Role of small interfering RNA (siRNA) in targeting ocular neovascularization: A review

Ocular neovascularization (NV) plays a central role in the pathogenesis of various ocular diseases including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa and may lead to loss of vision if not controlled in time. Several clinical trials elucidate the ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental eye research Jg. 202; S. 108329
Hauptverfasser: Supe, Shibani, Upadhya, Archana, Singh, Kavita
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Elsevier Ltd 01.01.2021
Schlagworte:
ISSN:0014-4835, 1096-0007, 1096-0007
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Ocular neovascularization (NV) plays a central role in the pathogenesis of various ocular diseases including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa and may lead to loss of vision if not controlled in time. Several clinical trials elucidate the central role of vascular endothelial growth factor (VEGF) in the pathogenesis of the ocular neovascularization. The advent and extensive use of ocular anti-VEGF therapy heralded a new age in the treatment of retinal vascular and exudative diseases. RNA interference (RNAi) can be used to inhibit the in-vitro and in-vivo expression of specific genes and thus provides an extremely useful method for investigating gene activity with minimal toxicity. siRNA targeting VEGF overcomes many drawbacks associated with the conventional treatment available for the treatment of ocular neovascularization. However, delivery methods that protect the siRNA against degradation and are appropriate for long-term care will help increase the effectiveness of RNAi-based anti-VEGF ocular therapies. Several nanotechnology approaches have been explored by formulation scientists for delivery of siRNA to the eye; targeting particularly VEGF for the treatment of NV. This review mainly focuses on current updates in various pre-clinical and clinical siRNA strategies for targeting VEGF involved in the development of ocular neovascularization. •Ocular NV plays a central role in the pathogenesis of various ocular diseases.•Ocular NV is usually associated with loss of vision in diabetic retinopathy and age-related macular degeneration.•VEGF and its isoforms are recognized as the principal targets for the treatment of ocular NV.•siRNA strategies to downregulate VEGF are being explored.•Several nanotechnology approaches are employed for the delivery of VEGF siRNA in the treatment of ocular NV.
AbstractList Ocular neovascularization (NV) plays a central role in the pathogenesis of various ocular diseases including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa and may lead to loss of vision if not controlled in time. Several clinical trials elucidate the central role of vascular endothelial growth factor (VEGF) in the pathogenesis of the ocular neovascularization. The advent and extensive use of ocular anti-VEGF therapy heralded a new age in the treatment of retinal vascular and exudative diseases. RNA interference (RNAi) can be used to inhibit the in-vitro and in-vivo expression of specific genes and thus provides an extremely useful method for investigating gene activity with minimal toxicity. siRNA targeting VEGF overcomes many drawbacks associated with the conventional treatment available for the treatment of ocular neovascularization. However, delivery methods that protect the siRNA against degradation and are appropriate for long-term care will help increase the effectiveness of RNAi-based anti-VEGF ocular therapies. Several nanotechnology approaches have been explored by formulation scientists for delivery of siRNA to the eye; targeting particularly VEGF for the treatment of NV. This review mainly focuses on current updates in various pre-clinical and clinical siRNA strategies for targeting VEGF involved in the development of ocular neovascularization. •Ocular NV plays a central role in the pathogenesis of various ocular diseases.•Ocular NV is usually associated with loss of vision in diabetic retinopathy and age-related macular degeneration.•VEGF and its isoforms are recognized as the principal targets for the treatment of ocular NV.•siRNA strategies to downregulate VEGF are being explored.•Several nanotechnology approaches are employed for the delivery of VEGF siRNA in the treatment of ocular NV.
Ocular neovascularization (NV) plays a central role in the pathogenesis of various ocular diseases including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa and may lead to loss of vision if not controlled in time. Several clinical trials elucidate the central role of vascular endothelial growth factor (VEGF) in the pathogenesis of the ocular neovascularization. The advent and extensive use of ocular anti-VEGF therapy heralded a new age in the treatment of retinal vascular and exudative diseases. RNA interference (RNAi) can be used to inhibit the in-vitro and in-vivo expression of specific genes and thus provides an extremely useful method for investigating gene activity with minimal toxicity. siRNA targeting VEGF overcomes many drawbacks associated with the conventional treatment available for the treatment of ocular neovascularization. However, delivery methods that protect the siRNA against degradation and are appropriate for long-term care will help increase the effectiveness of RNAi-based anti-VEGF ocular therapies. Several nanotechnology approaches have been explored by formulation scientists for delivery of siRNA to the eye; targeting particularly VEGF for the treatment of NV. This review mainly focuses on current updates in various pre-clinical and clinical siRNA strategies for targeting VEGF involved in the development of ocular neovascularization.Ocular neovascularization (NV) plays a central role in the pathogenesis of various ocular diseases including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa and may lead to loss of vision if not controlled in time. Several clinical trials elucidate the central role of vascular endothelial growth factor (VEGF) in the pathogenesis of the ocular neovascularization. The advent and extensive use of ocular anti-VEGF therapy heralded a new age in the treatment of retinal vascular and exudative diseases. RNA interference (RNAi) can be used to inhibit the in-vitro and in-vivo expression of specific genes and thus provides an extremely useful method for investigating gene activity with minimal toxicity. siRNA targeting VEGF overcomes many drawbacks associated with the conventional treatment available for the treatment of ocular neovascularization. However, delivery methods that protect the siRNA against degradation and are appropriate for long-term care will help increase the effectiveness of RNAi-based anti-VEGF ocular therapies. Several nanotechnology approaches have been explored by formulation scientists for delivery of siRNA to the eye; targeting particularly VEGF for the treatment of NV. This review mainly focuses on current updates in various pre-clinical and clinical siRNA strategies for targeting VEGF involved in the development of ocular neovascularization.
Ocular neovascularization (NV) plays a central role in the pathogenesis of various ocular diseases including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa and may lead to loss of vision if not controlled in time. Several clinical trials elucidate the central role of vascular endothelial growth factor (VEGF) in the pathogenesis of the ocular neovascularization. The advent and extensive use of ocular anti-VEGF therapy heralded a new age in the treatment of retinal vascular and exudative diseases. RNA interference (RNAi) can be used to inhibit the in-vitro and in-vivo expression of specific genes and thus provides an extremely useful method for investigating gene activity with minimal toxicity. siRNA targeting VEGF overcomes many drawbacks associated with the conventional treatment available for the treatment of ocular neovascularization. However, delivery methods that protect the siRNA against degradation and are appropriate for long-term care will help increase the effectiveness of RNAi-based anti-VEGF ocular therapies. Several nanotechnology approaches have been explored by formulation scientists for delivery of siRNA to the eye; targeting particularly VEGF for the treatment of NV. This review mainly focuses on current updates in various pre-clinical and clinical siRNA strategies for targeting VEGF involved in the development of ocular neovascularization.
ArticleNumber 108329
Author Singh, Kavita
Supe, Shibani
Upadhya, Archana
Author_xml – sequence: 1
  givenname: Shibani
  orcidid: 0000-0001-5188-0130
  surname: Supe
  fullname: Supe, Shibani
– sequence: 2
  givenname: Archana
  orcidid: 0000-0002-6331-5179
  surname: Upadhya
  fullname: Upadhya, Archana
– sequence: 3
  givenname: Kavita
  surname: Singh
  fullname: Singh, Kavita
  email: kavita.singh@nmims.edu, kspharma05@gmail.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33198953$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1uGyEURlHlqrbTvkAXEctkMS4MMwxE2VhW8yNZrRS13SIG7kRY48EB7LR9-jBxsskiq4s-vnMFZ44mgx8Aoa-ULCih_NtmAX8hLEpSjoFgpfyAZpRIXhBCmgmaEUKrohKsnqJ5jJucsqqpPqEpY1QKWbMZ-nPne8C-w3Gr-x67IUHoILjhHt_9WOKz6PI4zzlOOtxDGi-82fc64AH8Qcfns_uvk_PDBV7iAAcHj5_Rx073Eb68zBP0--r7r9VNsf55fbtargvDap6KhhAJlbRt3RoOwtS2Fh20dd2JzjZtq8umIlxQsNJ23AgquKiaxkqhm1Zzy07Q2XHvLviHPcSkti4a6HudX7ePqqw4ZZJzIXP19KW6b7dg1S64rQ7_1KuLXBDHggk-xgCdMi49_ysF7XpFiRq1q40atatRuzpqz2j5Bn3d_i50eYQgC8rSgorGwWDAugAmKevde_gTd5abHg
CitedBy_id crossref_primary_10_3390_cells12091280
crossref_primary_10_3390_ijms25105479
crossref_primary_10_1016_j_ijbiomac_2025_144151
crossref_primary_10_1016_j_omtn_2024_102236
crossref_primary_10_4239_wjd_v12_i7_1116
crossref_primary_10_1016_j_jtos_2024_01_002
crossref_primary_10_1002_advs_202401710
crossref_primary_10_1002_btm2_10499
crossref_primary_10_1016_j_exer_2022_109036
crossref_primary_10_1002_advs_202407340
crossref_primary_10_2147_IJN_S521960
crossref_primary_10_1186_s11658_022_00368_y
crossref_primary_10_1007_s13346_022_01281_9
crossref_primary_10_1016_j_ejpb_2024_114296
