Solution algorithms for dock scheduling and truck sequencing in cross-docks: A neural branch-and-price and a metaheuristic
In this study, we present a novel mathematical model for the integrated challenge of dock scheduling and truck sequencing in cross-docking facilities. Many existing models for variations of this problem in the literature rely on big-M constraints, known for their poor performance when applied to gen...
Gespeichert in:
| Veröffentlicht in: | Computers & operations research Jg. 167; S. 106604 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.07.2024
Elsevier |
| Schlagworte: | |
| ISSN: | 0305-0548, 1873-765X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this study, we present a novel mathematical model for the integrated challenge of dock scheduling and truck sequencing in cross-docking facilities. Many existing models for variations of this problem in the literature rely on big-M constraints, known for their poor performance when applied to general-purpose mixed-integer programming solvers. This introduces significant limitations, especially when tackling smaller instances. Consequently, most solution methods in the literature gravitate towards metaheuristic approaches. Our proposed model offers a compact formulation without any big-M constraints, utilizing 4-index variables. It is strategically designed to lend itself well to a dual decomposition approach (Dantzig–Wolfe) and can be effectively solved using a branch-and-price methodology. We address the pricing problem through a branch-and-cut scheme and illustrate its efficiency in handling large instances. Recognizing the pricing problem as the primary bottleneck, we employ a deep neural network trained on a comprehensive set of instances with the same distribution to predict promising duals. Extensive computational experiments demonstrate a notable reduction of over 50% in overall computational times. Additionally, we introduce a heuristic sharing similarities with certain Variable Neighborhood Search (VNS) approaches. Our proposed heuristic has proven highly efficient in extensive computational experiments.
•A new IP model for the cited problem in cross docking is presented with O(n4) variables.•An efficient branch-and-price as well as a VNS method are proposed to solve the problem.•A deep neural network is trained to predict promising duals, in the process of Branch-and-Price.•Computational experiments shown over 50% reduction in the overall computational times.•This study is showcasing the synergy between operations research and machine learning. |
|---|---|
| AbstractList | In this study, we present a novel mathematical model for the integrated challenge of dock scheduling and truck sequencing in cross-docking facilities. Many existing models for variations of this problem in the literature rely on big-M constraints, known for their poor performance when applied to general-purpose mixed-integer programming solvers. This introduces significant limitations, especially when tackling smaller instances. Consequently, most solution methods in the literature gravitate towards metaheuristic approaches. Our proposed model offers a compact formulation without any big-M constraints, utilizing 4-index variables. It is strategically designed to lend itself well to a dual decomposition approach (Dantzig–Wolfe) and can be effectively solved using a branch-and-price methodology. We address the pricing problem through a branch-and-cut scheme and illustrate its efficiency in handling large instances. Recognizing the pricing problem as the primary bottleneck, we employ a deep neural network trained on a comprehensive set of instances with the same distribution to predict promising duals. Extensive computational experiments demonstrate a notable reduction of over 50% in overall computational times. Additionally, we introduce a heuristic sharing similarities with certain Variable Neighborhood Search (VNS) approaches. Our proposed heuristic has proven highly efficient in extensive computational experiments.
