exer.2020.108329_bib94) 2017; 9 Ding (10.1016/j.exer.2020.108329_bib25) 2017; 9 Koo (10.1016/j.exer.2020.108329_bib53) 2012; 33 Campochiaro (10.1016/j.exer.2020.108329_bib14) 2013; 91 Rittenhouse (10.1016/j.exer.2020.108329_bib91) 2014; 55 de la Fuente (10.1016/j.exer.2020.108329_bib22) 2008; 49 Al-Kharashi (10.1016/j.exer.2020.108329_bib3) 2018; 32 Stewart (10.1016/j.exer.2020.108329_bib104) 2012; 8 Emerson (10.1016/j.exer.2020.108329_bib30) 2007; 27 Shukla (10.1016/j.exer.2020.108329_bib101) 2007; 55 Chaharband (10.1016/j.exer.2020.108329_bib17) 2020; 26 Nagy (10.1016/j.exer.2020.108329_bib70) 2009; 100 Lares (10.1016/j.exer.2020.108329_bib55) 2010; 28 Tekie (10.1016/j.exer.2020.108329_bib107) 2015; 81 Usui (10.1016/j.exer.2020.108329_bib113) 2004; 45 Xu (10.1016/j.exer.2020.108329_bib120) 2016; 13 Duvvuri (10.1016/j.exer.2020.108329_bib27) 2003; 3 Mastyugin (10.1016/j.exer.2020.108329_bib64) 2001; 23 Tolentino (10.1016/j.exer.2020.108329_bib110) 1996; 103 Wong (10.1016/j.exer.2020.108329_bib119) 2014; 2 Amadio (10.1016/j.exer.2020.108329_bib6) 2016; 111 Xu (10.1016/j.exer.2020.108329_bib121) 2013; 167 Singh (10.1016/j.exer.2020.108329_bib102) 2015; 2 Shajari (10.1016/j.exer.2020.108329_bib97) 2017; 14 Liu (10.1016/j.exer.2020.108329_bib60) 2018; 63 Han (10.1016/j.exer.2020.108329_bib41) 2016; 16 Chen (10.1016/j.exer.2020.108329_bib19) 2013; 8 Popescu (10.1016/j.exer.2020.108329_bib84) 2015; 8 Sarett (10.1016/j.exer.2020.108329_bib95) 2015; 218 Peeters (10.1016/j.exer.2020.108329_bib79) 2005; 46 Thakur (10.1016/j.exer.2020.108329_bib108) 2012; 6 Kim (10.1016/j.exer.2020.108329_bib51) 2004; 165 Whitehead (10.1016/j.exer.2020.108329_bib117) 2009; 8 Roberts (10.1016/j.exer.2020.108329_bib93) 2016 Murata (10.1016/j.exer.2020.108329_bib69) 2006; 31 Rao (10.1016/j.exer.2020.108329_bib87) 2010; 163 Reischl (10.1016/j.exer.2020.108329_bib89) 2009; 5 Burnett (10.1016/j.exer.2020.108329_bib12) 2011; 6 Pecot (10.1016/j.exer.2020.108329_bib78) 2011; 11 Xue (10.1016/j.exer.2020.108329_bib122) 2015; 21 Shen (10.1016/j.exer.2020.108329_bib99) 2006; 13 Ishida (10.1016/j.exer.2020.108329_bib46) 2003; 44 Ferrara (10.1016/j.exer.2020.108329_bib32) 2016; 15 Jiang (10.1016/j.exer.2020.108329_bib48) 2020; 12561 Elbashir (10.1016/j.exer.2020.108329_bib29) 2002; 26 Fu (10.1016/j.exer.2020.108329_bib34) 2019; 39 WHO (10.1016/j.exer.2020.108329_bib118) Osipova (10.1016/j.exer.2020.108329_bib76) 2020; 12 Nguyen (10.1016/j.exer.2020.108329_bib74) 2012; 119 Campbell (10.1016/j.exer.2020.108329_bib13) 2009; 98 Petrova (10.1016/j.exer.2020.108329_bib81) 2002; 21 Naik (10.1016/j.exer.2020.108329_bib71) 2009; 14 Triantafylla (10.1016/j.exer.2020.108329_bib112) 2014; 8 Pilipenko (10.1016/j.exer.2020.108329_bib82) 2019; 11 Mao (10.1016/j.exer.2020.108329_bib62) 2010; 62 Pitkänen (10.1016/j.exer.2020.108329_bib83) 2003; 20 Seta (10.1016/j.exer.2020.108329_bib96) 2007; 84 Golan (10.1016/j.exer.2020.108329_bib37) 2013 Han (10.1016/j.exer.2020.108329_bib40) 2014; 50 Soker (10.1016/j.exer.2020.108329_bib103) 1998; 92 Apte (10.1016/j.exer.2020.108329_bib7) 2019; 176 Tatiparti (10.1016/j.exer.2020.108329_bib106) 2017; 7 Conners (10.1016/j.exer.2020.108329_bib20) 1995; 36 Elbashir (10.1016/j.exer.2020.108329_bib28) 2001; 411 Garba (10.1016/j.exer.2020.108329_bib35) 2010; 2 Al-Shabrawey (10.1016/j.exer.2020.108329_bib4) 2013; 8 Zhang (10.1016/j.exer.2020.108329_bib126) 2007; 221 Aiello (10.1016/j.exer.2020.108329_bib2) 1994; 331 Kawamura (10.1016/j.exer.2020.108329_bib50) 2008; 68 Wang (10.1016/j.exer.2020.108329_bib115) 2015; 6 Hennig (10.1016/j.exer.2020.108329_bib42) 2015; 95 Peeters (10.1016/j.exer.2020.108329_bib80) 2007; 35 Fakhr (10.1016/j.exer.2020.108329_bib31) 2016; 23 Toth (10.1016/j.exer.2020.108329_bib111) 2015; 35 Audouy (10.1016/j.exer.2020.108329_bib8) 2001; 18 Stewart (10.1016/j.exer.2020.108329_bib105) 2012; 96 Fire (10.1016/j.exer.2020.108329_bib33) 1998; 391 Kaiser (10.1016/j.exer.2020.108329_bib49) 2010; 150 Nguyen (10.1016/j.exer.2020.108329_bib73) 2012; 26 Dejneka (10.1016/j.exer.2020.108329_bib23) 2008; 14 Reich (10.1016/j.exer.2020.108329_bib88) 2003; 9 Qazi (10.1016/j.exer.2020.108329_bib85) 2009; 88 Chen (10.1016/j.exer.2020.108329_bib18) 2011; 6 Godbey (10.1016/j.exer.2020.108329_bib36) 1999; 60 Adamis (10.1016/j.exer.2020.108329_bib1) 1994; 118 Shinde (10.1016/j.exer.2020.108329_bib100) 2014; 19 Bernstein (10.1016/j.exer.2020.108329_bib9) 2001; 409 Haley (10.1016/j.exer.2020.108329_bib39) 2004; 11 Lee (10.1016/j.exer.2020.108329_bib57) 2016; 13 Nicolazzi (10.1016/j.exer.2020.108329_bib75) 2003; 10 Tolentino (10.1016/j.exer.2020.108329_bib109) 2004; 24 Dreyfuss (10.1016/j.exer.2020.108329_bib26) 2015; 2015 Hong (10.1016/j.exer.2020.108329_bib44) 2002; 225 Hirschi (10.1016/j.exer.2020.108329_bib43) 2001; 68 Cavallaro (10.1016/j.exer.2020.108329_bib16) 2017; 525 de Fougerolles (10.1016/j.exer.2020.108329_bib21) 2008; 19 Kim (10.1016/j.exer.2020.108329_bib52) 2012; 181 Rivest (10.1016/j.exer.2020.108329_bib92) 2007; 24 Mishima (10.1016/j.exer.2020.108329_bib66) 2007; 18 Westerhout (10.1016/j.exer.2020.108329_bib116) 2007; 35 Deng (10.1016/j.exer.2020.108329_bib24) 2014; 35 Jiang (10.1016/j.exer.2020.108329_bib47) 2009; 218 Shegokar (10.1016/j.exer.2020.108329_bib98) 2011; 66 Zuo (10.1016/j.exer.2020.108329_bib128) 2010; 35 Huang (10.1016/j.exer.2020.108329_bib45) 2019; 24 Varela-Fernández (10.1016/j.exer.2020.108329_bib114) 2020; 12 Zakeri (10.1016/j.exer.2020.108329_bib124) 2018; 9 Kvanta (10.1016/j.exer.2020.108329_bib54) 2006; 84 Amadio (10.1016/j.exer.2020.108329_bib5) 2016; 103 Bourne (10.1016/j.exer.2020.108329_bib10) 2013; 1 Montier (10.1016/j.exer.2020.108329_bib68) 2008; 8 Guzman-Aranguez (10.1016/j.exer.2020.108329_bib38) 2013; 170 Lee (10.1016/j.exer.2020.108329_bib56) 2012; 28 |
| References_xml | – volume: 15 start-page: 385 year: 2016 end-page: 403 ident: bib32 article-title: Ten years of anti-vascular endothelial growth factor therapy publication-title: Nat. Rev. Drug Discov. – volume: 225 start-page: 351 year: 2002 end-page: 357 ident: bib44 article-title: Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate publication-title: Dev. Dynam. – volume: 98 start-page: 411 year: 2009 end-page: 429 ident: bib13 article-title: Fighting cancer: from the bench to bedside using second generation cationic liposomal therapeutics publication-title: J. Pharmacol. Sci. – start-page: 1020 year: 2008 end-page: 1037 ident: bib11 article-title: Vascular assembly in engineered and natural tissues publication-title: Principles of Regenerative Medicine – volume: 84 start-page: 116 year: 2007 end-page: 127 ident: bib96 article-title: Inhibition of VEGF expression and corneal neovascularization by siRNA targeting cytochrome P450 4B1 publication-title: Prostag. Other Lipid Mediat. – volume: 6 start-page: 7 year: 2012 ident: bib108 article-title: Strategies for ocular siRNA delivery: potential and limitations of non-viral nanocarriers publication-title: J. Biol. Eng. – volume: 24 start-page: 132 year: 2004 end-page: 138 ident: bib109 article-title: Intravitreal injection of vascular endothelial growth factor small interfering RNA inhibits growth and leakage in a nonhuman primate, laser-induced model of choroidal neovascularization publication-title: Retina – volume: 26 start-page: 1099 year: 2012 end-page: 1105 ident: bib73 article-title: Phase 1 dose-escalation study of a siRNA targeting the RTP801 gene in age-related macular degeneration patients publication-title: Eye – volume: 21 start-page: 3140 year: 2015 end-page: 3147 ident: bib122 article-title: Lipid-based nanocarriers for RNA delivery publication-title: Curr. Pharmaceut. Des. – volume: 19 start-page: 125 year: 2008 end-page: 132 ident: bib21 article-title: Delivery vehicles for small interfering RNA in vivo publication-title: Hum. Gene Ther. – year: 2013 ident: bib37 article-title: Anti VEGF agents for age related macular degeneration publication-title: Age-Related Macular Degeneration - Etiology, Diagnosis and Management - A Glance at the Future – volume: 119 start-page: 1867 year: 2012 end-page: 1873 ident: bib74 article-title: Evaluation of the siRNA PF-04523655 versus ranibizumab for the treatment of neovascular age-related macular degeneration (MONET Study) publication-title: Ophthalmology – volume: 153 start-page: 665 year: 1998 end-page: 670 ident: bib72 article-title: Ocular neovascularization: clarifying complex interactions publication-title: Am. J. Pathol. – volume: 6 start-page: 2567 year: 2011 ident: bib18 article-title: Novel RGD-lipid conjugate-modified liposomes for enhancing siRNA delivery in human retinal pigment epithelial cells publication-title: Int. J. Nanomed. – volume: 409 start-page: 363 year: 2001 end-page: 366 ident: bib9 article-title: Role for a bidentate ribonuclease in the initiation step of RNA interference publication-title: Nature – volume: 6 start-page: 1130 year: 2011 end-page: 1146 ident: bib12 article-title: Current progress of siRNA/shRNA therapeutics in clinical trials publication-title: Biotechnol. J. – volume: 3 start-page: 45 year: 2003 end-page: 56 ident: bib27 article-title: Drug delivery to the retina: challenges and opportunities publication-title: Expet Opin. Biol. Ther. – volume: 23 start-page: 1 year: 2001 end-page: 10 ident: bib64 article-title: Corneal epithelial VEGF and cytochrome P450 4B1 expression in a rabbit model of closed eye contact lens wear publication-title: Curr. Eye Res. – volume: 10 start-page: 1263 year: 2003 end-page: 1277 ident: bib75 article-title: Cationic lipids for transfection publication-title: Curr. Med. Chem. – volume: 11 start-page: 59 year: 2011 end-page: 67 ident: bib78 article-title: RNA interference in the clinic: challenges and future directions publication-title: Nat. Rev. Canc. – volume: 11 start-page: 599 year: 2004 end-page: 606 ident: bib39 article-title: Kinetic analysis of the RNAi enzyme complex publication-title: Nat. Struct. Mol. Biol. – volume: 8 start-page: 296 year: 2008 end-page: 312 ident: bib68 article-title: Progress in cationic lipid-mediated gene transfection: a series of bio- inspired lipids as an example publication-title: Curr. Gene Ther. – volume: 2015 start-page: 892043 year: 2015 ident: bib26 article-title: Ocular angiogenesis publication-title: J. Ophthalmol. – volume: 13 year: 2016 ident: bib57 article-title: Anti-VEGF polysiRNA polyplex for the treatment of choroidal neovascularization publication-title: Mol. Pharm. – volume: 35 start-page: 556 year: 2012 end-page: 564 ident: bib123 article-title: Global prevalence and major risk factors of diabetic retinopathy publication-title: Diabetes Care – volume: 103 start-page: 1820 year: 1996 end-page: 1828 ident: bib110 article-title: Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate publication-title: Ophthalmology – volume: 118 start-page: 445 year: 1994 end-page: 450 ident: bib1 article-title: Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy publication-title: Am. J. Ophthalmol. – volume: 28 start-page: 570 year: 2010 end-page: 579 ident: bib55 article-title: RNAi and small interfering RNAs in human disease therapeutic applications publication-title: Trends Biotechnol. – volume: 150 start-page: 33 year: 2010 end-page: 39 ident: bib49 article-title: RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027 publication-title: Am. J. Ophthalmol. – volume: 36 start-page: 841 year: 1995 end-page: 850 ident: bib20 article-title: A closed eye contact lens model of corneal inflammation. Part 2: inhibition of cytochrome P450 arachidonic acid metabolism alleviates inflammatory sequelae publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 26 start-page: 1 year: 2007 end-page: 37 ident: bib127 article-title: Ocular neovascularization: implication of endogenous angiogenic inhibitors and potential therapy publication-title: Prog. Retin. Eye Res. – volume: 55 start-page: 1232 year: 2014 ident: bib91 article-title: RTP801 gene expression is differentially upregulated in retinopathy and is silenced by PF-04523655, a 19-Mer siRNA directed against RTP801 publication-title: Investig. Opthalmology Vis. Sci. – volume: 167 start-page: 76 year: 2013 end-page: 84 ident: bib121 article-title: Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo publication-title: J. Contr. Release – volume: 18 start-page: 129 year: 2001 end-page: 143 ident: bib8 article-title: Cationic lipid-mediated transfection in vitro and in vivo publication-title: Mol. Membr. Biol. – volume: 12561 year: 2020 ident: bib48 article-title: Progress on ocular siRNA gene-silencing therapy and drug delivery systems publication-title: Fundam. Clin. Pharmacol. fcp. – volume: 7 start-page: 77 year: 2017 ident: bib106 article-title: siRNA delivery strategies: a comprehensive review of recent developments publication-title: Nanomaterials – volume: 32 start-page: 318 year: 2018 end-page: 323 ident: bib3 article-title: Role of oxidative stress, inflammation, hypoxia and angiogenesis in the development of diabetic retinopathy publication-title: Saudi J. Ophthalmol. – volume: 13 start-page: 1313 year: 2006 end-page: 1319 ident: bib58 article-title: Gene therapy progress and prospects: non-viral gene therapy by systemic delivery publication-title: Gene Ther. – volume: 12 start-page: 39 year: 2020 ident: bib76 article-title: Amphiphilic polypeptides for VEGF siRNA delivery into retinal epithelial cells publication-title: Pharmaceutics – volume: 55 start-page: 427 year: 2007 end-page: 430 ident: bib101 article-title: Pegaptanib sodium for ocular vascular disease publication-title: Indian J. Ophthalmol. – volume: 218 start-page: 94 year: 2015 end-page: 113 ident: bib95 article-title: Technologies for controlled, local delivery of siRNA publication-title: J. Contr. Release – volume: 68 start-page: 186 year: 2001 end-page: 192 ident: bib43 article-title: Common origins of blood and blood vessels in adults? publication-title: Differentiation – volume: 28 start-page: 222 year: 2012 end-page: 230 ident: bib56 article-title: Retina expression and cross-species validation of gene silencing by PF-655, a small interfering RNA against RTP801 for the treatment of ocular disease publication-title: J. Ocul. Pharmacol. Therapeut. – volume: 12 start-page: 269 year: 2020 ident: bib114 article-title: Drug delivery to the posterior segment of the eye: biopharmaceutic and pharmacokinetic considerations publication-title: Pharmaceutics – volume: 24 start-page: 981 year: 2007 end-page: 990 ident: bib92 article-title: Novel liposomal formulation for targeted gene delivery publication-title: Pharm. Res. (N. Y.) – volume: 62 start-page: 12 year: 2010 end-page: 27 ident: bib62 article-title: Chitosan-based formulations for delivery of DNA and siRNA publication-title: Adv. Drug Deliv. Rev. – volume: 411 start-page: 494 year: 2001 end-page: 498 ident: bib28 article-title: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells publication-title: Nature – volume: 13 start-page: 225 year: 2006 end-page: 234 ident: bib99 article-title: Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1 publication-title: Gene Ther. – volume: 81 start-page: 828 year: 2015 end-page: 837 ident: bib107 article-title: Chitosan polyplex nanoparticle vector for miR-145 expression in MCF-7: optimization by design of experiment publication-title: Int. J. Biol. Macromol. – volume: 18 start-page: 1421 year: 2007 end-page: 1429 ident: bib66 article-title: Prox1 induces lymphatic endothelial differentiation via integrin alpha9 and other signaling cascades publication-title: Mol. Biol. Cell – volume: 46 start-page: 3553 year: 2005 ident: bib79 article-title: Vitreous: a barrier to nonviral ocular gene therapy publication-title: Investig. Opthalmology Vis. Sci. – volume: 60 start-page: 149 year: 1999 end-page: 160 ident: bib36 article-title: Poly(ethylenimine) and its role in gene delivery publication-title: J. Contr. Release – volume: 44 start-page: 2155 year: 2003 end-page: 2162 ident: bib46 article-title: VEGF164 is proinflammatory in the diabetic retina publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 96 start-page: 1157 year: 2012 end-page: 1158 ident: bib105 article-title: Aflibercept (VEGF Trap-eye): the newest anti-VEGF drug publication-title: Br. J. Ophthalmol. – volume: 88 start-page: 495 year: 2009 end-page: 515 ident: bib85 article-title: Mediators of ocular angiogenesis publication-title: J. Genet. – volume: 9 start-page: 1488497 year: 2018 ident: bib124 article-title: Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon publication-title: Nano Rev. Exp. – volume: 49 start-page: 2016 year: 2008 end-page: 2024 ident: bib22 article-title: Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy publication-title: Investig. Opthalmology Vis. Sci. – volume: 13 start-page: 590 year: 2016 end-page: 599 ident: bib120 article-title: Efficient siRNA delivery using PEG-conjugated PAMAM dendrimers targeting vascular endothelial growth factor in a CoCl2-induced neovascularization model in retinal endothelial cells publication-title: Curr. Drug Deliv. – year: 2016 ident: bib61 article-title: siRNA delivery methods publication-title: Methods in Molecular Biology – volume: 50 start-page: 11665 year: 2014 end-page: 11667 ident: bib40 article-title: Enzymatic size control of RNA particles using complementary rolling circle transcription (cRCT) method for efficient siRNA production publication-title: Chem. Commun. – volume: 27 start-page: 439 year: 2007 end-page: 444 ident: bib30 article-title: Intravitreal bevacizumab (Avastin) treatment of neovascular age-related macular degeneration publication-title: Retina – volume: 181 start-page: 376 year: 2012 end-page: 379 ident: bib52 article-title: A brief history of anti-VEGF for the treatment of ocular angiogenesis publication-title: Am. J. Pathol. – volume: 103 start-page: 253 year: 2016 end-page: 269 ident: bib5 article-title: Targeting VEGF in eye neovascularization: what's new? publication-title: Pharmacol. Res. – volume: 120 start-page: 106 year: 2013 end-page: 114 ident: bib65 article-title: Vascular endothelial growth factor a in intraocular vascular disease publication-title: Ophthalmology – volume: 19 start-page: 813 year: 2014 end-page: 823 ident: bib100 article-title: Design and characterization of chitosan-alginate microspheres for ocular delivery of azelastine publication-title: Pharmaceut. Dev. Technol. – volume: 35 start-page: 1957 year: 2015 end-page: 1963 ident: bib111 article-title: Anti-vascular endothelial growth factor therapy for neovascular age-related macular degeneration: outcomes in eyes with poor initial vision publication-title: Retina – volume: 9 start-page: 210 year: 2003 end-page: 216 ident: bib88 article-title: Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model publication-title: Mol. Vis. – year: 2019 ident: bib118 article-title: Blindness and vision impairment prevention – volume: 331 start-page: 1480 year: 1994 end-page: 1487 ident: bib2 article-title: Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders publication-title: N. Engl. J. Med. – volume: 6 start-page: 379 year: 2015 end-page: 394 ident: bib115 article-title: Lipid nanoparticles for ocular gene delivery publication-title: J. Funct. Biomater. – volume: 14 start-page: 36 year: 2017 end-page: 46 ident: bib97 article-title: Overcoming the challenges of siRNA delivery: nanoparticle strategies publication-title: Curr. Drug Deliv. – volume: 2 start-page: e106 year: 2014 end-page: 116 ident: bib119 article-title: Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis publication-title: Lancet. Glob. Heal. – volume: 391 start-page: 806 year: 1998 end-page: 811 ident: bib33 article-title: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans publication-title: Nature – volume: 26 start-page: 199 year: 2002 end-page: 213 ident: bib29 article-title: Analysis of gene function in somatic mammalian cells using small interfering RNAs publication-title: Methods – volume: 2 start-page: 1767 year: 2015 end-page: 1784 ident: bib102 article-title: Cyclic AMP response element binding protein mediates pathological retinal neovascularization via modulating DLL4-NOTCH1 signaling publication-title: EBioMedicine – volume: 9 start-page: 272 year: 2010 end-page: 278 ident: bib67 article-title: Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing publication-title: Nat. Mater. – volume: 31 start-page: 171 year: 2006 end-page: 180 ident: bib69 article-title: Inhibition of ocular angiogenesis by diced small interfering RNAs (siRNAs) specific to vascular endothelial growth factor (VEGF) publication-title: Curr. Eye Res. – volume: 35 start-page: 4322 year: 2007 end-page: 4330 ident: bib116 article-title: A systematic analysis of the effect of target RNA structure on RNA interference publication-title: Nucleic Acids Res. – volume: 35 start-page: 47 year: 2007 end-page: 49 ident: bib80 article-title: Challenges in non-viral ocular gene transfer publication-title: Biochem. Soc. Trans. – volume: 24 start-page: 1510 year: 2019 end-page: 1523 ident: bib45 article-title: Intravitreal nanoparticles for retinal delivery publication-title: Drug Discov. Today – volume: 202 start-page: 83 year: 2015 end-page: 92 ident: bib63 article-title: Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy publication-title: J. Contr. Release – volume: 218 start-page: 66 year: 2009 end-page: 74 ident: bib47 article-title: Inhibition of retinal neovascularization by gene transfer of small interfering RNA targeting HIF-1alpha and VEGF publication-title: J. Cell. Physiol. – volume: 14 start-page: 306 year: 2009 end-page: 315 ident: bib71 article-title: Gene delivery to the retina: focus on non-viral approaches publication-title: Drug Discov. Today – volume: 84 start-page: 282 year: 2006 end-page: 288 ident: bib54 article-title: Ocular angiogenesis: the role of growth factors publication-title: Acta Ophthalmol. Scand. – volume: 91 start-page: 311 year: 2013 end-page: 321 ident: bib14 article-title: Ocular neovascularization publication-title: J. Mol. Med. – volume: 22 start-page: 6537 year: 2003 end-page: 6548 ident: bib15 article-title: Ocular neovascularization: a valuable model system publication-title: Oncogene – volume: 8 start-page: 267 year: 2013 end-page: 286 ident: bib4 article-title: Targeting neovascularization in ischemic retinopathy: recent advances publication-title: Expet Rev. Ophthalmol. – volume: 95 start-page: 294 year: 2015 end-page: 306 ident: bib42 article-title: Nanoparticles for the treatment of ocular neovascularizations publication-title: Eur. J. Pharm. Biopharm. – volume: 35 start-page: 375 year: 2010 end-page: 384 ident: bib128 article-title: A siRNA targeting vascular endothelial growth factor-a inhibiting experimental corneal neovascularization publication-title: Curr. Eye Res. – volume: 221 start-page: 411 year: 2007 end-page: 417 ident: bib126 article-title: Inhibition of VEGF expression by targeting HIF-1 alpha with small interference RNA in human RPE cells publication-title: Ophthalmologica – volume: 525 start-page: 313 year: 2017 end-page: 333 ident: bib16 article-title: Polymeric nanoparticles for siRNA delivery: production and applications publication-title: Int. J. Pharm. – volume: 14 start-page: 497 year: 2019 end-page: 510 ident: bib86 article-title: Design, mechanism, delivery and therapeutics of canonical and Dicer-substrate siRNA publication-title: Asian