crossref_primary_10_1007_s13346_024_01772_x
crossref_primary_10_1155_2022_7680513
crossref_primary_10_1186_s12951_023_01992_2
crossref_primary_10_1002_mco2_583
Cites_doi 10.1080/713816122
10.2174/1567201812666150817123049
10.1038/sj.gt.3302838
10.1016/j.nano.2008.06.001
10.3390/pharmaceutics11070317
10.1111/j.1600-0420.2006.00659.x
10.1038/nrd2742
10.1586/eop.13.17
10.4137/OED.S4878
10.3390/pharmaceutics12010039
10.1016/S0002-9394(14)75794-0
10.1076/ceyr.23.1.1.5422
10.1016/j.exer.2013.01.015
10.1007/978-1-4939-6361-4
10.1136/bjophthalmol-2011-300654
10.1016/j.nano.2020.102181
10.1167/iovs.10-5891
10.1038/nrd.2015.17
10.1023/A:1023238530504
10.1016/S0161-6420(96)30420-X
10.1093/emboj/cdf470
10.1097/IAE.0b013e31804b3e15
10.1159/000107502
10.1016/j.cell.2019.01.021
10.1042/BSR20180552
10.1016/j.chemphyslip.2010.01.001
10.1038/35053110
10.1042/BST0350047
10.1016/S2214-109X(13)70113-X
10.1038/sj.onc.1206773
10.1016/j.ebiom.2015.09.042
10.1016/j.ejpb.2015.02.027
10.1016/j.ajpath.2012.06.006
10.3390/pharmaceutics12030269
10.1016/j.survophthal.2017.10.006
10.1016/S1046-2023(02)00023-3
10.3390/jfb6020379
10.1097/00006982-200402000-00018
10.1016/j.phrs.2015.11.027
10.1038/35078107
10.1056/NEJM199412013312203
10.1155/2015/892043
10.1002/jcp.21566
10.1167/iovs.05-0165
10.1111/bph.12330
10.1038/sj.gt.3302641
10.1186/1754-1611-6-7
10.1046/j.1432-0436.2001.680406.x
10.4103/0301-4738.36476
10.1016/j.addr.2009.08.004
10.1002/biot.201100054
10.1038/nsmb780
10.1016/j.jconrel.2015.01.030
10.1080/02713680500514636
10.1016/S0092-8674(00)81402-6
10.1016/j.ijbiomac.2015.09.014
10.2174/0929867033457467
10.1093/nar/gkm437
10.2337/dc11-1909
10.1517/14712598.3.1.45
10.1016/j.ajo.2010.02.006
10.1038/cgt.2016.4
10.3390/nano7040077
10.1002/jps.21458
10.1016/S0002-9440(10)65607-6
10.1016/j.prostaglandins.2007.05.001
10.1002/mabi.201600051
10.1038/35888
10.1158/0008-5472.CAN-07-6577
10.1097/IAE.0000000000000583
10.1167/iovs.03-0106
10.1089/jop.2011.0116
10.2174/1567201813666160816105408
10.2147/IJN.S24447
10.1021/acs.molpharmaceut.6b00148
10.1038/sj.bjc.6604929
10.1016/j.phrs.2016.07.042
10.1091/mbc.e06-09-0780
10.1016/j.drudis.2019.05.005
10.1167/iovs.02-0807
10.1038/eye.2012.106
10.2174/156652308786070989
10.1016/j.jconrel.2013.01.018
10.1007/s11095-006-9224-x
10.1016/S0168-3659(99)00090-5
10.1016/j.ophtha.2012.03.043
10.1039/C7NR03142D
10.1167/iovs.14-14433
10.1016/j.ijpharm.2017.04.008
10.1089/hum.2008.928
10.1080/20022727.2018.1488497
10.1016/j.sjopt.2018.05.002
10.1038/nrc2966
10.1016/j.biomaterials.2014.02.006
10.1038/nmat2626
10.1167/iovs.13-13449
10.1016/S0002-9440(10)63267-1
10.1007/s00109-013-0993-5
10.2174/157339912800840488
10.3109/10837450.2013.836217
10.3109/02713681003597230
10.1039/C4CC04969A
10.1016/j.preteyeres.2006.09.002
10.1007/s12041-009-0068-0
10.1016/j.ophtha.2012.07.038
10.1002/dvdy.10163
10.1016/j.biomaterials.2012.01.030
10.1021/acsami.7b04971
10.1007/978-1-4939-4011-0
10.1016/j.drudis.2008.09.012
10.1167/iovs.07-1077
10.1016/S2214-109X(13)70145-1
10.2174/1381612821666150531164540
10.1016/j.tibtech.2010.07.009
10.1016/j.jconrel.2015.09.066
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.exer.2020.108329
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1096-0007
ExternalDocumentID 33198953
10_1016_j_exer_2020_108329
S001448352030587X
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.55
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29G
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AAAJQ
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXLA
AAXUO
ABBQC
ABCQJ
ABFNM
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CAG
CJTIS
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEA
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
L7B
LCYCR
LG5
LUGTX
LZ2
M29
M2U
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSH
SSI
SSN
SSZ
T5K
TEORI
WUQ
X7M
XPP
ZA5
ZGI
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c356t-7009e49db5bc6e8c5d58feb55f8fd7bba2740681ed9df6c81868477d98a7ba6d3
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000608184800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0014-4835
1096-0007
IngestDate Mon Sep 29 06:27:59 EDT 2025
Thu Apr 03 06:59:16 EDT 2025
Sat Nov 29 07:31:43 EST 2025
Tue Nov 18 21:32:26 EST 2025
Fri Feb 23 02:39:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ocular cular siRNA delivery
Ethylene glycol
PubChem CID: 9033
PubChem CID: 24847767
Vascular endothelial growth factor (VEGF)
PubChem CID: 174
PEG2000 DSPE
Ocular neovascularization (NV)
Small interfering RNA (siRNA)
Poly-l-lysine
PubChem CID: 447078
lysine
PubChem CID: 21896651
Polyethylenimine
1, 2-distearoyl-sn-glycero-3-phosphoethanolamine
Cationic polymer
PubChem CID: 162282
PubChem CID 5962
Liposomes
Polyplexes, Lipoplexes, siRNA formulations, Diabetic retinopathy, Age-related macular degeneration, Patents on siRNA against ocular NV, Clinical trials
Chitosan
PubChem CID 406952
Hyaluronic acid
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c356t-7009e49db5bc6e8c5d58feb55f8fd7bba2740681ed9df6c81868477d98a7ba6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6331-5179
0000-0001-5188-0130
PMID 33198953
PQID 2461396689
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2461396689
pubmed_primary_33198953
crossref_citationtrail_10_1016_j_exer_2020_108329
crossref_primary_10_1016_j_exer_2020_108329
elsevier_sciencedirect_doi_10_1016_j_exer_2020_108329
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Experimental eye research
PublicationTitleAlternate Exp Eye Res
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Miller, Le Couter, Strauss, Ferrara (bib65) 2013; 120
Campbell, Ying, Kuesters, Hemphill (bib13) 2009; 98
Stewart (bib105) 2012; 96
Audouy, Hoekstra (bib8) 2001; 18
Pitkänen, Ruponen, Nieminen, Urtti (bib83) 2003; 20
Xu, Shen, Wang, Wang, Liu, Tao, Qi (bib120) 2016; 13
Kim, Tang, Biswas, Xu, Schiffelers, Xie, Ansari, Scaria, Woodle, Lu, Rouse (bib51) 2004; 165
Liu, Liu, Ma, Wang, Zhang (bib59) 2011; 52
Neely, Gardner (bib72) 1998; 153
Al-Kharashi (bib3) 2018; 32
Chen, Lu, Yeh, Shiau, Chiang (bib18) 2011; 6
Petrova, Mäkinen, Mäkelä, Saarela, Virtanen, Ferrell, Finegold, Kerjaschki, Ylä-Herttuala, Alitalo (bib81) 2002; 21
Amadio, Govoni, Pascale (bib5) 2016; 103
Mishima, Watabe, Saito, Yoshimatsu, Imaizumi, Masui, Hirashima, Morisada, Oike, Araie, Niwa, Kubo, Suda, Miyazono (bib66) 2007; 18
Nagy, Chang, Dvorak, Dvorak (bib70) 2009; 100
Xu, Boylan, Suk, Wang, Nance, Yang, McDonnell, Cone, Duh, Hanes (bib121) 2013; 167
Ryoo, Lee, Lee, Hong, Kim, Lee, Woo, Park, Kim (bib94) 2017; 9
Mok, Lee, Park, Park (bib67) 2010; 9
de la Fuente, Seijo, Alonso (bib22) 2008; 49
Burnett, Rossi, Tiemann (bib12) 2011; 6
Stewart (bib104) 2012; 8
Garba, Mousa (bib35) 2010; 2
Nguyen, Schachar, Nduaka, Sperling, Klamerus, Chi-Burris, Yan, Paggiarino, Rosenblatt, Aitchison, Erlich, Monet Clinical Study Group (bib74) 2012; 119
Hong, Harvey, Noh, Schacht, Hirakawa, Detmar, Oliver (bib44) 2002; 225
Ding, Su, Wang, Zhang, Chen, Wang, Li, Wang (bib25) 2017; 9
Usui, Ishida, Yamashiro, Kaji, Poulaki, Moore, Moore, Amano, Horikawa, Dartt, Golding, Shima, Adamis (bib113) 2004; 45
Godbey, Wu, Mikos (bib36) 1999; 60
Naik, Mukhopadhyay, Ganguli (bib71) 2009; 14
Jiang, Zhang, Tang, Li, Chen (bib48) 2020; 12561
Kaiser, Symons, Shah, Quinlan, Tabandeh, Do, Reisen, Lockridge, Short, Guerciolini, Nguyen, Sirna-027 Study Investigators (bib49) 2010; 150
Chen, Yeh, Shiau, Chiang, Lu (bib19) 2013; 8
Fire, Xu, Montgomery, Kostas, Driver, Mello (bib33) 1998; 391
Ferrara, Adamis (bib32) 2016; 15
Murata, Takanami, Shimizu, Kubota, Horiuchi, Habano, Ma, Sato (bib69) 2006; 31
Shinde, Shete, Nair, Singh (bib100) 2014; 19
Tolentino, Miller, Gragoudas, Jakobiec, Flynn, Chatzstefanou, Ferrara, Adamis (bib110) 1996; 103
Campochiaro (bib14) 2013; 91
Sarett, Nelson, Duvall (bib95) 2015; 218
Whitehead, Langer, Anderson (bib117) 2009; 8
Campochiaro, Hackett (bib15) 2003; 22
Roberts, Ezzat, Andaloussi, Weinberg (bib93) 2016
Xue, Guo, Wen, Wong (bib122) 2015; 21
Nguyen, Schachar, Nduaka, Sperling, Basile, Klamerus, Chi-Burris, Yan, Paggiarino, Rosenblatt, Khan, Aitchison, Erlich (bib73) 2012; 26
Apte, Chen, Ferrara (bib7) 2019; 176
Elbashir, Harborth, Weber, Tuschl (bib29) 2002; 26
Koo, Moon, Han, Na, Huh, Park, Woo, Park, Chan Kwon, Kim, Kim (bib53) 2012; 33
Singh, Kotla, Kumar, Rao (bib102) 2015; 2
de Fougerolles (bib21) 2008; 19
Kawamura, Li, Harper, Bates, Claesson-Welsh (bib50) 2008; 68
Shegokar, Al Shaal, Mishra (bib98) 2011; 66
Peeters, Sanders, Demeester, De Smedt (bib80) 2007; 35
Lares, Rossi, Ouellet (bib55) 2010; 28
Mao, Sun, Kissel (bib62) 2010; 62
Yau, Rogers, Kawasaki, Lamoureux, Kowalski, Bek, Chen, Dekker, Fletcher, Grauslund, Haffner, Hamman, Ikram, Kayama, Klein, Klein, Krishnaiah, Mayurasakorn, O'Hare, Orchard, Porta, Rema, Roy, Sharma, Shaw, Taylor, Tielsch, Varma, Wang, Wang, West, Xu, Yasuda, Zhang, Mitchell, Wong, Meta-Analysis for Eye Disease META-EYE Study Group (bib123) 2012; 35
Fakhr, Zare, Teimoori-Toolabi (bib31) 2016; 23
Jiang, Xia, Xu, Xiong, Song, Xiong, Li (bib47) 2009; 218
Hennig, Goepferich (bib42) 2015; 95
Shen, Samul, Silva, Akiyama, Liu, Saishin, Hackett, Zinnen, Kossen, Fosnaugh, Vargeese, Gomez, Bouhana, Aitchison, Pavco, Campochiaro (bib99) 2006; 13
Westerhout, Berkhout (bib116) 2007; 35
Deng, Cao, Zhang, Hu, Yin, Zhou, Xiao, Yang, Sheng, Wu, Zeng (bib24) 2014; 35
Zhang, Wang, Hui, Hu, Wang, Zhou, Du (bib126) 2007; 221
Popescu, Pricopie, Totir, Iancu, Yasyn, Alexandrescu (bib84) 2015; 8
Bourne, Stevens, White, Smith, Flaxman, Price, Jonas, Keeffe, Leasher, Naidoo, Pesudovs, Resnikoff, Taylor (bib10) 2013; 1
Seta, Patil, Bellner, Mezentsev, Kemp, Dunn, Schwartzman (bib96) 2007; 84
Shajari, Mansoori, Davudian, Mohammadi, Baradaran (bib97) 2017; 14
Tekie, Atyabi, Soleimani, Arefian, Atashi, Kiani, Khoshayand, Amini, Dinarvand (bib107) 2015; 81
Amadio, Pascale, Cupri, Pignatello, Osera, D'Agata, D'Amico, Leggio, Ruozi, Govoni, Drago, Bucolo (bib6) 2016; 111
Chaharband, Daftarian, Kanavi, Varshochian, Hajiramezanali, Norouzi, Arefian, Atyabi, Dinarvand (bib17) 2020; 26
Cavallaro, Sardo, Craparo, Porsio, Giammona (bib16) 2017; 525
Li, Huang (bib58) 2006; 13