•A new IP model for the cited problem in cross docking is presented with O(n4) variables.•An efficient branch-and-price as well as a VNS method are proposed to solve the problem.•A deep neural network is trained to predict promising duals, in the process of Branch-and-Price.•Computational experiments shown over 50% reduction in the overall computational times.•This study is showcasing the synergy between operations research and machine learning. |
| ArticleNumber | 106604 |
| Author | Monemi, Rahimeh Neamatian Maculan, Nelson Gelareh, Shahin |
| Author_xml | – sequence: 1 givenname: Rahimeh Neamatian orcidid: 0000-0001-5192-5247 surname: Monemi fullname: Monemi, Rahimeh Neamatian email: r.n.monemi@gmail.com organization: IT and Business Analytics Ltd, UK – sequence: 2 givenname: Shahin surname: Gelareh fullname: Gelareh, Shahin organization: Département R&T, IUT de Béthune, Université d’Artois, F62000 Béthune, France – sequence: 3 givenname: Nelson surname: Maculan fullname: Maculan, Nelson organization: Federal University of Rio de Janeiro, COPPE-PESC, P.O. Box 68511, Rio de Janeiro, RJ 21941-972, Brazil |
| BackLink | https://hal.science/hal-04538583$$DView record in HAL |
| BookMark | eNp9kD1v2zAQhonCBWqn_QHduGaQe7REfaSTYeSjgIEOaYBsxPlERXRlsiEpA82vLxUXGTKYC8HD-xD3Pgs2s85qxr4KWAoQ5bf9kpxfrmBVpHdZQvGBzUVd5VlVyscZm0MOMgNZ1J_YIoQ9pFOtxJy93LthjMZZjsOT8yb2h8A753nr6DcP1Ot2HIx94mhbHv04DfXzqC1NQ2M5eRdCNqXDFV9zq0ePA995tNRnCcr-eEP6FUd-0BH7lDAhGvrMPnY4BP3l_33BHm6uf23usu3P2x-b9TajXJYxK7EssBWigTwHKki0RC1Q6oKF6GrUTSUIaFV3IOUONWCJ2OyIKmhAyCa_YJenf3scVNrmgP6vcmjU3XqrphkUMq9lnR9FyopT9rWW190bIEBNotVeJdFqEq1OohNTvWPIRJycRo9mOEt-P5E61T8a7VUgk9Tq1nhNUbXOnKH_ARvcm5A |
| CitedBy_id | crossref_primary_10_1016_j_tre_2025_104083 crossref_primary_10_1177_14727978251318811 crossref_primary_10_1007_s11425_024_2301_9 crossref_primary_10_46465_endustrimuhendisligi_1529587 |
| Cites_doi | 10.1016/j.ejor.2023.07.014 10.1016/j.eswa.2013.07.007 10.1016/j.ejor.2018.05.046 10.1016/S0305-0548(97)00031-2 10.1111/jbl.12135 10.1287/trsc.1090.0271 10.1016/j.ijpe.2012.03.037 10.1016/j.apm.2019.01.047 10.1007/s10479-011-0971-7 10.1109/TNN.2008.2005605 10.1007/s00170-009-2429-5 10.1007/s10479-022-04939-2 10.1016/j.ejor.2018.11.033 10.1061/(ASCE)0733-947X(1984)110:1(55) 10.1016/j.ejor.2006.10.047 10.1016/j.ejor.2020.07.063 10.1007/s11590-015-0867-6 10.1016/j.tre.2020.102123 10.1016/j.ejor.2015.09.049 10.1287/ijoc.2021.1110 10.1016/j.eswa.2010.07.130 10.1016/j.ejor.2006.02.025 10.1016/j.ejor.2007.09.031 10.1016/j.cor.2003.12.003 10.2514/1.57022 10.1287/trsc.2021.1045 10.1080/00207543.2023.2180307 10.1016/j.ins.2015.07.044 10.1016/j.cie.2006.02.009 10.1016/j.omega.2018.12.004 10.1287/trsc.1050.0135 10.1016/j.cor.2021.105554 10.1016/j.tre.2022.102712 10.1016/j.tre.2019.10.006 10.1057/palgrave.jors.2601736 10.1016/j.cor.2021.105400 10.1002/nav.20113 10.1016/j.omega.2012.01.005 10.1016/j.ejor.2013.03.013 10.1016/j.ins.2021.02.039 10.1007/s10479-009-0657-6 10.1016/0360-8352(92)90117-3 10.1007/s10462-004-7190-4 10.1108/14635770710730955 10.1016/j.promfg.2020.02.045 10.1016/j.omega.2009.10.008 10.1016/j.ejor.2019.04.024 10.1016/j.ejor.2014.03.012 10.1111/j.1937-5956.2009.01068.x |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC |
| DOI | 10.1016/j.cor.2024.106604 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business Mathematics |
| EISSN | 1873-765X |