J. Pharm. Sci. – volume: 176 start-page: 1248 year: 2019 end-page: 1264 ident: bib7 article-title: VEGF in signaling and disease: beyond discovery and development publication-title: Cell – volume: 21 start-page: 4593 year: 2002 end-page: 4599 ident: bib81 article-title: Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor publication-title: EMBO J. – volume: 5 start-page: 8 year: 2009 end-page: 20 ident: bib89 article-title: Drug delivery of siRNA therapeutics: potentials and limits of nanosystems publication-title: Nanomed. Nanotechnol. Biol. Med. – volume: 63 start-page: 193 year: 2018 end-page: 213 ident: bib60 article-title: Gene-based antiangiogenic applications for corneal neovascularization publication-title: Surv. Ophthalmol. – volume: 23 start-page: 73 year: 2016 end-page: 82 ident: bib31 article-title: Precise and efficient siRNA design: a key point in competent gene silencing publication-title: Canc. Gene Ther. – volume: 2 start-page: 75 year: 2010 end-page: 83 ident: bib35 article-title: Bevasiranib for the treatment of wet, age-related macular degeneration publication-title: Ophthalmol. Eye Dis. – volume: 8 start-page: 1187 year: 2014 end-page: 1198 ident: bib112 article-title: Ranibizumab for the treatment of degenerative ocular conditions publication-title: Clin. Ophthalmol. – volume: 92 start-page: 735 year: 1998 end-page: 745 ident: bib103 article-title: Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor publication-title: Cell – volume: 8 start-page: 129 year: 2009 end-page: 138 ident: bib117 article-title: Knocking down barriers: advances in siRNA delivery publication-title: Nat. Rev. Drug Discov. – volume: 8 start-page: 2613 year: 2013 end-page: 2627 ident: bib19 article-title: Efficient downregulation of VEGF in retinal pigment epithelial cells by integrin ligand-labeled liposome-mediated siRNA delivery publication-title: Int. J. Nanomed. – volume: 52 start-page: 4789 year: 2011 end-page: 4794 ident: bib59 article-title: A lipid nanoparticle system improves siRNA efficacy in RPE cells and a laser-induced murine CNV model publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 11 start-page: 317 year: 2019 ident: bib82 article-title: pH-sensitive chitosan–heparin nanoparticles for effective delivery of genetic drugs into epithelial cells publication-title: Pharmaceutics – volume: 8 start-page: 237 year: 2012 end-page: 246 ident: bib104 article-title: Anti-vascular endothelial growth factor drug treatment of diabetic macular edema: the evolution continues publication-title: Curr. Diabetes Rev. – volume: 16 start-page: 1583 year: 2016 end-page: 1597 ident: bib41 article-title: Reducible polyethylenimine nanoparticles for efficient siRNA delivery in corneal neovascularization therapy publication-title: Macromol. Biosci. – volume: 110 start-page: 1 year: 2013 end-page: 9 ident: bib77 article-title: Role of heparan sulfate in ocular diseases publication-title: Exp. Eye Res. – year: 2016 ident: bib93 article-title: siRNA delivery methods publication-title: Methods in Molecular Biology – volume: 9 start-page: 23353 year: 2017 end-page: 23369 ident: bib25 article-title: Synergistic suppression of tumor angiogenesis by the co-delivering of vascular endothelial growth factor targeted siRNA and candesartan mediated by functionalized carbon nanovectors publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 15461 year: 2017 end-page: 15469 ident: bib94 article-title: Therapeutic effects of a novel siRNA-based anti-VEGF (siVEGF) nanoball for the treatment of choroidal neovascularization publication-title: Nanoscale – volume: 170 start-page: 730 year: 2013 end-page: 747 ident: bib38 article-title: Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy publication-title: Br. J. Pharmacol. – volume: 35 start-page: 4333 year: 2014 end-page: 4344 ident: bib24 article-title: Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer publication-title: Biomaterials – volume: 163 start-page: 245 year: 2010 end-page: 252 ident: bib87 article-title: Cationic lipid-mediated nucleic acid delivery: beyond being cationic publication-title: Chem. Phys. Lipids – volume: 1 start-page: e339 year: 2013 end-page: e349 ident: bib10 article-title: Causes of vision loss worldwide, 1990–2010: a systematic analysis publication-title: Lancet Glob. Heal. – volume: 68 start-page: 4683 year: 2008 end-page: 4692 ident: bib50 article-title: Vascular endothelial growth factor (VEGF)-A165b is a weak in vitro agonist for VEGF receptor-2 due to lack of coreceptor binding and deficient regulation of kinase activity publication-title: Canc. Res. – volume: 165 start-page: 2177 year: 2004 end-page: 2185 ident: bib51 article-title: Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes publication-title: Am. J. Pathol. – volume: 14 start-page: 997 year: 2008 end-page: 1005 ident: bib23 article-title: Ocular biodistribution of bevasiranib following a single intravitreal injection to rabbit eyes publication-title: Mol. Vis. – volume: 66 start-page: 313 year: 2011 end-page: 318 ident: bib98 article-title: siRNA delivery: challenges and role of carrier systems publication-title: Pharmazie – volume: 20 start-page: 576 year: 2003 end-page: 583 ident: bib83 article-title: Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers publication-title: Pharm. Res. (N. Y.) – volume: 45 start-page: 368 year: 2004 end-page: 374 ident: bib113 article-title: VEGF164(165) as the pathological isoform: differential leukocyte and endothelial responses through VEGFR1 and VEGFR2 publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 111 start-page: 713 year: 2016 end-page: 720 ident: bib6 article-title: Nanosystems based on siRNA silencing HuR expression counteract diabetic retinopathy in rat publication-title: Pharmacol. Res. – volume: 100 start-page: 865 year: 2009 end-page: 869 ident: bib70 article-title: Why are tumour blood vessels abnormal and why is it important to know? publication-title: Br. J. Canc. – volume: 8 start-page: 8 year: 2015 end-page: 12 ident: bib84 article-title: Clinical use of Bevacizumab in treating refractory glaucoma publication-title: J. Med. Life – volume: 33 start-page: 3485 year: 2012 end-page: 3493 ident: bib53 article-title: The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection publication-title: Biomaterials – volume: 26 start-page: 102181 year: 2020 ident: bib17 article-title: Trimethyl chitosan-hyaluronic acid nano-polyplexes for intravitreal VEGFR-2 siRNA delivery: formulation and in vivo efficacy evaluation publication-title: Nanomed. Nanotechnol. Biol. Med. – volume: 39 year: 2019 ident: bib34 article-title: Inhibited corneal neovascularization in rabbits following corneal alkali burn by double-target interference for VEGF and HIF-1α publication-title: Biosci. Rep. – volume: 56 start-page: 5871 year: 2015 ident: bib90 article-title: Inhibition of lymphangiogenesis and hemangiogenesis in corneal inflammation by subconjunctival Prox1 siRNA injection in rats publication-title: Investig. Opthalmology Vis. Sci. – volume: 18 start-page: 129 year: 2001 ident: 10.1016/j.exer.2020.108329_bib8 article-title: Cationic lipid-mediated transfection in vitro and in vivo publication-title: Mol. Membr. Biol. doi: 10.1080/713816122 – volume: 13 start-page: 590 year: 2016 ident: 10.1016/j.exer.2020.108329_bib120 article-title: Efficient siRNA delivery using PEG-conjugated PAMAM dendrimers targeting vascular endothelial growth factor in a CoCl2-induced neovascularization model in retinal endothelial cells publication-title: Curr. Drug Deliv. doi: 10.2174/1567201812666150817123049 – volume: 13 start-page: 1313 year: 2006 ident: 10.1016/j.exer.2020.108329_bib58 article-title: Gene therapy progress and prospects: non-viral gene therapy by systemic delivery publication-title: Gene