Thakur, Fitzpatrick, Zaman, Kugathasan, Muirhead, Hortelano, Sheardown (bib108) 2012; 6
Wang, Rajala, Rajala (bib115) 2015; 6
Ishida, Usui, Yamashiro, Kaji, Ahmed, Carrasquillo, Amano, Hida, Oguchi, Adamis (bib46) 2003; 44
Kvanta (bib54) 2006; 84
Haley, Zamore (bib39) 2004; 11
Reischl, Zimmer (bib89) 2009; 5
Montier, Benvegnu, Jaffres, Yaouanc, Lehn (bib68) 2008; 8
Golan, Goldstein, Loewenstei (bib37) 2013
Pecot, Calin, Coleman, Lopez-Berestein, Sood (bib78) 2011; 11
Mastyugin, Mosaed, Bonazzi, Dunn, Schwartzman (bib64) 2001; 23
Osipova, Sharoyko, Zashikhina, Zakharova, Tennikova, Urtti, Korzhikova-Vlakh (bib76) 2020; 12
Reich, Fosnot, Kuroki, Tang, Yang, Maguire, Bennett, Tolentino (bib88) 2003; 9
Lee, Huang, Rittenhouse, Jessen (bib56) 2012; 28
Bernstein, Caudy, Hammond, Hannon (bib9) 2001; 409
Adamis, Miller, Bernal, D'Amico, Folkman, Yeo, Yeo (bib1) 1994; 118
Qazi, Maddula, Ambati (bib85) 2009; 88
Varela-Fernández, Díaz-Tomé, Luaces-Rodríguez, Conde-Penedo, García-Otero, Luzardo-Álvarez, Fernández-Ferreiro, Otero-Espinar (bib114) 2020; 12
Triantafylla, Massa, Dardabounis, Gatzioufas, Kozobolis, Ioannakis, Perente, Panos (bib112) 2014; 8
Tolentino, Brucker, Fosnot, Ying, Wu, Malik, Wan, Reich (bib109) 2004; 24
Liu, Romano, Steger, Kaye, Hamill, Willoughby (bib60) 2018; 63
Zhang, Ma (bib127) 2007; 26
Pilipenko, Korzhikov-Vlakh, Sharoyko, Zhang, Schäfer-Korting, Rühl, Zoschke, Tennikova (bib82) 2019; 11
Brey, McIntire (bib11) 2008
Huang, Chau (bib45) 2019; 24
Martens, Remaut, Deschout, Engbersen, Hennink, van Steenbergen, Demeester, De Smedt, Braeckmans (bib63) 2015; 202
Emerson, Lauer, Flaxel, Wilson, Francis, Stout, Emerson, Schlesinger, Nolte, Klein (bib30) 2007; 27
Wong, Su, Li, Cheung, Klein, Cheng, Wong (bib119) 2014; 2
Dreyfuss, Giordano, Regatieri (bib26) 2015; 2015
Duvvuri, Majumdar, Mitra (bib27) 2003; 3
Nicolazzi, Garinot, Mignet, Scherman, Bessodes (bib75) 2003; 10
Toth, Stevenson, Chakravarthy (bib111) 2015; 35
Hirschi, Goodell (bib43) 2001; 68
Al-Shabrawey, Elsherbiny, Nussbaum, Othman, Megyerdi, Tawfik (bib4) 2013; 8
Rao (bib87) 2010; 163
WHO (bib118) 2019
Soker, Takashima, Miao, Neufeld, Klagsbrun (bib103) 1998; 92
Kim, D'Amore (bib52) 2012; 181
Lee, Ryoo, Han, Hong, Park, Park, Kim, Sim, Kim, Woo, Park, Kim (bib57) 2016; 13
Liu, Peng (bib61) 2016
Park, Shukla (bib77) 2013; 110
Aiello, Avery, Arrigg, Keyt, Jampel, Shah, Pasquale, Thieme, Iwamoto, Park (bib2) 1994; 331
Guzman-Aranguez, Loma, Pintor (bib38) 2013; 170
Conners, Stoltz, Davis, Dunn, Abraham, Levere, Laniado-Schwartzman (bib20) 1995; 36
Tatiparti, Sau, Kashaw, Iyer (bib106) 2017; 7
Zakeri, Kouhbanani, Beheshtkhoo, Beigi, Mousavi, Hashemi, Karimi Zade, Amani, Savardashtaki, Mirzaei, Jahandideh, Movahedpour (bib124) 2018; 9
Han, Park, Nam, Lee (bib40) 2014; 50
Raja, Katas, Amjad (bib86) 2019; 14
Han, Son, Son, Kim, Yhee, Lee, Choi, Joo, Lee, Lee, Kim, Kim, Kwon, Kim, Kim (bib41) 2016; 16
Peeters, Sanders, Braeckmans, Boussery, Van de Voorde, De Smedt, Demeester (bib79) 2005; 46
Rittenhouse, Johnson, Vicini, Hirakawa, Kalabat, Yang, Huang, Basile (bib91) 2014; 55
Rho, Choi, Seo, Lee, Joo (bib90) 2015; 56
Fu, Xin (bib34) 2019; 39
Rivest, Phivilay, Julien, Bélanger, Tremblay, Émond, Calon (bib92) 2007; 24
Zuo, Fan, Wang, Gu, Xu (bib128) 2010; 35
Dejneka, Wan, Bond, Kornbrust, Reich (bib23) 2008; 14
Shukla, Namperumalsamy, Goldbaum, Cunningham (bib101) 2007; 55
Elbashir, Harborth, Lendeckel, Yalcin, Weber, Tuschl (bib28) 2001; 411
Li (10.1016/j.exer.2020.108329_bib58) 2006; 13
Neely (10.1016/j.exer.2020.108329_bib72) 1998; 153
Zhang (10.1016/j.exer.2020.108329_bib127) 2007; 26
Liu (10.1016/j.exer.2020.108329_bib61) 2016
Brey (10.1016/j.exer.2020.108329_bib11) 2008
Yau (10.1016/j.exer.2020.108329_bib123) 2012; 35
Miller (10.1016/j.exer.2020.108329_bib65) 2013; 120
Mok (10.1016/j.exer.2020.108329_bib67) 2010; 9
Martens (10.1016/j.exer.2020.108329_bib63) 2015; 202
Liu (10.1016/j.exer.2020.108329_bib59) 2011; 52
Park (10.1016/j.exer.2020.108329_bib77) 2013; 110
Rho (10.1016/j.exer.2020.108329_bib90) 2015; 56
Raja (10.1016/j.exer.2020.108329_bib86) 2019; 14
Campochiaro (10.1016/j.exer.2020.108329_bib15) 2003; 22
Ryoo (10.1016/j.exer.2020.108329_bib94) 2017; 9
Ding (10.1016/j.exer.2020.108329_bib25) 2017; 9
Koo (10.1016/j.exer.2020.108329_bib53) 2012; 33
Campochiaro (10.1016/j.exer.2020.108329_bib14) 2013; 91
Rittenhouse (10.1016/j.exer.2020.108329_bib91) 2014; 55
de la Fuente (10.1016/j.exer.2020.108329_bib22) 2008; 49
Al-Kharashi (10.1016/j.exer.2020.108329_bib3) 2018; 32
Stewart (10.1016/j.exer.2020.108329_bib104) 2012; 8
Emerson (10.1016/j.exer.2020.108329_bib30) 2007; 27
Shukla (10.1016/j.exer.2020.108329_bib101) 2007; 55
Chaharband (10.1016/j.exer.2020.108329_bib17) 2020; 26
Nagy (10.1016/j.exer.2020.108329_bib70) 2009; 100
Lares (10.1016/j.exer.2020.108329_bib55) 2010; 28
Tekie (10.1016/j.exer.2020.108329_bib107) 2015; 81
Usui (10.1016/j.exer.2020.108329_bib113) 2004; 45
Xu (10.1016/j.exer.2020.108329_bib120) 2016; 13
Duvvuri (10.1016/j.exer.2020.108329_bib27) 2003; 3
Mastyugin (10.1016/j.exer.2020.108329_bib64) 2001; 23
Tolentino (10.1016/j.exer.2020.108329_bib110) 1996; 103
Wong (10.1016/j.exer.2020.108329_bib119) 2014; 2
Amadio (10.1016/j.exer.2020.108329_bib6) 2016; 111
Xu (10.1016/j.exer.2020.108329_bib121) 2013; 167
Singh (10.1016/j.exer.2020.108329_bib102) 2015; 2
Shajari (10.1016/j.exer.2020.108329_bib97) 2017; 14
Liu (10.1016/j.exer.2020.108329_bib60) 2018; 63
Han (10.1016/j.exer.2020.108329_bib41) 2016; 16
Chen (10.1016/j.exer.2020.108329_bib19) 2013; 8
Popescu (10.1016/j.exer.2020.108329_bib84) 2015; 8
Sarett (10.1016/j.exer.2020.108329_bib95) 2015; 218
Peeters (10.1016/j.exer.2020.108329_bib79) 2005; 46
Thakur (10.1016/j.exer.2020.108329_bib108) 2012; 6
Kim (10.1016/j.exer.2020.108329_bib51) 2004; 165
Whitehead (10.1016/j.exer.2020.108329_bib117) 2009; 8
Roberts (10.1016/j.exer.2020.108329_bib93) 2016
Murata (10.1016/j.exer.2020.108329_bib69) 2006; 31
Rao (10.1016/j.exer.2020.108329_bib87) 2010; 163
Reischl (10.1016/j.exer.2020.108329_bib89) 2009; 5
Burnett (10.1016/j.exer.2020.108329_bib12) 2011; 6
Pecot (10.1016/j.exer.2020.108329_bib78) 2011; 11
Xue (10.1016/j.exer.2020.108329_bib122) 2015; 21
Shen (10.1016/j.exer.2020.108329_bib99) 2006; 13
Ishida (10.1016/j.exer.2020.108329_bib46) 2003; 44
Ferrara (10.1016/j.exer.2020.108329_bib32) 2016; 15
Jiang (10.1016/j.exer.2020.108329_bib48) 2020; 12561
Elbashir (10.1016/j.exer.2020.108329_bib29) 2002; 26
Fu (10.1016/j.exer.2020.108329_bib34) 2019; 39
WHO (10.1016/j.exer.2020.108329_bib118)
Osipova (10.1016/j.exer.2020.108329_bib76) 2020; 12
Nguyen (10.1016/j.exer.2020.108329_bib74) 2012; 119
Campbell (10.1016/j.exer.2020.108329_bib13) 2009; 98
Petrova (10.1016/j.exer.2020.108329_bib81) 2002; 21
Naik (10.1016/j.exer.2020.108329_bib71) 2009; 14
Triantafylla (10.1016/j.exer.2020.108329_bib112) 2014; 8
Pilipenko (10.1016/j.exer.2020.108329_bib82) 2019; 11
Mao (10.1016/j.exer.2020.108329_bib62) 2010; 62
Pitkänen (10.1016/j.exer.2020.108329_bib83) 2003; 20
Seta (10.1016/j.exer.2020.108329_bib96) 2007; 84
Golan (10.1016/j.exer.2020.108329_bib37) 2013
Han (10.1016/j.exer.2020.108329_bib40) 2014; 50
Soker (10.1016/j.exer.2020.108329_bib103) 1998; 92
Apte (10.1016/j.exer.2020.108329_bib7) 2019; 176
Tatiparti (10.1016/j.exer.2020.108329_bib106) 2017; 7
Conners (10.1016/j.exer.2020.108329_bib20) 1995; 36
Elbashir (10.1016/j.exer.2020.108329_bib28) 2001; 411
Garba (10.1016/j.exer.2020.108329_bib35) 2010; 2
Al-Shabrawey (10.1016/j.exer.2020.108329_bib4) 2013; 8
Zhang (10.1016/j.exer.2020.108329_bib126) 2007; 221
Aiello (10.1016/j.exer.2020.108329_bib2) 1994; 331
Kawamura (10.1016/j.exer.2020.108329_bib50) 2008; 68
Wang (10.1016/j.exer.2020.108329_bib115) 2015; 6
Hennig (10.1016/j.exer.2020.108329_bib42) 2015; 95
Peeters (10.1016/j.exer.2020.108329_bib80) 2007; 35
Fakhr (10.1016/j.exer.2020.108329_bib31) 2016; 23
Toth (10.1016/j.exer.2020.108329_bib111) 2015; 35
Audouy (10.1016/j.exer.2020.108329_bib8) 2001; 18
Stewart (10.1016/j.exer.2020.108329_bib105) 2012; 96
Fire (10.1016/j.exer.2020.108329_bib33) 1998; 391
Kaiser (10.1016/j.exer.2020.108329_bib49) 2010; 150
Nguyen (10.1016/j.exer.2020.108329_bib73) 2012; 26
Dejneka (10.1016/j.exer.2020.108329_bib23) 2008; 14
Reich (10.1016/j.exer.2020.108329_bib88) 2003; 9
Qazi (10.1016/j.exer.2020.108329_bib85) 2009; 88
Chen (10.1016/j.exer.2020.108329_bib18) 2011; 6
Godbey (10.1016/j.exer.2020.108329_bib36) 1999; 60
Adamis (10.1016/j.exer.2020.108329_bib1) 1994; 118
Shinde (10.1016/j.exer.2020.108329_bib100) 2014; 19
Bernstein (10.1016/j.exer.2020.108329_bib9) 2001; 409
Haley (10.1016/j.exer.2020.108329_bib39) 2004; 11
Lee (10.1016/j.exer.2020.108329_bib57) 2016; 13
Nicolazzi (10.1016/j.exer.2020.108329_bib75) 2003; 10
Tolentino (10.1016/j.exer.2020.108329_bib109) 2004; 24
Dreyfuss (10.1016/j.exer.2020.108329_bib26) 2015; 2015
Hong (10.1016/j.exer.2020.108329_bib44) 2002; 225
Hirschi (10.1016/j.exer.2020.108329_bib43) 2001; 68
Cavallaro (10.1016/j.exer.2020.108329_bib16) 2017; 525
de Fougerolles (10.1016/j.exer.2020.108329_bib21) 2008; 19
Kim (10.1016/j.exer.2020.108329_bib52) 2012; 181
Rivest (10.1016/j.exer.2020.108329_bib92) 2007; 24
Mishima (10.1016/j.exer.2020.108329_bib66) 2007; 18
Westerhout (10.1016/j.exer.2020.108329_bib116) 2007; 35
Deng (10.1016/j.exer.2020.108329_bib24) 2014; 35
Jiang (10.1016/j.exer.2020.108329_bib47) 2009; 218
Shegokar (10.1016/j.exer.2020.108329_bib98) 2011; 66
Zuo (10.1016/j.exer.2020.108329_bib128) 2010; 35
Huang (10.1016/j.exer.2020.108329_bib45) 2019; 24
Varela-Fernández (10.1016/j.exer.2020.108329_bib114) 2020; 12
Zakeri (10.1016/j.exer.2020.108329_bib124) 2018; 9
Kvanta (10.1016/j.exer.2020.108329_bib54) 2006; 84
Amadio (10.1016/j.exer.2020.108329_bib5) 2016; 103
Bourne (10.1016/j.exer.2020.108329_bib10) 2013; 1
Montier (10.1016/j.exer.2020.108329_bib68) 2008; 8
Guzman-Aranguez (10.1016/j.exer.2020.108329_bib38) 2013; 170
Lee (10.1016/j.exer.2020.108329_bib56) 2012; 28
References_xml – volume: 15
  start-page: 385
  year: 2016
  end-page: 403
  ident: bib32
  article-title: Ten years of anti-vascular endothelial growth factor therapy
  publication-title: Nat. Rev. Drug Discov.