| ExternalDocumentID | oai:HAL:hal-04538583v1 10_1016_j_cor_2024_106604 S0305054824000765 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 186 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQXK AARIN AAXUO AAYFN AAYOK ABAOU ABBOA ABEFU ABFNM ABFRF ABJNI ABMAC ABMMH ABUCO ABXDB ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD AEBSH AEFWE AEHXG AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ARUGR ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HAMUX HVGLF HZ~ H~9 IHE J1W KOM LY1 M41 MHUIS MO0 MS~ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ RXW SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSO SSV SSW SSZ T5K TAE TN5 U5U UAO UPT VH1 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 1XC |
| ID | FETCH-LOGICAL-c356t-6a64ad1190330c4c1dccd0c054a41f8ae971c0c28f055bae0a6aa9bcc70901593 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001224317600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-0548 |
| IngestDate | Tue Oct 14 20:35:33 EDT 2025 Sat Nov 29 03:23:46 EST 2025 Tue Nov 18 22:37:53 EST 2025 Sat Jul 13 15:31:44 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cross docking Sequencing and scheduling Branch-and-price Dantzig–Wolfe reformulation Logistics |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c356t-6a64ad1190330c4c1dccd0c054a41f8ae971c0c28f055bae0a6aa9bcc70901593 |
| ORCID | 0000-0001-5192-5247 0000-0002-6606-9698 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04538583v1 crossref_primary_10_1016_j_cor_2024_106604 crossref_citationtrail_10_1016_j_cor_2024_106604 elsevier_sciencedirect_doi_10_1016_j_cor_2024_106604 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-01 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & operations research |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Gasse, Chételat, Ferroni, Charlin, Lodi (b23) 2019 Zhang, Chen, Gendreau, Langevin (b67) 2022; 34 Monaco, Sammarra (b44) 2020; 42 Gaudioso, Monaco, Sammarra (b24) 2020 Van Belle, Valckenaers, Cattrysse (b62) 2012; 40 Boloori Arabani, Fatemi Ghomi, Zandieh (b8) 2011; 38 Dulebenets (b19) 2021; 565 Wang, Alidaee (b63) 2019; 132 Shi, Liu, Shang, Cui (b57) 2013; 229 Yu, Egbelu (b66) 2008; 184 Kingma, Ba (b33) 2017 Parsonson, Laterre, Barrett (b50) 2022 Tsui, Chang (b60) 1992; 23 Kim, Feron, Clarke (b32) 2013; 36 Monemi, Gelareh (b45) 2023; 151 Rahbari, Nasiri, Werner, Musavi, Jolai (b52) 2019; 70 Václavík, Novák, Šůcha, Hanzálek (b61) 2018; 271 Bruna, J., Zaremba, W., Szlam, A., Lecun, Y., 2014. Spectral networks and locally connected networks on graphs. In: International Conference on Learning Representations (ICLR2014), CBLS, April 2014. Gelareh, Glover, Guemri, Hanafi, Nduwayo, Todosijević (b25) 2020; 91 Chami, Abu-El-Haija, Perozzi, Ré, Murphy (b13) 2020; 23 Ou, Hsu, Li (b49) 2010; 19 Cohen, Keren (b15) 2009; 5 Tadumadze, Boysen, Emde, Weidinger (b58) 2019; 278 Deshpande, Yalcin, Zayas-Castro, Herrera (b16) 2007; 14 Li, Hao, Wu (b34) 2024; 312 Gelareh, Monemi, Semet, Goncalves (b26) 2016; 249 Xi, Changchun, Yuan, Hay (b64) 2020; 144 Hansen, Mladenović, Pérez (b30) 2010; 175 Buijs, Danhof, Wortmann (b11) 2016; 37 Miao, Lim, Ma (b41) 2009; 192 Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (b54) 2009; 20 Mladenović, Hansen (b42) 1997; 24 Quesnel, Wu, Desaulniers, Soumis (b51) 2022; 138 Chmielewski, Naujoks, Janas, Clausen (b14) 2009; 43 Gori, Monfardini, Scarselli (b27) 2005; Vol. 2 Todosijević, Urošević, Mladenović, Hanafi (b59) 2017; 11 Fonseca, Nogueira, Ravetti (b22) 2019; 275 Ding, Lim, Rodrigues, Zhu (b18) 2005; 32 Babic, Teodorovic, Tošic (b5) 1984; 110 Mladenović, Todosijević, Urošević (b43) 2016; 326 Bengio, Lodi, Prouvost (b6) 2021; 290 Berghman, Leus, Spieksma (b7) 2014; 213 Lim, Rodrigues, Zhu (b38) 2005; 24 Buijs, Vis, Carlo (b12) 2014; 239 Ilić, A., Urošević, D., Brimberg, J., Mladenović, N., 2010. Shakeri, Low, Li (b55) 