Ther. doi: 10.1038/sj.gt.3302838 – volume: 5 start-page: 8 year: 2009 ident: 10.1016/j.exer.2020.108329_bib89 article-title: Drug delivery of siRNA therapeutics: potentials and limits of nanosystems publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2008.06.001 – volume: 11 start-page: 317 year: 2019 ident: 10.1016/j.exer.2020.108329_bib82 article-title: pH-sensitive chitosan–heparin nanoparticles for effective delivery of genetic drugs into epithelial cells publication-title: Pharmaceutics doi: 10.3390/pharmaceutics11070317 – volume: 84 start-page: 282 year: 2006 ident: 10.1016/j.exer.2020.108329_bib54 article-title: Ocular angiogenesis: the role of growth factors publication-title: Acta Ophthalmol. Scand. doi: 10.1111/j.1600-0420.2006.00659.x – volume: 8 start-page: 129 year: 2009 ident: 10.1016/j.exer.2020.108329_bib117 article-title: Knocking down barriers: advances in siRNA delivery publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2742 – volume: 8 start-page: 267 year: 2013 ident: 10.1016/j.exer.2020.108329_bib4 article-title: Targeting neovascularization in ischemic retinopathy: recent advances publication-title: Expet Rev. Ophthalmol. doi: 10.1586/eop.13.17 – volume: 2 start-page: 75 year: 2010 ident: 10.1016/j.exer.2020.108329_bib35 article-title: Bevasiranib for the treatment of wet, age-related macular degeneration publication-title: Ophthalmol. Eye Dis. doi: 10.4137/OED.S4878 – volume: 14 start-page: 497 year: 2019 ident: 10.1016/j.exer.2020.108329_bib86 article-title: Design, mechanism, delivery and therapeutics of canonical and Dicer-substrate siRNA publication-title: Asian J. Pharm. Sci. – volume: 12 start-page: 39 year: 2020 ident: 10.1016/j.exer.2020.108329_bib76 article-title: Amphiphilic polypeptides for VEGF siRNA delivery into retinal epithelial cells publication-title: Pharmaceutics doi: 10.3390/pharmaceutics12010039 – volume: 118 start-page: 445 year: 1994 ident: 10.1016/j.exer.2020.108329_bib1 article-title: Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy publication-title: Am. J. Ophthalmol. doi: 10.1016/S0002-9394(14)75794-0 – volume: 23 start-page: 1 year: 2001 ident: 10.1016/j.exer.2020.108329_bib64 article-title: Corneal epithelial VEGF and cytochrome P450 4B1 expression in a rabbit model of closed eye contact lens wear publication-title: Curr. Eye Res. doi: 10.1076/ceyr.23.1.1.5422 – volume: 110 start-page: 1 year: 2013 ident: 10.1016/j.exer.2020.108329_bib77 article-title: Role of heparan sulfate in ocular diseases publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2013.01.015 – year: 2016 ident: 10.1016/j.exer.2020.108329_bib93 article-title: siRNA delivery methods doi: 10.1007/978-1-4939-6361-4 – volume: 66 start-page: 313 year: 2011 ident: 10.1016/j.exer.2020.108329_bib98 article-title: siRNA delivery: challenges and role of carrier systems publication-title: Pharmazie – volume: 96 start-page: 1157 year: 2012 ident: 10.1016/j.exer.2020.108329_bib105 article-title: Aflibercept (VEGF Trap-eye): the newest anti-VEGF drug publication-title: Br. J. Ophthalmol. doi: 10.1136/bjophthalmol-2011-300654 – volume: 8 start-page: 2613 year: 2013 ident: 10.1016/j.exer.2020.108329_bib19 article-title: Efficient downregulation of VEGF in retinal pigment epithelial cells by integrin ligand-labeled liposome-mediated siRNA delivery publication-title: Int. J. Nanomed. – volume: 26 start-page: 102181 year: 2020 ident: 10.1016/j.exer.2020.108329_bib17 article-title: Trimethyl chitosan-hyaluronic acid nano-polyplexes for intravitreal VEGFR-2 siRNA delivery: formulation and in vivo efficacy evaluation publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2020.102181 – volume: 14 start-page: 997 year: 2008 ident: 10.1016/j.exer.2020.108329_bib23 article-title: Ocular biodistribution of bevasiranib following a single intravitreal injection to rabbit eyes publication-title: Mol. Vis. – volume: 52 start-page: 4789 year: 2011 ident: 10.1016/j.exer.2020.108329_bib59 article-title: A lipid nanoparticle system improves siRNA efficacy in RPE cells and a laser-induced murine CNV model publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.10-5891 – start-page: 1020 year: 2008 ident: 10.1016/j.exer.2020.108329_bib11 article-title: Vascular assembly in engineered and natural tissues – volume: 15 start-page: 385 year: 2016 ident: 10.1016/j.exer.2020.108329_bib32 article-title: Ten years of anti-vascular endothelial growth factor therapy publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2015.17 – volume: 20 start-page: 576 year: 2003 ident: 10.1016/j.exer.2020.108329_bib83 article-title: Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers publication-title: Pharm. Res. (N. Y.) doi: 10.1023/A:1023238530504 – volume: 103 start-page: 1820 year: 1996 ident: 10.1016/j.exer.2020.108329_bib110 article-title: Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate publication-title: Ophthalmology doi: 10.1016/S0161-6420(96)30420-X – volume: 21 start-page: 4593 year: 2002 ident: 10.1016/j.exer.2020.108329_bib81 article-title: Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor publication-title: EMBO J. doi: 10.1093/emboj/cdf470 – volume: 27 start-page: 439 year: 2007 ident: 10.1016/j.exer.2020.108329_bib30 article-title: Intravitreal bevacizumab (Avastin) treatment of neovascular age-related macular degeneration publication-title: Retina doi: 10.1097/IAE.0b013e31804b3e15 – volume: 221 start-page: 411 year: 2007 ident: 10.1016/j.exer.2020.108329_bib126 article-title: Inhibition of VEGF expression by targeting HIF-1 alpha with small interference RNA in human RPE cells publication-title: Ophthalmologica doi: 10.1159/000107502 – volume: 176 start-page: 1248 year: 2019 ident: 10.1016/j.exer.2020.108329_bib7 article-title: VEGF in signaling and disease: beyond discovery and development publication-title: Cell doi: 10.1016/j.cell.2019.01.021 – volume: 39 year: 2019 ident: 10.1016/j.exer.2020.108329_bib34 article-title: Inhibited corneal neovascularization in rabbits following corneal alkali burn by double-target interference for VEGF and HIF-1α publication-title: Biosci. Rep. doi: 10.1042/BSR20180552 – volume: 163 start-page: 245 year: 2010 ident: 10.1016/j.exer.2020.108329_bib87 article-title: Cationic lipid-mediated nucleic acid delivery: beyond being cationic publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2010.01.001 – volume: 409 start-page: 363 year: 2001 ident: 10.1016/j.exer.2020.108329_bib9 article-title: Role for a bidentate ribonuclease in the initiation step of RNA interference publication-title: Nature doi: 10.1038/35053110 – volume: 35 start-page: 47 year: 2007 ident: 10.1016/j.exer.2020.108329_bib80 article-title: Challenges in non-viral ocular gene transfer publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0350047 – volume: 1 start-page: e339 year: 2013 ident: 10.1016/j.exer.2020.108329_bib10 article-title: Causes of vision loss worldwide, 1990–2010: a systematic analysis publication-title: Lancet Glob. Heal. doi: 10.1016/S2214-109X(13)70113-X – volume: 22 start-page: 6537 year: 2003 ident: 10.1016/j.exer.2020.108329_bib15 article-title: Ocular neovascularization: a valuable model system publication-title: Oncogene doi: 10.1038/sj.onc.1206773 – volume: 2 start-page: 1767 year: 2015 ident: 10.1016/j.exer.2020.108329_bib102 article-title: Cyclic AMP response element binding protein mediates pathological retinal neovascularization via modulating DLL4-NOTCH1 signaling publication-title: EBioMedicine doi: 10.1016/j.ebiom.2015.09.042 – volume: 95 start-page: 294 year: 2015 ident: 10.1016/j.exer.2020.108329_bib42 article-title: Nanoparticles for the treatment of ocular neovascularizations publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2015.02.027 – volume: 181 start-page: 376 year: 2012 ident: 