– volume: 225
  start-page: 351
  year: 2002
  end-page: 357
  ident: bib44
  article-title: Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate
  publication-title: Dev. Dynam.
– volume: 98
  start-page: 411
  year: 2009
  end-page: 429
  ident: bib13
  article-title: Fighting cancer: from the bench to bedside using second generation cationic liposomal therapeutics
  publication-title: J. Pharmacol. Sci.
– start-page: 1020
  year: 2008
  end-page: 1037
  ident: bib11
  article-title: Vascular assembly in engineered and natural tissues
  publication-title: Principles of Regenerative Medicine
– volume: 84
  start-page: 116
  year: 2007
  end-page: 127
  ident: bib96
  article-title: Inhibition of VEGF expression and corneal neovascularization by siRNA targeting cytochrome P450 4B1
  publication-title: Prostag. Other Lipid Mediat.
– volume: 6
  start-page: 7
  year: 2012
  ident: bib108
  article-title: Strategies for ocular siRNA delivery: potential and limitations of non-viral nanocarriers
  publication-title: J. Biol. Eng.
– volume: 24
  start-page: 132
  year: 2004
  end-page: 138
  ident: bib109
  article-title: Intravitreal injection of vascular endothelial growth factor small interfering RNA inhibits growth and leakage in a nonhuman primate, laser-induced model of choroidal neovascularization
  publication-title: Retina
– volume: 26
  start-page: 1099
  year: 2012
  end-page: 1105
  ident: bib73
  article-title: Phase 1 dose-escalation study of a siRNA targeting the RTP801 gene in age-related macular degeneration patients
  publication-title: Eye
– volume: 21
  start-page: 3140
  year: 2015
  end-page: 3147
  ident: bib122
  article-title: Lipid-based nanocarriers for RNA delivery
  publication-title: Curr. Pharmaceut. Des.
– volume: 19
  start-page: 125
  year: 2008
  end-page: 132
  ident: bib21
  article-title: Delivery vehicles for small interfering RNA in vivo
  publication-title: Hum. Gene Ther.
– year: 2013
  ident: bib37
  article-title: Anti VEGF agents for age related macular degeneration
  publication-title: Age-Related Macular Degeneration - Etiology, Diagnosis and Management - A Glance at the Future
– volume: 119
  start-page: 1867
  year: 2012
  end-page: 1873
  ident: bib74
  article-title: Evaluation of the siRNA PF-04523655 versus ranibizumab for the treatment of neovascular age-related macular degeneration (MONET Study)
  publication-title: Ophthalmology
– volume: 153
  start-page: 665
  year: 1998
  end-page: 670
  ident: bib72
  article-title: Ocular neovascularization: clarifying complex interactions
  publication-title: Am. J. Pathol.
– volume: 6
  start-page: 2567
  year: 2011
  ident: bib18
  article-title: Novel RGD-lipid conjugate-modified liposomes for enhancing siRNA delivery in human retinal pigment epithelial cells
  publication-title: Int. J. Nanomed.
– volume: 409
  start-page: 363
  year: 2001
  end-page: 366
  ident: bib9
  article-title: Role for a bidentate ribonuclease in the initiation step of RNA interference
  publication-title: Nature
– volume: 6
  start-page: 1130
  year: 2011
  end-page: 1146
  ident: bib12
  article-title: Current progress of siRNA/shRNA therapeutics in clinical trials
  publication-title: Biotechnol. J.
– volume: 3
  start-page: 45
  year: 2003
  end-page: 56
  ident: bib27
  article-title: Drug delivery to the retina: challenges and opportunities
  publication-title: Expet Opin. Biol. Ther.
– volume: 23
  start-page: 1
  year: 2001
  end-page: 10
  ident: bib64
  article-title: Corneal epithelial VEGF and cytochrome P450 4B1 expression in a rabbit model of closed eye contact lens wear
  publication-title: Curr. Eye Res.
– volume: 10
  start-page: 1263
  year: 2003
  end-page: 1277
  ident: bib75
  article-title: Cationic lipids for transfection
  publication-title: Curr. Med. Chem.
– volume: 11
  start-page: 59
  year: 2011
  end-page: 67
  ident: bib78
  article-title: RNA interference in the clinic: challenges and future directions
  publication-title: Nat. Rev. Canc.
– volume: 11
  start-page: 599
  year: 2004
  end-page: 606
  ident: bib39
  article-title: Kinetic analysis of the RNAi enzyme complex
  publication-title: Nat. Struct. Mol. Biol.
– volume: 8
  start-page: 296
  year: 2008
  end-page: 312
  ident: bib68
  article-title: Progress in cationic lipid-mediated gene transfection: a series of bio- inspired lipids as an example
  publication-title: Curr. Gene Ther.
– volume: 2015
  start-page: 892043
  year: 2015
  ident: bib26
  article-title: Ocular angiogenesis
  publication-title: J. Ophthalmol.
– volume: 13
  year: 2016
  ident: bib57
  article-title: Anti-VEGF polysiRNA polyplex for the treatment of choroidal neovascularization
  publication-title: Mol. Pharm.
– volume: 35
  start-page: 556
  year: 2012
  end-page: 564
  ident: bib123
  article-title: Global prevalence and major risk factors of diabetic retinopathy
  publication-title: Diabetes Care
– volume: 103
  start-page: 1820
  year: 1996
  end-page: 1828
  ident: bib110
  article-title: Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate
  publication-title: Ophthalmology
– volume: 118
  start-page: 445
  year: 1994
  end-page: 450
  ident: bib1
  article-title: Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy
  publication-title: Am. J. Ophthalmol.
– volume: 28
  start-page: 570
  year: 2010
  end-page: 579
  ident: bib55
  article-title: RNAi and small interfering RNAs in human disease therapeutic applications
  publication-title: Trends Biotechnol.
– volume: 150
  start-page: 33
  year: 2010
  end-page: 39
  ident: bib49
  article-title: RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027
  publication-title: Am. J. Ophthalmol.
– volume: 36
  start-page: 841
  year: 1995
  end-page: 850
  ident: bib20
  article-title: A closed eye contact lens model of corneal inflammation. Part 2: inhibition of cytochrome P450 arachidonic acid metabolism alleviates inflammatory sequelae
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 26
  start-page: 1
  year: 2007
  end-page: 37
  ident: bib127
  article-title: Ocular neovascularization: implication of endogenous angiogenic inhibitors and potential therapy
  publication-title: Prog. Retin. Eye Res.
– volume: 55
  start-page: 1232
  year: 2014
  ident: bib91
  article-title: RTP801 gene expression is differentially upregulated in retinopathy and is silenced by PF-04523655, a 19-Mer siRNA directed against RTP801
  publication-title: Investig. Opthalmology Vis. Sci.
– volume: 167
  start-page: 76
  year: 2013
  end-page: 84
  ident: bib121
  article-title: Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo
  publication-title: J. Contr. Release
– volume: 18
  start-page: 129
  year: 2001
  end-page: 143
  ident: bib8
  article-title: Cationic lipid-mediated transfection in vitro and in vivo
  publication-title: Mol. Membr. Biol.
– volume: 12561
  year: 2020
  ident: bib48
  article-title: Progress on ocular siRNA gene-silencing therapy and drug delivery systems
  publication-title: Fundam. Clin. Pharmacol. fcp.
– volume: 7
  start-page: 77
  year: 2017
  ident: bib106
  article-title: siRNA delivery strategies: a comprehensive review of recent developments
  publication-title: Nanomaterials
– volume: 32
  start-page: 318
  year: 2018
  end-page: 323
  ident: bib3
  article-title: Role of oxidative stress, inflammation, hypoxia and angiogenesis in the development of diabetic retinopathy
  publication-title: Saudi J. Ophthalmol.
– volume: 13
  start-page: 1313
  year: 2006
  end-page: 1319
  ident: bib58
  article-title: Gene therapy progress and prospects: non-viral gene therapy by systemic delivery
  publication-title: Gene Ther.
– volume: 12
  start-page: 39
  year: 2020
  ident: bib76
  article-title: Amphiphilic polypeptides for VEGF siRNA delivery into retinal epithelial cells
  publication-title: Pharmaceutics
– volume: 55
  start-page: 427
  year: 2007
  end-page: 430
  ident: bib101
  article-title: Pegaptanib sodium for ocular vascular disease
  publication-title: Indian J. Ophthalmol.
– volume: 218
  start-page: 94
  year: 2015
  end-page: 113
  ident: bib95
  article-title: Technologies for controlled, local delivery of siRNA
  publication-title: J. Contr. Release
– volume: 68
  start-page: 186
  year: 2001
  end-page: 192
  ident: bib43
  article-title: Common origins of blood and blood vessels in adults?
  publication-title: Differentiation
– volume: 28
  start-page: 222
  year: 2012
  end-page: 230
  ident: bib56
  article-title: Retina expression and cross-species validation of gene silencing by PF-655, a small interfering RNA against RTP801 for the treatment of ocular disease
  publication-title: J. Ocul. Pharmacol. Therapeut.
– volume: 12
  start-page: 269
  year: 2020
  ident: bib114
  article-title: Drug delivery to the posterior segment of the eye: biopharmaceutic and pharmacokinetic considerations
  publication-title: Pharmaceutics
– volume: 24
  start-page: 981
  year: 2007
  end-page: 990
  ident: bib92
  article-title: Novel liposomal formulation for targeted gene delivery
  publication-title: Pharm. Res. (N. Y.)
– volume: 62
  start-page: 12
  year: 2010
  end-page: 27
  ident: bib62
  article-title: Chitosan-based formulations for delivery of DNA and siRNA
  publication-title: Adv. Drug Deliv. Rev.
– volume: 411
  start-page: 494
  year: 2001
  end-page: 498
  ident: bib28
  article-title: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells
  publication-title: Nature
– volume: 13
  start-page: 225
  year: 2006
  end-page: 234
  ident: bib99
  article-title: Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1
  publication-title: Gene Ther.
– volume: 81
  start-page: 828
  year: 2015
  end-page: 837
  ident: bib107
  article-title: Chitosan polyplex nanoparticle vector for miR-145 expression in MCF-7: optimization by design of experiment
  publication-title: Int. J. Biol. Macromol.
– volume: 18
  start-page: 1421
  year: 2007
  end-page: 1429
  ident: bib66
  article-title: Prox1 induces lymphatic endothelial differentiation via integrin alpha9 and other signaling cascades
  publication-title: Mol. Biol. Cell
– volume: 46
  start-page: 3553
  year: 2005
  ident: bib79
  article-title: Vitreous: a barrier to nonviral ocular gene therapy
  publication-title: Investig. Opthalmology Vis. Sci.