2008 Faghih-Mohammadi, Nasiri, Konur (b21) 2023; 322 Lim, Miao, Rodrigues, Xu (b37) 2005; 52 Liao, Egbelu, Chang (b35) 2013; 141 Morabit, Desaulniers, Lodi (b46) 2021; 55 Ropke, Pisinger (b53) 2006; 40 Agustina, Lee, Piplani (b1) 2010; 2 Hallak, Castro, Mannor (b29) 2015 Boysen, Fliedner (b9) 2010; 38 Morabit, Desaulniers, Lodi (b47) 2022 Yan, Chow, Ho, Kuo, Wu, Ying (b65) 2022; 162 Babaki, B., Jena, S.D., Charlin, L., 2022. Neural Column Generation for Capacitated Vehicle Routing. In: AAAI-22 Workshop on Machine Learning for Operations Research. ML4OR. Shaw (b56) 1997 Amos, Kolter (b2) 2021 Arabani, Ghomi, Zandieh (b3) 2010; 49 Ding, Lim, Rodrigues, Zhu (b17) 2004; 55 Lim, Ma, Miao (b36) 2006 Miao, Cai, Xu (b40) 2014; 41 Gu, Goetschalckx, McGinnis (b28) 2007; 177 Escudero, Garín, Unzueta (b20) 2024; 62 Oh, Hwang, Cha, Lee (b48) 2006; 51 Mazyavkina, Sviridov, Ivanov, Burnaev (b39) 2021; 134 Xi (10.1016/j.cor.2024.106604_b64) 2020; 144 10.1016/j.cor.2024.106604_b31 Boysen (10.1016/j.cor.2024.106604_b9) 2010; 38 Amos (10.1016/j.cor.2024.106604_b2) 2021 Miao (10.1016/j.cor.2024.106604_b41) 2009; 192 Escudero (10.1016/j.cor.2024.106604_b20) 2024; 62 Li (10.1016/j.cor.2024.106604_b34) 2024; 312 Gaudioso (10.1016/j.cor.2024.106604_b24) 2020 Gelareh (10.1016/j.cor.2024.106604_b26) 2016; 249 Morabit (10.1016/j.cor.2024.106604_b46) 2021; 55 Gelareh (10.1016/j.cor.2024.106604_b25) 2020; 91 Zhang (10.1016/j.cor.2024.106604_b67) 2022; 34 Rahbari (10.1016/j.cor.2024.106604_b52) 2019; 70 10.1016/j.cor.2024.106604_b4 Kingma (10.1016/j.cor.2024.106604_b33) 2017 Tsui (10.1016/j.cor.2024.106604_b60) 1992; 23 Bengio (10.1016/j.cor.2024.106604_b6) 2021; 290 Ding (10.1016/j.cor.2024.106604_b17) 2004; 55 Hansen (10.1016/j.cor.2024.106604_b30) 2010; 175 Boloori Arabani (10.1016/j.cor.2024.106604_b8) 2011; 38 Gu (10.1016/j.cor.2024.106604_b28) 2007; 177 Shi (10.1016/j.cor.2024.106604_b57) 2013; 229 Babic (10.1016/j.cor.2024.106604_b5) 1984; 110 Morabit (10.1016/j.cor.2024.106604_b47) 2022 Ropke (10.1016/j.cor.2024.106604_b53) 2006; 40 Gasse (10.1016/j.cor.2024.106604_b23) 2019 Miao (10.1016/j.cor.2024.106604_b40) 2014; 41 Fonseca (10.1016/j.cor.2024.106604_b22) 2019; 275 Václavík (10.1016/j.cor.2024.106604_b61) 2018; 271 Gori (10.1016/j.cor.2024.106604_b27) 2005; Vol. 2 Mladenović (10.1016/j.cor.2024.106604_b43) 2016; 326 Tadumadze (10.1016/j.cor.2024.106604_b58) 2019; 278 10.1016/j.cor.2024.106604_b10 Lim (10.1016/j.cor.2024.106604_b37) 2005; 52 Yan (10.1016/j.cor.2024.106604_b65) 2022; 162 Monemi (10.1016/j.cor.2024.106604_b45) 2023; 151 Dulebenets (10.1016/j.cor.2024.106604_b19) 2021; 565 Mladenović (10.1016/j.cor.2024.106604_b42) 1997; 24 Ou (10.1016/j.cor.2024.106604_b49) 2010; 19 Shakeri (10.1016/j.cor.2024.106604_b55) 2008 Lim (10.1016/j.cor.2024.106604_b38) 2005; 24 Faghih-Mohammadi (10.1016/j.cor.2024.106604_b21) 2023; 322 Hallak (10.1016/j.cor.2024.106604_b29) 2015 Shaw (10.1016/j.cor.2024.106604_b56) 1997 Wang (10.1016/j.cor.2024.106604_b63) 2019; 132 Kim (10.1016/j.cor.2024.106604_b32) 2013; 36 Liao (10.1016/j.cor.2024.106604_b35) 2013; 141 Chmielewski (10.1016/j.cor.2024.106604_b14) 2009; 43 Ding (10.1016/j.cor.2024.106604_b18) 2005; 32 Buijs (10.1016/j.cor.2024.106604_b11) 2016; 37 Yu (10.1016/j.cor.2024.106604_b66) 2008; 184 Quesnel (10.1016/j.cor.2024.106604_b51) 2022; 138 Van Belle (10.1016/j.cor.2024.106604_b62) 2012; 40 Berghman (10.1016/j.cor.2024.106604_b7) 2014; 213 Mazyavkina (10.1016/j.cor.2024.106604_b39) 2021; 134 Chami (10.1016/j.cor.2024.106604_b13) 2020; 23 Oh (10.1016/j.cor.2024.106604_b48) 2006; 51 Lim (10.1016/j.cor.2024.106604_b36) 2006 Scarselli (10.1016/j.cor.2024.106604_b54) 2009; 20 Todosijević (10.1016/j.cor.2024.106604_b59) 2017; 11 Arabani (10.1016/j.cor.2024.106604_b3) 2010; 49 Cohen (10.1016/j.cor.2024.106604_b15) 2009; 5 Deshpande (10.1016/j.cor.2024.106604_b16) 2007; 14 Parsonson (10.1016/j.cor.2024.106604_b50) 2022 Buijs (10.1016/j.cor.2024.106604_b12) 2014; 239 Agustina (10.1016/j.cor.2024.106604_b1) 2010; 2 Monaco (10.1016/j.cor.2024.106604_b44) 2020; 42 |