10.1016/j.exer.2020.108329_bib52 article-title: A brief history of anti-VEGF for the treatment of ocular angiogenesis publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2012.06.006 – volume: 12 start-page: 269 year: 2020 ident: 10.1016/j.exer.2020.108329_bib114 article-title: Drug delivery to the posterior segment of the eye: biopharmaceutic and pharmacokinetic considerations publication-title: Pharmaceutics doi: 10.3390/pharmaceutics12030269 – volume: 63 start-page: 193 year: 2018 ident: 10.1016/j.exer.2020.108329_bib60 article-title: Gene-based antiangiogenic applications for corneal neovascularization publication-title: Surv. Ophthalmol. doi: 10.1016/j.survophthal.2017.10.006 – volume: 26 start-page: 199 year: 2002 ident: 10.1016/j.exer.2020.108329_bib29 article-title: Analysis of gene function in somatic mammalian cells using small interfering RNAs publication-title: Methods doi: 10.1016/S1046-2023(02)00023-3 – volume: 6 start-page: 379 year: 2015 ident: 10.1016/j.exer.2020.108329_bib115 article-title: Lipid nanoparticles for ocular gene delivery publication-title: J. Funct. Biomater. doi: 10.3390/jfb6020379 – volume: 24 start-page: 132 year: 2004 ident: 10.1016/j.exer.2020.108329_bib109 article-title: Intravitreal injection of vascular endothelial growth factor small interfering RNA inhibits growth and leakage in a nonhuman primate, laser-induced model of choroidal neovascularization publication-title: Retina doi: 10.1097/00006982-200402000-00018 – volume: 103 start-page: 253 year: 2016 ident: 10.1016/j.exer.2020.108329_bib5 article-title: Targeting VEGF in eye neovascularization: what's new? publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2015.11.027 – volume: 411 start-page: 494 year: 2001 ident: 10.1016/j.exer.2020.108329_bib28 article-title: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells publication-title: Nature doi: 10.1038/35078107 – volume: 331 start-page: 1480 year: 1994 ident: 10.1016/j.exer.2020.108329_bib2 article-title: Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199412013312203 – volume: 2015 start-page: 892043 year: 2015 ident: 10.1016/j.exer.2020.108329_bib26 article-title: Ocular angiogenesis publication-title: J. Ophthalmol. doi: 10.1155/2015/892043 – volume: 218 start-page: 66 year: 2009 ident: 10.1016/j.exer.2020.108329_bib47 article-title: Inhibition of retinal neovascularization by gene transfer of small interfering RNA targeting HIF-1alpha and VEGF publication-title: J. Cell. Physiol. doi: 10.1002/jcp.21566 – volume: 46 start-page: 3553 year: 2005 ident: 10.1016/j.exer.2020.108329_bib79 article-title: Vitreous: a barrier to nonviral ocular gene therapy publication-title: Investig. Opthalmology Vis. Sci. doi: 10.1167/iovs.05-0165 – volume: 170 start-page: 730 year: 2013 ident: 10.1016/j.exer.2020.108329_bib38 article-title: Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy publication-title: Br. J. Pharmacol. doi: 10.1111/bph.12330 – volume: 13 start-page: 225 year: 2006 ident: 10.1016/j.exer.2020.108329_bib99 article-title: Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1 publication-title: Gene Ther. doi: 10.1038/sj.gt.3302641 – volume: 36 start-page: 841 year: 1995 ident: 10.1016/j.exer.2020.108329_bib20 article-title: A closed eye contact lens model of corneal inflammation. Part 2: inhibition of cytochrome P450 arachidonic acid metabolism alleviates inflammatory sequelae publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 6 start-page: 7 year: 2012 ident: 10.1016/j.exer.2020.108329_bib108 article-title: Strategies for ocular siRNA delivery: potential and limitations of non-viral nanocarriers publication-title: J. Biol. Eng. doi: 10.1186/1754-1611-6-7 – volume: 68 start-page: 186 year: 2001 ident: 10.1016/j.exer.2020.108329_bib43 article-title: Common origins of blood and blood vessels in adults? publication-title: Differentiation doi: 10.1046/j.1432-0436.2001.680406.x – volume: 55 start-page: 427 year: 2007 ident: 10.1016/j.exer.2020.108329_bib101 article-title: Pegaptanib sodium for ocular vascular disease publication-title: Indian J. Ophthalmol. doi: 10.4103/0301-4738.36476 – volume: 62 start-page: 12 year: 2010 ident: 10.1016/j.exer.2020.108329_bib62 article-title: Chitosan-based formulations for delivery of DNA and siRNA publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2009.08.004 – volume: 6 start-page: 1130 year: 2011 ident: 10.1016/j.exer.2020.108329_bib12 article-title: Current progress of siRNA/shRNA therapeutics in clinical trials publication-title: Biotechnol. J. doi: 10.1002/biot.201100054 – volume: 11 start-page: 599 year: 2004 ident: 10.1016/j.exer.2020.108329_bib39 article-title: Kinetic analysis of the RNAi enzyme complex publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb780 – volume: 202 start-page: 83 year: 2015 ident: 10.1016/j.exer.2020.108329_bib63 article-title: Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2015.01.030 – volume: 8 start-page: 1187 year: 2014 ident: 10.1016/j.exer.2020.108329_bib112 article-title: Ranibizumab for the treatment of degenerative ocular conditions publication-title: Clin. Ophthalmol. – volume: 31 start-page: 171 year: 2006 ident: 10.1016/j.exer.2020.108329_bib69 article-title: Inhibition of ocular angiogenesis by diced small interfering RNAs (siRNAs) specific to vascular endothelial growth factor (VEGF) publication-title: Curr. Eye Res. doi: 10.1080/02713680500514636 – volume: 92 start-page: 735 year: 1998 ident: 10.1016/j.exer.2020.108329_bib103 article-title: Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor publication-title: Cell doi: 10.1016/S0092-8674(00)81402-6 – volume: 81 start-page: 828 year: 2015 ident: 10.1016/j.exer.2020.108329_bib107 article-title: Chitosan polyplex nanoparticle vector for miR-145 expression in MCF-7: optimization by design of experiment publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2015.09.014 – volume: 10 start-page: 1263 year: 2003 ident: 10.1016/j.exer.2020.108329_bib75 article-title: Cationic lipids for transfection publication-title: Curr. Med. Chem. doi: 10.2174/0929867033457467 – volume: 35 start-page: 4322 year: 2007 ident: 10.1016/j.exer.2020.108329_bib116 article-title: A systematic analysis of the effect of target RNA structure on RNA interference publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm437 – volume: 35 start-page: 556 year: 2012 ident: 10.1016/j.exer.2020.108329_bib123 article-title: Global prevalence and major risk factors of diabetic retinopathy publication-title: Diabetes Care doi: 10.2337/dc11-1909 – volume: 3 start-page: 45 year: 2003 ident: 10.1016/j.exer.2020.108329_bib27 article-title: Drug delivery to the retina: challenges and opportunities publication-title: Expet Opin. Biol. Ther. doi: 10.1517/14712598.3.1.45 – volume: 150 start-page: 33 year: 2010 ident: 10.1016/j.exer.2020.108329_bib49 article-title: RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027 publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2010.02.006 – volume: 23 start-page: 73 year: 2016 ident: 10.1016/j.exer.2020.108329_bib31 article-title: Precise and efficient siRNA design: a key point in competent gene silencing publication-title: Canc. Gene Ther. doi: 10.1038/cgt.2016.4 – volume: 7 start-page: 77 year: 2017 ident: 10.1016/j.exer.2020.108329_bib106 article-title: siRNA delivery strategies: a comprehensive review of recent developments publication-title: Nanomaterials doi: 10.3390/nano7040077 – volume: 98 start-page: 411 year: 2009 ident: 10.1016/j.exer.2020.108329_bib13 article-title: Fighting cancer: from the bench to bedside using second generation cationic liposomal therapeutics publication-title: J. Pharmacol. Sci. doi: 10.1002/jps.21458 – volume: 153 start-page: 665 year: 1998 ident: 10.1016/j.exer.2020.108329_bib72 article-title: Ocular neovascularization: clarifying complex interactions publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)65607-6 – volume: 84 start-page: 116 year: 2007 ident: 10.1016/j.exer.2020.108329_bib96 article-title: Inhibition of VEGF expression and corneal neovascularization by siRNA targeting cytochrome P450 4B1 publication-title: Prostag. Other Lipid Mediat. doi: 10.1016/j.prostaglandins.2007.05.001 – volume: 16 start-page: 1583 year: 2016 ident: 10.1016/j.exer.2020.108329_bib41 article-title: Reducible polyethylenimine nanoparticles for efficient siRNA delivery in corneal neovascularization therapy publication-title: Macromol. Biosci. doi: 10.1002/mabi.201600051 – volume: 391 start-page: 806 year: 1998 ident: 10.1016/j.exer.2020.108329_bib33 article-title: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans publication-title: Nature doi: 10.1038/35888 – volume: 68 start-page: 4683 year: 2008 ident: 10.1016/j.exer.2020.108329_bib50 article-title: Vascular endothelial growth factor (VEGF)-A165b is a weak in vitro agonist for VEGF receptor-2 due to lack of coreceptor binding and deficient regulation of kinase activity publication-title: Canc. Res. doi: 10.1158/0008-5472.CAN-07-6577 – volume: 35 start-page: 1957 year: 2015 ident: 10.1016/j.exer.2020.108329_bib111 article-title: Anti-vascular endothelial growth factor therapy for neovascular age-related macular degeneration: outcomes in eyes with poor initial vision publication-title: Retina doi: 10.1097/IAE.0000000000000583 – volume: 45 start-page: 368 year: 2004 ident: 10.1016/j.exer.2020.108329_bib113 article-title: VEGF164(165) as the pathological isoform: differential leukocyte and endothelial responses through VEGFR1 and VEGFR2 publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.03-0106 – volume: 28 start-page: 222 year: 2012 ident: 10.1016/j.exer.2020.108329_bib56 article-title: Retina expression and cross-species validation of gene silencing by PF-655, a small interfering RNA against RTP801 for the treatment of ocular disease publication-title: J. Ocul. Pharmacol. Therapeut. doi: 10.1089/jop.2011.0116 – volume: 14 start-page: 36 year: 2017 ident: 10.1016/j.exer.2020.108329_bib97 article-title: Overcoming the challenges of siRNA delivery: nanoparticle strategies publication-title: Curr. Drug Deliv. doi: 10.2174/1567201813666160816105408 – volume: 6 start-page: 2567 year: 2011 ident: 10.1016/j.exer.2020.108329_bib18 article-title: Novel RGD-lipid conjugate-modified liposomes for enhancing siRNA delivery in human retinal pigment epithelial cells publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S24447 – volume: 13 year: 2016 ident: 10.1016/j.exer.2020.108329_bib57 article-title: Anti-VEGF polysiRNA polyplex for the treatment of choroidal neovascularization publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.6b00148 – volume: 100 start-page: 865 year: 2009 ident: 10.1016/j.exer.2020.108329_bib70 article-title: Why are tumour blood vessels abnormal and why is it important to know? publication-title: Br. J. Canc. doi: 10.1038/sj.bjc.6604929 – volume: 111 start-page: 713 year: 2016 ident: 10.1016/j.exer.2020.108329_bib6 article-title: Nanosystems based on siRNA silencing HuR expression counteract diabetic retinopathy in rat publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2016.07.042 – volume: 18 start-page: 1421 year: 2007 ident: 10.1016/j.exer.2020.108329_bib66 article-title: Prox1 induces lymphatic endothelial differentiation via integrin alpha9 and other signaling cascades publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e06-09-0780 – volume: 24 start-page: 1510 issue: 8 year: 2019 ident: 10.1016/j.exer.2020.108329_bib45 article-title: Intravitreal nanoparticles for retinal delivery publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2019.05.005 – volume: 44 start-page: 2155 year: 2003 ident: 10.1016/j.exer.2020.108329_bib46 article-title: VEGF164 is proinflammatory in the diabetic retina publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.02-0807 – volume: 26 start-page: 1099 year: 2012 ident: 10.1016/j.exer.2020.108329_bib73 article-title: Phase 1 dose-escalation study of a siRNA targeting the RTP801 gene in age-related macular degeneration patients publication-title: Eye doi: 10.1038/eye.2012.106 – volume: 8 start-page: 296 year: 2008 ident: 10.1016/j.exer.2020.108329_bib68 article-title: Progress in cationic lipid-mediated gene transfection: a series of bio- inspired lipids as an example publication-title: Curr. Gene Ther. doi: 10.2174/156652308786070989 – volume: 167 start-page: 76 year: 2013 ident: 10.1016/j.exer.2020.108329_bib121 article-title: Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2013.01.018 – volume: 24 start-page: 981 year: 2007 ident: 10.1016/j.exer.2020.108329_bib92 article-title: Novel liposomal formulation for targeted gene delivery publication-title: Pharm. Res. (N. Y.) doi: 10.1007/s11095-006-9224-x – volume: 60 start-page: 149 year: 1999 ident: 10.1016/j.exer.2020.108329_bib36 article-title: Poly(ethylenimine) and its role in gene delivery publication-title: J. Contr. Release doi: 10.1016/S0168-3659(99)00090-5 – volume: 119 start-page: 1867 year: 2012 ident: 10.1016/j.exer.2020.108329_bib74 article-title: Evaluation of the siRNA PF-04523655 versus ranibizumab for the treatment of neovascular age-related macular degeneration (MONET Study) publication-title: Ophthalmology doi: 10.1016/j.ophtha.2012.03.043 – volume: 9 start-page: 15461 year: 2017 ident: 10.1016/j.exer.2020.108329_bib94 article-title: Therapeutic effects of a novel siRNA-based anti-VEGF (siVEGF) nanoball for the treatment of choroidal neovascularization publication-title: Nanoscale doi: 10.1039/C7NR03142D – year: 2013 ident: 10.1016/j.exer.2020.108329_bib37 article-title: Anti VEGF agents for age related macular degeneration – volume: 56 start-page: 5871 year: 2015 ident: 10.1016/j.exer.2020.108329_bib90 article-title: Inhibition of lymphangiogenesis and hemangiogenesis in corneal inflammation by subconjunctival Prox1 siRNA injection in rats publication-title: Investig. Opthalmology Vis. Sci. doi: 10.1167/iovs.14-14433 – volume: 525 start-page: 313 year: 2017 ident: 10.1016/j.exer.2020.108329_bib16 article-title: Polymeric nanoparticles for siRNA delivery: production and applications publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.04.008 – volume: 8 start-page: 8 year: 2015 ident: 10.1016/j.exer.2020.108329_bib84 article-title: Clinical use of Bevacizumab in treating refractory glaucoma publication-title: J. Med. Life – volume: 19 start-page: 125 year: 2008 ident: 10.1016/j.exer.2020.108329_bib21 article-title: Delivery vehicles for small interfering RNA in vivo publication-title: Hum. Gene Ther. doi: 10.1089/hum.2008.928 – volume: 9 start-page: 1488497 year: 2018 ident: 10.1016/j.exer.2020.108329_bib124 article-title: Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon publication-title: Nano Rev. Exp. doi: 10.1080/20022727.2018.1488497 – volume: 32 start-page: 318 year: 2018 ident: 10.1016/j.exer.2020.108329_bib3 article-title: Role of oxidative stress, inflammation, hypoxia and angiogenesis in the development of diabetic retinopathy publication-title: Saudi J. Ophthalmol. doi: 10.1016/j.sjopt.2018.05.002 – volume: 11 start-page: 59 year: 2011 ident: 10.1016/j.exer.2020.108329_bib78 article-title: RNA interference in the clinic: challenges and future directions publication-title: Nat. Rev. Canc. doi: 10.1038/nrc2966 – volume: 35 start-page: 4333 year: 2014 ident: 10.1016/j.exer.2020.108329_bib24 article-title: Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.02.006 – volume: 9 start-page: 272 year: 2010 ident: 10.1016/j.exer.2020.108329_bib67 article-title: Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing publication-title: Nat. Mater. doi: 10.1038/nmat2626 – volume: 55 start-page: 1232 year: 2014 ident: 10.1016/j.exer.2020.108329_bib91 article-title: RTP801 gene expression is differentially upregulated in retinopathy and is silenced by PF-04523655, a 19-Mer siRNA directed against RTP801 publication-title: Investig. Opthalmology Vis. Sci. doi: 10.1167/iovs.13-13449 – volume: 165 start-page: 2177 year: 2004 ident: 10.1016/j.exer.2020.108329_bib51 article-title: Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)63267-1 – volume: 91 start-page: 311 year: 2013 ident: 10.1016/j.exer.2020.108329_bib14 article-title: Ocular neovascularization publication-title: J. Mol. Med. doi: 10.1007/s00109-013-0993-5 – volume: 8 start-page: 237 year: 2012 ident: 10.1016/j.exer.2020.108329_bib104 article-title: Anti-vascular endothelial growth factor drug treatment of diabetic macular edema: the evolution continues publication-title: Curr. Diabetes Rev. doi: 10.2174/157339912800840488 – volume: 9 start-page: 210 year: 2003 ident: 10.1016/j.exer.2020.108329_bib88 article-title: Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model publication-title: Mol. Vis. – volume: 19 start-page: 813 year: 2014 ident: 10.1016/j.exer.2020.108329_bib100 article-title: Design and characterization of chitosan-alginate microspheres for ocular delivery of azelastine publication-title: Pharmaceut. Dev. Technol. doi: 10.3109/10837450.2013.836217 – volume: 35 start-page: 375 year: 2010 ident: 10.1016/j.exer.2020.108329_bib128 article-title: A siRNA targeting vascular endothelial growth factor-a inhibiting experimental corneal neovascularization publication-title: Curr. Eye Res. doi: 10.3109/02713681003597230 – volume: 50 start-page: 11665 year: 2014 ident: 10.1016/j.exer.2020.108329_bib40 article-title: Enzymatic size control of RNA particles using complementary rolling circle transcription (cRCT) method for efficient siRNA production publication-title: Chem. Commun. doi: 10.1039/C4CC04969A – volume: 26 start-page: 1 year: 2007 ident: 10.1016/j.exer.2020.108329_bib127 article-title: Ocular neovascularization: implication of endogenous angiogenic inhibitors and potential therapy publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2006.09.002 – volume: 88 start-page: 495 year: 2009 ident: 10.1016/j.exer.2020.108329_bib85 article-title: Mediators of ocular angiogenesis publication-title: J. Genet. doi: 10.1007/s12041-009-0068-0 – ident: 10.1016/j.exer.2020.108329_bib118 – volume: 120 start-page: 106 year: 2013 ident: 10.1016/j.exer.2020.108329_bib65 article-title: Vascular endothelial growth factor a in intraocular vascular disease publication-title: Ophthalmology doi: 10.1016/j.ophtha.2012.07.038 – volume: 225 start-page: 351 year: 2002 ident: 10.1016/j.exer.2020.108329_bib44 article-title: Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate publication-title: Dev. Dynam. doi: 10.1002/dvdy.10163 – volume: 33 start-page: 3485 year: 2012 ident: 10.1016/j.exer.2020.108329_bib53 article-title: The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.01.030 – volume: 9 start-page: 23353 year: 2017 ident: 10.1016/j.exer.2020.108329_bib25 article-title: Synergistic suppression of tumor angiogenesis by the co-delivering of vascular endothelial growth factor targeted siRNA and candesartan mediated by functionalized carbon nanovectors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04971 – year: 2016 ident: 10.1016/j.exer.2020.108329_bib61 article-title: siRNA delivery methods doi: 10.1007/978-1-4939-4011-0 – volume: 14 start-page: 306 year: 2009 ident: 10.1016/j.exer.2020.108329_bib71 article-title: Gene delivery to the retina: focus on non-viral approaches publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2008.09.012 – volume: 49 start-page: 2016 year: 2008 ident: 10.1016/j.exer.2020.108329_bib22 article-title: Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy publication-title: Investig. Opthalmology Vis. Sci. doi: 10.1167/iovs.07-1077 – volume: 2 start-page: e106 year: 2014 ident: 10.1016/j.exer.2020.108329_bib119 article-title: Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis publication-title: Lancet. Glob. Heal. doi: 10.1016/S2214-109X(13)70145-1 – volume: 21 start-page: 3140 year: 2015 ident: 10.1016/j.exer.2020.108329_bib122 article-title: Lipid-based nanocarriers for RNA delivery publication-title: Curr. Pharmaceut. Des. doi: 10.2174/1381612821666150531164540 – volume: 12561 year: 2020 ident: 10.1016/j.exer.2020.108329_bib48 article-title: Progress on ocular siRNA gene-silencing therapy and drug delivery systems publication-title: Fundam. Clin. Pharmacol. fcp. – volume: 28 start-page: 570 year: 2010 ident: 10.1016/j.exer.2020.108329_bib55 article-title: RNAi and small interfering RNAs in human disease therapeutic applications publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2010.07.009 – volume: 218 start-page: 94 year: 2015 ident: 10.1016/j.exer.2020.108329_bib95 article-title: Technologies for controlled, local delivery of siRNA publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2015.09.066 |
| SSID | ssj0003474 |
| Score | 2.4221475 |
| SecondaryResourceType | review_article |
| Snippet | Ocular neovascularization (NV) plays a central role in the pathogenesis of various ocular diseases including diabetic retinopathy, age-related macular... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 108329 |
| SubjectTerms | Cationic polymer Diabetic Retinopathy - genetics Eye - blood supply Genetic Therapy - methods Humans Liposomes Neovascularization, Pathologic - therapy Ocular cular siRNA delivery Ocular neovascularization (NV) Polyplexes, Lipoplexes, siRNA formulations, Diabetic retinopathy, Age-related macular degeneration, Patents on siRNA against ocular NV, Clinical trials RNA Interference RNA, Small Interfering - genetics Small interfering RNA (siRNA) Vascular endothelial growth factor (VEGF) Vascular Endothelial Growth Factor A - genetics |
| Title | Role of small interfering RNA (siRNA) in targeting ocular neovascularization: A review |
| URI | https://dx.doi.org/10.1016/j.exer.2020.108329 https://www.ncbi.nlm.nih.gov/pubmed/33198953 https://www.proquest.com/docview/2461396689 |
| Volume | 202 |
| WOSCitedRecordID | wos000608184800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-0007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003474 issn: 0014-4835 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DiFeEGx8jI_JSGgCoUz5aOKEtwh1AlQKgnbqm5XEttpqS0ubVet_z53tpIWxaTzwEkWW3Vq-X87nu5_vCHldKK-jXF84rmTM6XhZ4SQyd51ERGEmYP9MdLbP0x7r9-PRKPnWaqn6LszqjJVlfHmZzP-rqKENhI1XZ_9B3M2PQgO8g9DhCWKH560E_93yBZfnGHXGdBALJQ3Lrp-iQbmcwAt6A5DiqIngmvlsCKmlbMip9oamubu-2MQQpg17b1MbQK6x_MqWZ0zHmebGvz2e5Fk5qZuH80yM18adi4maymZj-AHzGBuKx2pSZdsOCd_bckgYHeoir9k1xWyP5V_arOL1XX9LdXpgDBrnxxWtbhwM02OsQgVHel8zI23n31No97_yk2Gvxwfd0eBo_tPB6mIYhbelVnbIrs8Af22ym37qjj43e3bQ0fm6m2na61WGCfjn315nwlx3RNGmyuABuW_PGDQ12HhIWrLcI_tpmVWz8zU9opr1q8Mpe-TuF0uu2CeniBw6U1Qjh24hhwJg6BuNm7fQThvUUIMaehU172lKDWYekeFJd_Dho2PLbjhFEEaVw8Dslp1E5GFeRDIuQhHGSuZhqGIlWJ5nPgMrMPakSISKCkyJCCYOE0mcsTyLRPCYtMtZKZ8SCic36CIVQysoj1QuWBH5HcEkKIXAUwfEq1eSFzYnPZZGOeM1-XDKcfU5rj43q39A3jVj5iYjy429w1pA3NqUxlbkAK4bx72qpclB4WIULYO1vFhyTMAYJFEUQ58nRszNPIIAKYhh8OwWo5-Te5uv5wVpV4sL-ZLcKVbVZLk4JDtsFB9amP4C6oiqOQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+small+interfering+RNA+%28siRNA%29+in+targeting+ocular+neovascularization%3A+A+review&rft.jtitle=Experimental+eye+research&rft.au=Supe%2C+Shibani&rft.au=Upadhya%2C+Archana&rft.au=Singh%2C+Kavita&rft.date=2021-01-01&rft.issn=1096-0007&rft.eissn=1096-0007&rft.volume=202&rft.spage=108329&rft_id=info:doi/10.1016%2Fj.exer.2020.108329&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4835&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4835&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4835&client=summon |