– volume: 60
  start-page: 149
  year: 1999
  end-page: 160
  ident: bib36
  article-title: Poly(ethylenimine) and its role in gene delivery
  publication-title: J. Contr. Release
– volume: 44
  start-page: 2155
  year: 2003
  end-page: 2162
  ident: bib46
  article-title: VEGF164 is proinflammatory in the diabetic retina
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 96
  start-page: 1157
  year: 2012
  end-page: 1158
  ident: bib105
  article-title: Aflibercept (VEGF Trap-eye): the newest anti-VEGF drug
  publication-title: Br. J. Ophthalmol.
– volume: 88
  start-page: 495
  year: 2009
  end-page: 515
  ident: bib85
  article-title: Mediators of ocular angiogenesis
  publication-title: J. Genet.
– volume: 9
  start-page: 1488497
  year: 2018
  ident: bib124
  article-title: Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon
  publication-title: Nano Rev. Exp.
– volume: 49
  start-page: 2016
  year: 2008
  end-page: 2024
  ident: bib22
  article-title: Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy
  publication-title: Investig. Opthalmology Vis. Sci.
– volume: 13
  start-page: 590
  year: 2016
  end-page: 599
  ident: bib120
  article-title: Efficient siRNA delivery using PEG-conjugated PAMAM dendrimers targeting vascular endothelial growth factor in a CoCl2-induced neovascularization model in retinal endothelial cells
  publication-title: Curr. Drug Deliv.
– year: 2016
  ident: bib61
  article-title: siRNA delivery methods
  publication-title: Methods in Molecular Biology
– volume: 50
  start-page: 11665
  year: 2014
  end-page: 11667
  ident: bib40
  article-title: Enzymatic size control of RNA particles using complementary rolling circle transcription (cRCT) method for efficient siRNA production
  publication-title: Chem. Commun.
– volume: 27
  start-page: 439
  year: 2007
  end-page: 444
  ident: bib30
  article-title: Intravitreal bevacizumab (Avastin) treatment of neovascular age-related macular degeneration
  publication-title: Retina
– volume: 181
  start-page: 376
  year: 2012
  end-page: 379
  ident: bib52
  article-title: A brief history of anti-VEGF for the treatment of ocular angiogenesis
  publication-title: Am. J. Pathol.
– volume: 103
  start-page: 253
  year: 2016
  end-page: 269
  ident: bib5
  article-title: Targeting VEGF in eye neovascularization: what's new?
  publication-title: Pharmacol. Res.
– volume: 120
  start-page: 106
  year: 2013
  end-page: 114
  ident: bib65
  article-title: Vascular endothelial growth factor a in intraocular vascular disease
  publication-title: Ophthalmology
– volume: 19
  start-page: 813
  year: 2014
  end-page: 823
  ident: bib100
  article-title: Design and characterization of chitosan-alginate microspheres for ocular delivery of azelastine
  publication-title: Pharmaceut. Dev. Technol.
– volume: 35
  start-page: 1957
  year: 2015
  end-page: 1963
  ident: bib111
  article-title: Anti-vascular endothelial growth factor therapy for neovascular age-related macular degeneration: outcomes in eyes with poor initial vision
  publication-title: Retina
– volume: 9
  start-page: 210
  year: 2003
  end-page: 216
  ident: bib88
  article-title: Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model
  publication-title: Mol. Vis.
– year: 2019
  ident: bib118
  article-title: Blindness and vision impairment prevention
– volume: 331
  start-page: 1480
  year: 1994
  end-page: 1487
  ident: bib2
  article-title: Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders
  publication-title: N. Engl. J. Med.
– volume: 6
  start-page: 379
  year: 2015
  end-page: 394
  ident: bib115
  article-title: Lipid nanoparticles for ocular gene delivery
  publication-title: J. Funct. Biomater.
– volume: 14
  start-page: 36
  year: 2017
  end-page: 46
  ident: bib97
  article-title: Overcoming the challenges of siRNA delivery: nanoparticle strategies
  publication-title: Curr. Drug Deliv.
– volume: 2
  start-page: e106
  year: 2014
  end-page: 116
  ident: bib119
  article-title: Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis
  publication-title: Lancet. Glob. Heal.
– volume: 391
  start-page: 806
  year: 1998
  end-page: 811
  ident: bib33
  article-title: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans
  publication-title: Nature
– volume: 26
  start-page: 199
  year: 2002
  end-page: 213
  ident: bib29
  article-title: Analysis of gene function in somatic mammalian cells using small interfering RNAs
  publication-title: Methods
– volume: 2
  start-page: 1767
  year: 2015
  end-page: 1784
  ident: bib102
  article-title: Cyclic AMP response element binding protein mediates pathological retinal neovascularization via modulating DLL4-NOTCH1 signaling
  publication-title: EBioMedicine
– volume: 9
  start-page: 272
  year: 2010
  end-page: 278
  ident: bib67
  article-title: Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing
  publication-title: Nat. Mater.
– volume: 31
  start-page: 171
  year: 2006
  end-page: 180
  ident: bib69
  article-title: Inhibition of ocular angiogenesis by diced small interfering RNAs (siRNAs) specific to vascular endothelial growth factor (VEGF)
  publication-title: Curr. Eye Res.
– volume: 35
  start-page: 4322
  year: 2007
  end-page: 4330
  ident: bib116
  article-title: A systematic analysis of the effect of target RNA structure on RNA interference
  publication-title: Nucleic Acids Res.
– volume: 35
  start-page: 47
  year: 2007
  end-page: 49
  ident: bib80
  article-title: Challenges in non-viral ocular gene transfer
  publication-title: Biochem. Soc. Trans.
– volume: 24
  start-page: 1510
  year: 2019
  end-page: 1523
  ident: bib45
  article-title: Intravitreal nanoparticles for retinal delivery
  publication-title: Drug Discov. Today
– volume: 202
  start-page: 83
  year: 2015
  end-page: 92
  ident: bib63
  article-title: Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy
  publication-title: J. Contr. Release
– volume: 218
  start-page: 66
  year: 2009
  end-page: 74
  ident: bib47
  article-title: Inhibition of retinal neovascularization by gene transfer of small interfering RNA targeting HIF-1alpha and VEGF
  publication-title: J. Cell. Physiol.
– volume: 14
  start-page: 306
  year: 2009
  end-page: 315
  ident: bib71
  article-title: Gene delivery to the retina: focus on non-viral approaches
  publication-title: Drug Discov. Today
– volume: 84
  start-page: 282
  year: 2006
  end-page: 288
  ident: bib54
  article-title: Ocular angiogenesis: the role of growth factors
  publication-title: Acta Ophthalmol. Scand.
– volume: 91
  start-page: 311
  year: 2013
  end-page: 321
  ident: bib14
  article-title: Ocular neovascularization
  publication-title: J. Mol. Med.
– volume: 22
  start-page: 6537
  year: 2003
  end-page: 6548
  ident: bib15
  article-title: Ocular neovascularization: a valuable model system
  publication-title: Oncogene
– volume: 8
  start-page: 267
  year: 2013
  end-page: 286
  ident: bib4
  article-title: Targeting neovascularization in ischemic retinopathy: recent advances
  publication-title: Expet Rev. Ophthalmol.
– volume: 95
  start-page: 294
  year: 2015
  end-page: 306
  ident: bib42
  article-title: Nanoparticles for the treatment of ocular neovascularizations
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 35
  start-page: 375
  year: 2010
  end-page: 384
  ident: bib128
  article-title: A siRNA targeting vascular endothelial growth factor-a inhibiting experimental corneal neovascularization
  publication-title: Curr. Eye Res.
– volume: 221
  start-page: 411
  year: 2007
  end-page: 417
  ident: bib126
  article-title: Inhibition of VEGF expression by targeting HIF-1 alpha with small interference RNA in human RPE cells
  publication-title: Ophthalmologica
– volume: 525
  start-page: 313
  year: 2017
  end-page: 333
  ident: bib16
  article-title: Polymeric nanoparticles for siRNA delivery: production and applications
  publication-title: Int. J. Pharm.
– volume: 14
  start-page: 497
  year: 2019
  end-page: 510
  ident: bib86
  article-title: Design, mechanism, delivery and therapeutics of canonical and Dicer-substrate siRNA
  publication-title: Asian J. Pharm. Sci.
– volume: 176
  start-page: 1248
  year: 2019
  end-page: 1264
  ident: bib7
  article-title: VEGF in signaling and disease: beyond discovery and development
  publication-title: Cell
– volume: 21
  start-page: 4593
  year: 2002
  end-page: 4599
  ident: bib81
  article-title: Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor
  publication-title: EMBO J.
– volume: 5
  start-page: 8
  year: 2009
  end-page: 20
  ident: bib89
  article-title: Drug delivery of siRNA therapeutics: potentials and limits of nanosystems
  publication-title: Nanomed. Nanotechnol. Biol. Med.
– volume: 63
  start-page: 193
  year: 2018
  end-page: 213
  ident: bib60
  article-title: Gene-based antiangiogenic applications for corneal neovascularization
  publication-title: Surv. Ophthalmol.
– volume: 23
  start-page: 73
  year: 2016
  end-page: 82
  ident: bib31
  article-title: Precise and efficient siRNA design: a key point in competent gene silencing
  publication-title: Canc. Gene Ther.
– volume: 2
  start-page: 75
  year: 2010
  end-page: 83
  ident: bib35
  article-title: Bevasiranib for the treatment of wet, age-related macular degeneration
  publication-title: Ophthalmol. Eye Dis.
– volume: 8
  start-page: 1187
  year: 2014
  end-page: 1198
  ident: bib112
  article-title: Ranibizumab for the treatment of degenerative ocular conditions
  publication-title: Clin. Ophthalmol.
– volume: 92
  start-page: 735
  year: 1998
  end-page: 745
  ident: bib103
  article-title: Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor
  publication-title: Cell
– volume: 8
  start-page: 129
  year: 2009
  end-page: 138
  ident: bib117
  article-title: Knocking down barriers: advances in siRNA delivery
  publication-title: Nat. Rev. Drug Discov.
– volume: 8
  start-page: 2613
  year: 2013
  end-page: 2627
  ident: bib19
  article-title: Efficient downregulation of VEGF in retinal pigment epithelial cells by integrin ligand-labeled liposome-mediated siRNA delivery
  publication-title: Int. J. Nanomed.
– volume: 52
  start-page: 4789
  year: 2011
  end-page: 4794
  ident: bib59
  article-title: A lipid nanoparticle system improves siRNA efficacy in RPE cells and a laser-induced murine CNV model
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 11
  start-page: 317
  year: 2019
  ident: bib82
  article-title: pH-sensitive chitosan–heparin nanoparticles for effective delivery of genetic drugs into epithelial cells
  publication-title: Pharmaceutics
– volume: 8
  start-page: 237
  year: 2012
  end-page: 246
  ident: bib104
  article-title: Anti-vascular endothelial growth factor drug treatment of diabetic macular edema: the evolution continues
  publication-title: Curr. Diabetes Rev.
– volume: 16
  start-page: 1583
  year: 2016
  end-page: 1597
  ident: bib41
  article-title: Reducible polyethylenimine nanoparticles for efficient siRNA delivery in corneal neovascularization therapy
  publication-title: Macromol. Biosci.
– volume: 110
  start-page: 1
  year: 2013
  end-page: 9
  ident: bib77
  article-title: Role of heparan sulfate in ocular diseases
  publication-title: Exp. Eye Res.
– year: 2016
  ident: bib93
  article-title: siRNA delivery methods
  publication-title: Methods in Molecular Biology
– volume: 9
  start-page: 23353
  year: 2017
  end-page: 23369
  ident: bib25
  article-title: Synergistic suppression of tumor angiogenesis by the co-delivering of vascular endothelial growth factor targeted siRNA and candesartan mediated by functionalized carbon nanovectors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 15461
  year: 2017
  end-page: 15469
  ident: bib94
  article-title: Therapeutic effects of a novel siRNA-based anti-VEGF (siVEGF) nanoball for the treatment of choroidal neovascularization
  publication-title: Nanoscale
– volume: 170
  start-page: 730
  year: 2013
  end-page: 747
  ident: bib38
  article-title: Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy
  publication-title: Br. J. Pharmacol.
– volume: 35
  start-page: 4333
  year: 2014
  end-page: 4344
  ident: bib24
  article-title: Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer
  publication-title: Biomaterials
– volume: 163
  start-page: 245
  year: 2010
  end-page: 252
  ident: bib87
  article-title: Cationic lipid-mediated nucleic acid delivery: beyond being cationic
  publication-title: Chem. Phys. Lipids
– volume: 1
  start-page: e339
  year: 2013
  end-page: e349
  ident: bib10
  article-title: Causes of vision loss worldwide, 1990–2010: a systematic analysis
  publication-title: Lancet Glob. Heal.