| References_xml | – volume: 177 start-page: 1 year: 2007 end-page: 21 ident: b28 article-title: Research on warehouse operation: A comprehensive review publication-title: European J. Oper. Res. – year: 2022 ident: b47 article-title: Machine-learning-based arc selection for constrained shortest path problems in column generation – volume: 322 start-page: 497 year: 2023 end-page: 538 ident: b21 article-title: Cross-dock facility for disaster relief operations publication-title: Ann. Oper. Res. – volume: 138 year: 2022 ident: b51 article-title: Deep-learning-based partial pricing in a branch-and-price algorithm for personalized crew rostering publication-title: Comput. Oper. Res. – year: 2020 ident: b24 article-title: A Lagrangian heuristics for the truck scheduling problem in multi-door, multi-product Cross-Docking with constant processing time publication-title: Omega – volume: 34 start-page: 1419 year: 2022 end-page: 1436 ident: b67 article-title: Learning-based branch-and-price algorithms for the vehicle routing problem with time windows and two-dimensional loading constraints publication-title: INFORMS J. Comput. – volume: 55 start-page: 760 year: 2004 end-page: 768 ident: b17 article-title: New heuristics for over-constrained flight to gate assignments publication-title: J. Oper. Res. Soc. – start-page: 857 year: 2008 end-page: 864 ident: b55 article-title: A generic model for cross-dock truck scheduling and truck-to-door assignment problems publication-title: Industrial Informatics, 2008. INDIN 2008. 6th IEEE International Conference on – year: 1997 ident: b56 article-title: A new local search algorithm providing high quality solutions to vehicle routing problems – volume: 11 start-page: 1109 year: 2017 end-page: 1121 ident: b59 article-title: A general variable neighborhood search for solving the uncapacitated publication-title: Optim. Lett. – volume: 275 start-page: 139 year: 2019 end-page: 154 ident: b22 article-title: A hybrid Lagrangian metaheuristic for the cross-docking flow shop scheduling problem publication-title: European J. Oper. Res. – volume: 49 start-page: 741 year: 2010 end-page: 756 ident: b3 article-title: A multi-criteria cross-docking scheduling with just-in-time approach publication-title: Int. J. Adv. Manuf. Technol. – volume: 32 start-page: 1867 year: 2005 end-page: 1880 ident: b18 article-title: The over-constrained airport gate assignment problem publication-title: Comput. Oper. Res. – volume: 40 start-page: 827 year: 2012 end-page: 846 ident: b62 article-title: Cross-docking: State of the art publication-title: Omega – volume: 132 start-page: 30 year: 2019 end-page: 47 ident: b63 article-title: The multi-floor cross-dock door assignment problem: Rising challenges for the new trend in logistics industry publication-title: Transp. Res. E – volume: 23 start-page: 89:1 year: 2020 end-page: 89:64 ident: b13 article-title: Machine learning on graphs: A model and comprehensive taxonomy publication-title: J. Mach. Learn. Res. – volume: 70 start-page: 605 year: 2019 end-page: 625 ident: b52 article-title: The vehicle routing and scheduling problem with cross-docking for perishable products under uncertainty: Two robust