– volume: 68
  start-page: 4683
  year: 2008
  end-page: 4692
  ident: bib50
  article-title: Vascular endothelial growth factor (VEGF)-A165b is a weak in vitro agonist for VEGF receptor-2 due to lack of coreceptor binding and deficient regulation of kinase activity
  publication-title: Canc. Res.
– volume: 165
  start-page: 2177
  year: 2004
  end-page: 2185
  ident: bib51
  article-title: Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes
  publication-title: Am. J. Pathol.
– volume: 14
  start-page: 997
  year: 2008
  end-page: 1005
  ident: bib23
  article-title: Ocular biodistribution of bevasiranib following a single intravitreal injection to rabbit eyes
  publication-title: Mol. Vis.
– volume: 66
  start-page: 313
  year: 2011
  end-page: 318
  ident: bib98
  article-title: siRNA delivery: challenges and role of carrier systems
  publication-title: Pharmazie
– volume: 20
  start-page: 576
  year: 2003
  end-page: 583
  ident: bib83
  article-title: Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers
  publication-title: Pharm. Res. (N. Y.)
– volume: 45
  start-page: 368
  year: 2004
  end-page: 374
  ident: bib113
  article-title: VEGF164(165) as the pathological isoform: differential leukocyte and endothelial responses through VEGFR1 and VEGFR2
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 111
  start-page: 713
  year: 2016
  end-page: 720
  ident: bib6
  article-title: Nanosystems based on siRNA silencing HuR expression counteract diabetic retinopathy in rat
  publication-title: Pharmacol. Res.
– volume: 100
  start-page: 865
  year: 2009
  end-page: 869
  ident: bib70
  article-title: Why are tumour blood vessels abnormal and why is it important to know?
  publication-title: Br. J. Canc.
– volume: 8
  start-page: 8
  year: 2015
  end-page: 12
  ident: bib84
  article-title: Clinical use of Bevacizumab in treating refractory glaucoma
  publication-title: J. Med. Life
– volume: 33
  start-page: 3485
  year: 2012
  end-page: 3493
  ident: bib53
  article-title: The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection
  publication-title: Biomaterials
– volume: 26
  start-page: 102181
  year: 2020
  ident: bib17
  article-title: Trimethyl chitosan-hyaluronic acid nano-polyplexes for intravitreal VEGFR-2 siRNA delivery: formulation and in vivo efficacy evaluation
  publication-title: Nanomed. Nanotechnol. Biol. Med.
– volume: 39
  year: 2019
  ident: bib34
  article-title: Inhibited corneal neovascularization in rabbits following corneal alkali burn by double-target interference for VEGF and HIF-1α
  publication-title: Biosci. Rep.
– volume: 56
  start-page: 5871
  year: 2015
  ident: bib90
  article-title: Inhibition of lymphangiogenesis and hemangiogenesis in corneal inflammation by subconjunctival Prox1 siRNA injection in rats
  publication-title: Investig. Opthalmology Vis. Sci.
– volume: 18
  start-page: 129
  year: 2001
  ident: 10.1016/j.exer.2020.108329_bib8
  article-title: Cationic lipid-mediated transfection in vitro and in vivo
  publication-title: Mol. Membr. Biol.
  doi: 10.1080/713816122
– volume: 13
  start-page: 590
  year: 2016
  ident: 10.1016/j.exer.2020.108329_bib120
  article-title: Efficient siRNA delivery using PEG-conjugated PAMAM dendrimers targeting vascular endothelial growth factor in a CoCl2-induced neovascularization model in retinal endothelial cells
  publication-title: Curr. Drug Deliv.
  doi: 10.2174/1567201812666150817123049
– volume: 13
  start-page: 1313
  year: 2006
  ident: 10.1016/j.exer.2020.108329_bib58
  article-title: Gene therapy progress and prospects: non-viral gene therapy by systemic delivery
  publication-title: Gene Ther.
  doi: 10.1038/sj.gt.3302838
– volume: 5
  start-page: 8
  year: 2009
  ident: 10.1016/j.exer.2020.108329_bib89
  article-title: Drug delivery of siRNA therapeutics: potentials and limits of nanosystems
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2008.06.001
– volume: 11
  start-page: 317
  year: 2019
  ident: 10.1016/j.exer.2020.108329_bib82
  article-title: pH-sensitive chitosan–heparin nanoparticles for effective delivery of genetic drugs into epithelial cells
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics11070317
– volume: 84
  start-page: 282
  year: 2006
  ident: 10.1016/j.exer.2020.108329_bib54
  article-title: Ocular angiogenesis: the role of growth factors
  publication-title: Acta Ophthalmol. Scand.
  doi: 10.1111/j.1600-0420.2006.00659.x
– volume: 8
  start-page: 129
  year: 2009
  ident: 10.1016/j.exer.2020.108329_bib117
  article-title: Knocking down barriers: advances in siRNA delivery
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2742
– volume: 8
  start-page: 267
  year: 2013
  ident: 10.1016/j.exer.2020.108329_bib4
  article-title: Targeting neovascularization in ischemic retinopathy: recent advances
  publication-title: Expet Rev. Ophthalmol.
  doi: 10.1586/eop.13.17
– volume: 2
  start-page: 75
  year: 2010
  ident: 10.1016/j.exer.2020.108329_bib35
  article-title: Bevasiranib for the treatment of wet, age-related macular degeneration
  publication-title: Ophthalmol. Eye Dis.
  doi: 10.4137/OED.S4878
– volume: 14
  start-page: 497
  year: 2019
  ident: 10.1016/j.exer.2020.108329_bib86
  article-title: Design, mechanism, delivery and therapeutics of canonical and Dicer-substrate siRNA
  publication-title: Asian J. Pharm. Sci.
– volume: 12
  start-page: 39
  year: 2020
  ident: 10.1016/j.exer.2020.108329_bib76
  article-title: Amphiphilic polypeptides for VEGF siRNA delivery into retinal epithelial cells
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics12010039
– volume: 118
  start-page: 445
  year: 1994
  ident: 10.1016/j.exer.2020.108329_bib1
  article-title: Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/S0002-9394(14)75794-0
– volume: 23
  start-page: 1
  year: 2001
  ident: 10.1016/j.exer.2020.108329_bib64
  article-title: Corneal epithelial VEGF and cytochrome P450 4B1 expression in a rabbit model of closed eye contact lens wear
  publication-title: Curr. Eye Res.
  doi: 10.1076/ceyr.23.1.1.5422
– volume: 110
  start-page: 1
  year: 2013
  ident: 10.1016/j.exer.2020.108329_bib77
  article-title: Role of heparan sulfate in ocular diseases
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2013.01.015
– year: 2016
  ident: 10.1016/j.exer.2020.108329_bib93
  article-title: siRNA delivery methods
  doi: 10.1007/978-1-4939-6361-4
– volume: 66
  start-page: 313
  year: 2011
  ident: 10.1016/j.exer.2020.108329_bib98
  article-title: siRNA delivery: challenges and role of carrier systems
  publication-title: Pharmazie
– volume: 96
  start-page: 1157
  year: 2012
  ident: 10.1016/j.exer.2020.108329_bib105
  article-title: Aflibercept (VEGF Trap-eye): the newest anti-VEGF drug
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2011-300654
– volume: 8
  start-page: 2613
  year: 2013
  ident: 10.1016/j.exer.2020.108329_bib19
  article-title: Efficient downregulation of VEGF in retinal pigment epithelial cells by integrin ligand-labeled liposome-mediated siRNA delivery
  publication-title: Int. J. Nanomed.
– volume: 26
  start-page: 102181
  year: 2020
  ident: 10.1016/j.exer.2020.108329_bib17
  article-title: Trimethyl chitosan-hyaluronic acid nano-polyplexes for intravitreal VEGFR-2 siRNA delivery: formulation and in vivo efficacy evaluation
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2020.102181
– volume: 14
  start-page: 997
  year: 2008
  ident: 10.1016/j.exer.2020.108329_bib23
  article-title: Ocular biodistribution of bevasiranib following a single intravitreal injection to rabbit eyes
  publication-title: Mol. Vis.
– volume: 52
  start-page: 4789
  year: 2011
  ident: 10.1016/j.exer.2020.108329_bib59
  article-title: A lipid nanoparticle system improves siRNA efficacy in RPE cells and a laser-induced murine CNV model
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.10-5891
– start-page: 1020
  year: 2008
  ident: 10.1016/j.exer.2020.108329_bib11
  article-title: Vascular assembly in engineered and natural tissues
– volume: 15
  start-page: 385
  year: 2016
  ident: 10.1016/j.exer.2020.108329_bib32
  article-title: Ten years of anti-vascular endothelial growth factor therapy
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2015.17
– volume: 20
  start-page: 576
  year: 2003
  ident: 10.1016/j.exer.2020.108329_bib83
  article-title: Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers
  publication-title: Pharm. Res. (N. Y.)
  doi: 10.1023/A:1023238530504
– volume: 103
  start-page: 1820
  year: 1996
  ident: 10.1016/j.exer.2020.108329_bib110
  article-title: Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(96)30420-X
– volume: 21
  start-page: 4593
  year: 2002
  ident: 10.1016/j.exer.2020.108329_bib81
  article-title: Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf470
– volume: 27
  start-page: 439
  year: 2007
  ident: 10.1016/j.exer.2020.108329_bib30
  article-title: Intravitreal bevacizumab (Avastin) treatment of neovascular age-related macular degeneration
  publication-title: Retina
  doi: 10.1097/IAE.0b013e31804b3e15
– volume: 221
  start-page: 411
  year: 2007
  ident: 10.1016/j.exer.2020.108329_bib126
  article-title: Inhibition of VEGF expression by targeting HIF-1 alpha with small interference RNA in human RPE cells
  publication-title: Ophthalmologica
  doi: 10.1159/000107502
– volume: 176
  start-page: 1248
  year: 2019
  ident: 10.1016/j.exer.2020.108329_bib7
  article-title: VEGF in signaling and disease: beyond discovery and development
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.021
– volume: 39
  year: 2019
  ident: 10.1016/j.exer.2020.108329_bib34
  article-title: Inhibited corneal neovascularization in rabbits following corneal alkali burn by double-target interference for VEGF and HIF-1α
  publication-title: Biosci. Rep.
  doi: 10.1042/BSR20180552
– volume: 163
  start-page: 245
  year: 2010
  ident: 10.1016/j.exer.2020.108329_bib87
  article-title: Cationic lipid-mediated nucleic acid delivery: beyond being cationic
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2010.01.001
– volume: 409
  start-page: 363
  year: 2001
  ident: 10.1016/j.exer.2020.108329_bib9
  article-title: Role for a bidentate ribonuclease in the initiation step of RNA interference
  publication-title: Nature
  doi: 10.1038/35053110
– volume: 35
  start-page: 47
  year: 2007
  ident: 10.1016/j.exer.2020.108329_bib80
  article-title: Challenges in non-viral ocular gene transfer
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST0350047
– volume: 1
  start-page: e339
  year: 2013
  ident: 10.1016/j.exer.2020.108329_bib10
  article-title: Causes of vision loss worldwide, 1990–2010: a systematic analysis
  publication-title: Lancet Glob. Heal.
  doi: 10.1016/S2214-109X(13)70113-X
– volume: 22
  start-page: 6537
  year: 2003
  ident: 10.1016/j.exer.2020.108329_bib15
  article-title: Ocular neovascularization: a valuable model system
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1206773
– volume: 2
  start-page: 1767
  year: 2015
  ident: 10.1016/j.exer.2020.108329_bib102
  article-title: Cyclic AMP response element binding protein mediates pathological retinal neovascularization via modulating DLL4-NOTCH1 signaling
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2015.09.042
– volume: 95
  start-page: 294
  year: 2015
  ident: 10.1016/j.exer.2020.108329_bib42
  article-title: Nanoparticles for the treatment of ocular neovascularizations
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2015.02.027
– volume: 181
  start-page: 376
  year: 2012
  ident: 10.1016/j.exer.2020.108329_bib52
  article-title: A brief history of anti-VEGF for the treatment of ocular angiogenesis
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2012.06.006
– volume: 12
  start-page: 269
  year: 2020
  ident: 10.1016/j.exer.2020.108329_bib114
  article-title: Drug delivery to the posterior segment of the eye: biopharmaceutic and pharmacokinetic considerations
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics12030269
– volume: 63
  start-page: 193
  year: 2018
  ident: 10.1016/j.exer.2020.108329_bib60
  article-title: Gene-based antiangiogenic applications for corneal neovascularization
  publication-title: Surv. Ophthalmol.
  doi: 10.1016/j.survophthal.2017.10.006
– volume: 26
  start-page: 199
  year: 2002
  ident: 10.1016/j.exer.2020.108329_bib29
  article-title: Analysis of gene function in somatic mammalian cells using small interfering RNAs
  publication-title: Methods
  doi: 10.1016/S1046-2023(02)00023-3
– volume: 6
  start-page: 379
  year: 2015
  ident: 10.1016/j.exer.2020.108329_bib115
  article-title: Lipid nanoparticles for ocular gene delivery
  publication-title: J. Funct. Biomater.
  doi: 10.3390/jfb6020379
– volume: 24
  start-page: 132
  year: 2004
  ident: 10.1016/j.exer.2020.108329_bib109
  article-title: Intravitreal injection of vascular endothelial growth factor small interfering RNA inhibits growth and leakage in a nonhuman primate, laser-induced model of choroidal neovascularization
  publication-title: Retina
  doi: 10.1097/00006982-200402000-00018
– volume: 103
  start-page: 253
  year: 2016
  ident: 10.1016/j.exer.2020.108329_bib5
  article-title: Targeting VEGF in eye neovascularization: what's new?
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2015.11.027
– volume: 411
  start-page: 494
  year: 2001
  ident: 10.1016/j.exer.2020.108329_bib28
  article-title: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells
  publication-title: Nature
  doi: 10.1038/35078107
– volume: 331
  start-page: 1480
  year: 1994
  ident: 10.1016/j.exer.2020.108329_bib2
  article-title: Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199412013312203
– volume: 2015
  start-page: 892043
  year: 2015
  ident: 10.1016/j.exer.2020.108329_bib26
  article-title: Ocular angiogenesis
  publication-title: J. Ophthalmol.
  doi: 10.1155/2015/892043
– volume: 218
  start-page: 66
  year: 2009
  ident: 10.1016/j.exer.2020.108329_bib47
  article-title: Inhibition of retinal neovascularization by gene transfer of small interfering RNA targeting HIF-1alpha and VEGF
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.21566
– volume: 46
  start-page: 3553
  year: 2005
  ident: 10.1016/j.exer.2020.108329_bib79
  article-title: Vitreous: a barrier to nonviral ocular gene therapy
  publication-title: Investig. Opthalmology Vis. Sci.
  doi: 10.1167/iovs.05-0165
– volume: 170
  start-page: 730
  year: 2013
  ident: 10.1016/j.exer.2020.108329_bib38
  article-title: Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.12330
– volume: 13
  start-page: 225
  year: 2006
  ident: 10.1016/j.exer.2020.108329_bib99
  article-title: Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1
  publication-title: Gene Ther.
  doi: 10.1038/sj.gt.3302641
– volume: 36
  start-page: 841
  year: 1995
  ident: 10.1016/j.exer.2020.108329_bib20
  article-title: A closed eye contact lens model of corneal inflammation. Part 2: inhibition of cytochrome P450 arachidonic acid metabolism alleviates inflammatory sequelae
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 6
  start-page: 7
  year: 2012
  ident: 10.1016/j.exer.2020.108329_bib108
  article-title: Strategies for ocular siRNA delivery: potential and limitations of non-viral nanocarriers
  publication-title: J. Biol. Eng.
  doi: 10.1186/1754-1611-6-7
– volume: 68
  start-page: 186
  year: 2001
  ident: 10.1016/j.exer.2020.108329_bib43
  article-title: Common origins of blood and blood vessels in adults?
  publication-title: Differentiation
  doi: 10.1046/j.1432-0436.2001.680406.x
– volume: 55
  start-page: 427
  year: 2007
  ident: 10.1016/j.exer.2020.108329_bib101
  article-title: Pegaptanib sodium for ocular vascular disease
  publication-title: Indian J. Ophthalmol.
  doi: 10.4103/0301-4738.36476
– volume: 62
  start-page: 12
  year: 2010
  ident: 10.1016/j.exer.2020.108329_bib62
  article-title: Chitosan-based formulations for delivery of DNA and siRNA
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2009.08.004
– volume: 6
  start-page: 1130
  year: 2011
  ident: 10.1016/j.exer.2020.108329_bib12
  article-title: Current progress of siRNA/shRNA therapeutics in clinical trials
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201100054
– volume: 11
  start-page: 599
  year: 2004
  ident: 10.1016/j.exer.2020.108329_bib39
  article-title: Kinetic analysis of the RNAi enzyme complex
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb780
– volume: 202
  start-page: 83
  year: 2015
  ident: 10.1016/j.exer.2020.108329_bib63
  article-title: Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2015.01.030
– volume: 8
  start-page: 1187
  year: 2014
  ident: 10.1016/j.exer.2020.108329_bib112
  article-title: Ranibizumab for the treatment of degenerative ocular conditions
  publication-title: Clin. Ophthalmol.
– volume: 31
  start-page: 171
  year: 2006
  ident: 10.1016/j.exer.2020.108329_bib69
  article-title: Inhibition of ocular angiogenesis by diced small interfering RNAs (siRNAs) specific to vascular endothelial growth factor (VEGF)
  publication-title: Curr. Eye Res.
  doi: 10.1080/02713680500514636
– volume: 92
  start-page: 735
  year: 1998
  ident: 10.1016/j.exer.2020.108329_bib103
  article-title: Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81402-6
– volume: 81
  start-page: 828
  year: 2015
  ident: 10.1016/j.exer.2020.108329_bib107
  article-title: Chitosan polyplex nanoparticle vector for miR-145 expression in MCF-7: optimization by design of experiment
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2015.09.014
– volume: 10
  start-page: 1263
  year: 2003
  ident: 10.1016/j.exer.2020.108329_bib75
  article-title: Cationic lipids for transfection
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867033457467
– volume: 35
  start-page: 4322
  year: 2007
  ident: 10.1016/j.exer.2020.108329_bib116
  article-title: A systematic analysis of the effect of target RNA structure on RNA interference
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm437
– volume: 35
  start-page: 556
  year: 2012
  ident: 10.1016/j.exer.2020.108329_bib123
  article-title: Global prevalence and major risk factors of diabetic retinopathy
  publication-title: Diabetes Care
  doi: 10.2337/dc11-1909
– volume: 3
  start-page: 45
  year: 2003
  ident: 10.1016/j.exer.2020.108329_bib27
  article-title: Drug delivery to the retina: challenges and opportunities
  publication-title: Expet Opin. Biol. Ther.
  doi: 10.1517/14712598.3.1.45
– volume: 150
  start-page: 33
  year: 2010
  ident: 10.1016/j.exer.2020.108329_bib49
  article-title: RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2010.02.006
– volume: 23
  start-page: 73
  year: 2016
  ident: 10.1016/j.exer.2020.108329_bib31
  article-title: Precise and efficient siRNA design: a key point in competent gene silencing
  publication-title: Canc. Gene Ther.
  doi: 10.1038/cgt.2016.4
– volume: 7
  start-page: 77
  year: 2017
  ident: 10.1016/j.exer.2020.108329_bib106
  article-title: siRNA delivery strategies: a comprehensive review of recent developments
  publication-title: Nanomaterials
  doi: 10.3390/nano7040077
– volume: 98
  start-page: 411
  year: 2009
  ident: 10.1016/j.exer.2020.108329_bib13
  article-title: Fighting cancer: from the bench to bedside using second generation cationic liposomal therapeutics
  publication-title: J. Pharmacol. Sci.
  doi: 10.1002/jps.21458
– volume: 153
  start-page: 665
  year: 1998
  ident: 10.1016/j.exer.2020.108329_bib72
  article-title: Ocular neovascularization: clarifying complex interactions
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)65607-6
– volume: 84
  start-page: 116
  year: 2007
  ident: 10.1016/j.exer.2020.108329_bib96
  article-title: Inhibition of VEGF expression and corneal neovascularization by siRNA targeting cytochrome P450 4B1
  publication-title: Prostag. Other Lipid Mediat.
  doi: 10.1016/j.prostaglandins.2007.05.001
– volume: 16
  start-page: 1583
  year: 2016
  ident: 10.1016/j.exer.2020.108329_bib41
  article-title: Reducible polyethylenimine nanoparticles for efficient siRNA delivery in corneal neovascularization therapy
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201600051
– volume: 391
  start-page: 806
  year: 1998
  ident: 10.1016/j.exer.2020.108329_bib33
  article-title: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans
  publication-title: Nature
  doi: 10.1038/35888
– volume: 68
  start-page: 4683
  year: 2008
  ident: 10.1016/j.exer.2020.108329_bib50
  article-title: Vascular endothelial growth factor (VEGF)-A165b is a weak in vitro agonist for VEGF receptor-2 due to lack of coreceptor binding and deficient regulation of kinase activity
  publication-title: Canc. Res.
  doi: 10.1158/0008-5472.CAN-07-6577
– volume: 35
  start-page: 1957
  year: 2015
  ident: 10.1016/j.exer.2020.108329_bib111
  article-title: Anti-vascular endothelial growth factor therapy for neovascular age-related macular degeneration: outcomes in eyes with poor initial vision
  publication-title: Retina
  doi: 10.1097/IAE.0000000000000583
– volume: 45
  start-page: 368
  year: 2004
  ident: 10.1016/j.exer.2020.108329_bib113
  article-title: VEGF164(165) as the pathological isoform: differential leukocyte and endothelial responses through VEGFR1 and VEGFR2
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.03-0106
– volume: 28
  start-page: 222
  year: 2012
  ident: 10.1016/j.exer.2020.108329_bib56
  article-title: Retina expression and cross-species validation of gene silencing by PF-655, a small interfering RNA against RTP801 for the treatment of ocular disease
  publication-title: J. Ocul. Pharmacol. Therapeut.
  doi: 10.1089/jop.2011.0116
– volume: 14
  start-page: 36
  year: 2017
  ident: 10.1016/j.exer.2020.108329_bib97
  article-title: Overcoming the challenges of siRNA delivery: nanoparticle strategies
  publication-title: Curr. Drug Deliv.
  doi: 10.2174/1567201813666160816105408
– volume: 6
  start-page: 2567
  year: 2011
  ident: 10.1016/j.exer.2020.108329_bib18
  article-title: Novel RGD-lipid conjugate-modified liposomes for enhancing siRNA delivery in human retinal pigment epithelial cells
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S24447
– volume: 13
  year: 2016
  ident: 10.1016/j.exer.2020.108329_bib57
  article-title: Anti-VEGF polysiRNA polyplex for the treatment of choroidal neovascularization
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.6b00148
– volume: 100
  start-page: 865
  year: 2009
  ident: 10.1016/j.exer.2020.108329_bib70
  article-title: Why are tumour blood vessels abnormal and why is it important to know?
  publication-title: Br. J. Canc.
  doi: 10.1038/sj.bjc.6604929
– volume: 111
  start-page: 713
  year: 2016
  ident: 10.1016/j.exer.2020.108329_bib6
  article-title: Nanosystems based on siRNA silencing HuR expression counteract diabetic retinopathy in rat
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2016.07.042
– volume: 18
  start-page: 1421
  year: 2007
  ident: 10.1016/j.exer.2020.108329_bib66
  article-title: Prox1 induces lymphatic endothelial differentiation via integrin alpha9 and other signaling cascades
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e06-09-0780
– volume: 24
  start-page: 1510
  issue: 8
  year: 2019
  ident: 10.1016/j.exer.2020.108329_bib45
  article-title: Intravitreal nanoparticles for retinal delivery
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2019.05.005
– volume: 44
  start-page: 2155
  year: 2003
  ident: 10.1016/j.exer.2020.108329_bib46
  article-title: VEGF164 is proinflammatory in the diabetic retina
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.02-0807
– volume: 26
  start-page: 1099
  year: 2012
  ident: 10.1016/j.exer.2020.108329_bib73
  article-title: Phase 1 dose-escalation study of a siRNA targeting the RTP801 gene in age-related macular degeneration patients
  publication-title: Eye
  doi: 10.1038/eye.2012.106
– volume: 8
  start-page: 296
  year: 2008
  ident: 10.1016/j.exer.2020.108329_bib68
  article-title: Progress in cationic lipid-mediated gene transfection: a series of bio- inspired lipids as an example
  publication-title: Curr. Gene Ther.
  doi: 10.2174/156652308786070989
– volume: 167
  start-page: 76
  year: 2013
  ident: 10.1016/j.exer.2020.108329_bib121
  article-title: Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2013.01.018
– volume: 24
  start-page: 981
  year: 2007
  ident: 10.1016/j.exer.2020.108329_bib92
  article-title: Novel liposomal formulation for targeted gene delivery
  publication-title: Pharm. Res. (N. Y.)
  doi: 10.1007/s11095-006-9224-x
– volume: 60
  start-page: 149
  year: 1999
  ident: 10.1016/j.exer.2020.108329_bib36
  article-title: Poly(ethylenimine) and its role in gene delivery
  publication-title: J. Contr. Release
  doi: 10.1016/S0168-3659(99)00090-5
– volume: 119
  start-page: 1867
  year: 2012
  ident: 10.1016/j.exer.2020.108329_bib74
  article-title: Evaluation of the siRNA PF-04523655 versus ranibizumab for the treatment of neovascular age-related macular degeneration (MONET Study)
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2012.03.043
– volume: 9
  start-page: 15461
  year: 2017
  ident: 10.1016/j.exer.2020.108329_bib94
  article-title: Therapeutic effects of a novel siRNA-based anti-VEGF (siVEGF) nanoball for the treatment of choroidal neovascularization
  publication-title: Nanoscale
  doi: 10.1039/C7NR03142D
– year: 2013
  ident: 10.1016/j.exer.2020.108329_bib37
  article-title: Anti VEGF agents for age related macular degeneration
– volume: 56
  start-page: 5871
  year: 2015
  ident: 10.1016/j.exer.2020.108329_bib90
  article-title: Inhibition of lymphangiogenesis and hemangiogenesis in corneal inflammation by subconjunctival Prox1 siRNA injection in rats
  publication-title: Investig. Opthalmology Vis. Sci.
  doi: 10.1167/iovs.14-14433
– volume: 525
  start-page: 313
  year: 2017
  ident: 10.1016/j.exer.2020.108329_bib16
  article-title: Polymeric nanoparticles for siRNA delivery: production and applications
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.04.008
– volume: 8
  start-page: 8
  year: 2015
  ident: 10.1016/j.exer.2020.108329_bib84
  article-title: Clinical use of Bevacizumab in treating refractory glaucoma
  publication-title: J. Med. Life
– volume: 19
  start-page: 125
  year: 2008
  ident: 10.1016/j.exer.2020.108329_bib21
  article-title: Delivery vehicles for small interfering RNA in vivo
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2008.928
– volume: 9
  start-page: 1488497
  year: 2018
  ident: 10.1016/j.exer.2020.108329_bib124
  article-title: Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon
  publication-title: Nano Rev. Exp.
  doi: 10.1080/20022727.2018.1488497
– volume: 32
  start-page: 318
  year: 2018
  ident: 10.1016/j.exer.2020.108329_bib3
  article-title: Role of oxidative stress, inflammation, hypoxia and angiogenesis in the development of diabetic retinopathy
  publication-title: Saudi J. Ophthalmol.
  doi: 10.1016/j.sjopt.2018.05.002
– volume: 11
  start-page: 59
  year: 2011
  ident: 10.1016/j.exer.2020.108329_bib78
  article-title: RNA interference in the clinic: challenges and future directions
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc2966
– volume: 35
  start-page: 4333
  year: 2014
  ident: 10.1016/j.exer.2020.108329_bib24
  article-title: Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.02.006
– volume: 9
  start-page: 272
  year: 2010
  ident: 10.1016/j.exer.2020.108329_bib67
  article-title: Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2626
– volume: 55
  start-page: 1232
  year: 2014
  ident: 10.1016/j.exer.2020.108329_bib91
  article-title: RTP801 gene expression is differentially upregulated in retinopathy and is silenced by PF-04523655, a 19-Mer siRNA directed against RTP801
  publication-title: Investig. Opthalmology Vis. Sci.
  doi: 10.1167/iovs.13-13449
– volume: 165
  start-page: 2177
  year: 2004
  ident: 10.1016/j.exer.2020.108329_bib51
  article-title: Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)63267-1
– volume: 91
  start-page: 311
  year: 2013
  ident: 10.1016/j.exer.2020.108329_bib14
  article-title: Ocular neovascularization
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-013-0993-5
– volume: 8
  start-page: 237
  year: 2012
  ident: 10.1016/j.exer.2020.108329_bib104
  article-title: Anti-vascular endothelial growth factor drug treatment of diabetic macular edema: the evolution continues
  publication-title: Curr. Diabetes Rev.
  doi: 10.2174/157339912800840488
– volume: 9
  start-page: 210
  year: 2003
  ident: 10.1016/j.exer.2020.108329_bib88
  article-title: Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model
  publication-title: Mol. Vis.
– volume: 19
  start-page: 813
  year: 2014
  ident: 10.1016/j.exer.2020.108329_bib100
  article-title: Design and characterization of chitosan-alginate microspheres for ocular delivery of azelastine
  publication-title: Pharmaceut. Dev. Technol.
  doi: 10.3109/10837450.2013.836217
– volume: 35
  start-page: 375
  year: 2010
  ident: 10.1016/j.exer.2020.108329_bib128
  article-title: A siRNA targeting vascular endothelial growth factor-a inhibiting experimental corneal neovascularization
  publication-title: Curr. Eye Res.
  doi: 10.3109/02713681003597230
– volume: 50
  start-page: 11665
  year: 2014
  ident: 10.1016/j.exer.2020.108329_bib40
  article-title: Enzymatic size control of RNA particles using complementary rolling circle transcription (cRCT) method for efficient siRNA production
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC04969A
– volume: 26
  start-page: 1
  year: 2007
  ident: 10.1016/j.exer.2020.108329_bib127
  article-title: Ocular neovascularization: implication of endogenous angiogenic inhibitors and potential therapy
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2006.09.002
– volume: 88
  start-page: 495
  year: 2009
  ident: 10.1016/j.exer.2020.108329_bib85
  article-title: Mediators of ocular angiogenesis
  publication-title: J. Genet.
  doi: 10.1007/s12041-009-0068-0
– ident: 10.1016/j.exer.2020.108329_bib118
– volume: 120
  start-page: 106
  year: 2013
  ident: 10.1016/j.exer.2020.108329_bib65
  article-title: Vascular endothelial growth factor a in intraocular vascular disease
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2012.07.038
– volume: 225
  start-page: 351
  year: 2002
  ident: 10.1016/j.exer.2020.108329_bib44
  article-title: Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate
  publication-title: Dev. Dynam.
  doi: 10.1002/dvdy.10163
– volume: 33
  start-page: 3485
  year: 2012
  ident: 10.1016/j.exer.2020.108329_bib53
  article-title: The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.01.030
– volume: 9
  start-page: 23353
  year: 2017
  ident: 10.1016/j.exer.2020.108329_bib25
  article-title: Synergistic suppression of tumor angiogenesis by the co-delivering of vascular endothelial growth factor targeted siRNA and candesartan mediated by functionalized carbon nanovectors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04971
– year: 2016
  ident: 10.1016/j.exer.2020.108329_bib61
  article-title: siRNA delivery methods
  doi: 10.1007/978-1-4939-4011-0
– volume: 14
  start-page: 306
  year: 2009
  ident: 10.1016/j.exer.2020.108329_bib71
  article-title: Gene delivery to the retina: focus on non-viral approaches
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2008.09.012
– volume: 49
  start-page: 2016
  year: 2008
  ident: 10.1016/j.exer.2020.108329_bib22
  article-title: Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy
  publication-title: Investig. Opthalmology Vis. Sci.
  doi: 10.1167/iovs.07-1077
– volume: 2
  start-page: e106
  year: 2014
  ident: 10.1016/j.exer.2020.108329_bib119
  article-title: Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis
  publication-title: Lancet. Glob. Heal.
  doi: 10.1016/S2214-109X(13)70145-1
– volume: 21
  start-page: 3140
  year: 2015
  ident: 10.1016/j.exer.2020.108329_bib122
  article-title: Lipid-based nanocarriers for RNA delivery
  publication-title: Curr. Pharmaceut. Des.
  doi: 10.2174/1381612821666150531164540
– volume: 12561
  year: 2020
  ident: 10.1016/j.exer.2020.108329_bib48
  article-title: Progress on ocular siRNA gene-silencing therapy and drug delivery systems
  publication-title: Fundam. Clin. Pharmacol. fcp.
– volume: 28
  start-page: 570
  year: 2010
  ident: 10.1016/j.exer.2020.108329_bib55
  article-title: RNAi and small interfering RNAs in human disease therapeutic applications
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2010.07.009
– volume: 218
  start-page: 94
  year: 2015
  ident: 10.1016/j.exer.2020.108329_bib95
  article-title: Technologies for controlled, local delivery of siRNA
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2015.09.066
SSID ssj0003474
Score 2.4221475
SecondaryResourceType review_article
Snippet Ocular neovascularization (NV) plays a central role in the pathogenesis of various ocular diseases including diabetic retinopathy, age-related macular...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108329
SubjectTerms Cationic polymer
Diabetic Retinopathy - genetics
Eye - blood supply
Genetic Therapy - methods
Humans
Liposomes
Neovascularization, Pathologic - therapy
Ocular cular siRNA delivery
Ocular neovascularization (NV)
Polyplexes, Lipoplexes, siRNA formulations, Diabetic retinopathy, Age-related macular degeneration, Patents on siRNA against ocular NV, Clinical trials
RNA Interference
RNA, Small Interfering - genetics
Small interfering RNA (siRNA)
Vascular endothelial growth factor (VEGF)
Vascular Endothelial Growth Factor A - genetics
Title Role of small interfering RNA (siRNA) in targeting ocular neovascularization: A review
URI https://dx.doi.org/10.1016/j.exer.2020.108329
https://www.ncbi.nlm.nih.gov/pubmed/33198953
https://www.proquest.com/docview/2461396689
Volume 202
WOSCitedRecordID wos000608184800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003474
  issn: 0014-4835
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DiFeEGx8jI_JSGgCoUz5aOKEtwh1AlQKgnbqm5XEttpqS0ubVet_z53tpIWxaTzwEkWW3Vq-X87nu5_vCHldKK-jXF84rmTM6XhZ4SQyd51ERGEmYP9MdLbP0x7r9-PRKPnWaqn6LszqjJVlfHmZzP-rqKENhI1XZ_9B3M2PQgO8g9DhCWKH560E_93yBZfnGHXGdBALJQ3Lrp-iQbmcwAt6A5DiqIngmvlsCKmlbMip9oamubu-2MQQpg17b1MbQK6x_MqWZ0zHmebGvz2e5Fk5qZuH80yM18adi4maymZj-AHzGBuKx2pSZdsOCd_bckgYHeoir9k1xWyP5V_arOL1XX9LdXpgDBrnxxWtbhwM02OsQgVHel8zI23n31No97_yk2Gvxwfd0eBo_tPB6mIYhbelVnbIrs8Af22ym37qjj43e3bQ0fm6m2na61WGCfjn315nwlx3RNGmyuABuW_PGDQ12HhIWrLcI_tpmVWz8zU9opr1q8Mpe-TuF0uu2CeniBw6U1Qjh24hhwJg6BuNm7fQThvUUIMaehU172lKDWYekeFJd_Dho2PLbjhFEEaVw8Dslp1E5GFeRDIuQhHGSuZhqGIlWJ5nPgMrMPakSISKCkyJCCYOE0mcsTyLRPCYtMtZKZ8SCic36CIVQysoj1QuWBH5HcEkKIXAUwfEq1eSFzYnPZZGOeM1-XDKcfU5rj43q39A3jVj5iYjy429w1pA3NqUxlbkAK4bx72qpclB4WIULYO1vFhyTMAYJFEUQ58nRszNPIIAKYhh8OwWo5-Te5uv5wVpV4sL-ZLcKVbVZLk4JDtsFB9amP4C6oiqOQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+small+interfering+RNA+%28siRNA%29+in+targeting+ocular+neovascularization%3A+A+review&rft.jtitle=Experimental+eye+research&rft.au=Supe%2C+Shibani&rft.au=Upadhya%2C+Archana&rft.au=Singh%2C+Kavita&rft.date=2021-01-01&rft.issn=1096-0007&rft.eissn=1096-0007&rft.volume=202&rft.spage=108329&rft_id=info:doi/10.1016%2Fj.exer.2020.108329&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4835&client=summon