bi-objective models publication-title: Appl. Math. Model. – volume: 24 start-page: 1097 year: 1997 end-page: 1100 ident: b42 article-title: Variable neighborhood search publication-title: Comput. Oper. Res. – volume: 141 start-page: 212 year: 2013 end-page: 229 ident: b35 article-title: Simultaneous dock assignment and sequencing of inbound trucks under a fixed outbound truck schedule in multi-door cross docking operations publication-title: Int. J. Prod. Econ. – volume: 23 start-page: 283 year: 1992 end-page: 286 ident: b60 article-title: An optimal solution to a dock door assignment problem publication-title: Comput. Ind. Eng. – volume: 175 start-page: 367 year: 2010 end-page: 407 ident: b30 article-title: Variable neighbourhood search: methods and applications publication-title: Ann. Oper. Res. – volume: 144 year: 2020 ident: b64 article-title: Two-stage conflict robust optimization models for cross-dock truck scheduling problem under uncertainty publication-title: Transp. Res. E – start-page: 688 year: 2006 end-page: 697 ident: b36 article-title: Truck dock assignment problem with time windows and capacity constraint in transshipment network through cross-docks publication-title: Computational Science and Its Applications-ICCSA 2006 – volume: 62 start-page: 1262 year: 2024 end-page: 1276 ident: b20 article-title: On solving the cross-dock door assignment problem publication-title: Int. J. Prod. Res. – volume: 229 start-page: 695 year: 2013 end-page: 706 ident: b57 article-title: Multi-criteria robust design of a JIT-based cross-docking distribution center for an auto parts supply chain publication-title: European J. Oper. Res. – volume: 162 year: 2022 ident: b65 article-title: Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities publication-title: Transp. Res. E – reference: Bruna, J., Zaremba, W., Szlam, A., Lecun, Y., 2014. Spectral networks and locally connected networks on graphs. In: International Conference on Learning Representations (ICLR2014), CBLS, April 2014. – volume: 38 start-page: 1964 year: 2011 end-page: 1979 ident: b8 article-title: Meta-heuristics implementation for scheduling of trucks in a cross-docking system with temporary storage publication-title: Expert Syst. Appl. – volume: 19 start-page: 83 year: 2010 end-page: 97 ident: b49 article-title: Scheduling truck arrivals at an air cargo terminal publication-title: Prod. Oper. Manage. – volume: Vol. 2 start-page: 729 year: 2005 end-page: 734 ident: b27 article-title: A new model for learning in graph domains publication-title: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, Montreal, Canada. – reference: Ilić, A., Urošević, D., Brimberg, J., Mladenović, N., 2010. – volume: 51 start-page: 288 year: 2006 end-page: 296 ident: b48 article-title: A dock-door assignment problem for the Korean mail distribution center publication-title: Comput. Ind. Eng. – volume: 110 start-page: 55 year: 1984 end-page: 66 ident: b5 article-title: Aircraft stand assignment to minimize walking publication-title: J. Transp. Eng. – volume: 2 start-page: 47 year: 2010 end-page: 54 ident: b1 article-title: A review: Mathematical modles for cross docking planning publication-title: Int. J. Eng. Bus. Manag. – volume: 55 start-page: 815 year: 2021 end-page: 831 ident: b46 article-title: Machine-learning–based column selection for column generation publication-title: Transp. Sci. – volume: 42 start-page: 475 year: 2020 end-page: 482 ident: b44 article-title: Managing loading and discharging operations at cross-docking terminals publication-title: Procedia Manuf. – year: 2021 ident: b2 article-title: OptNet: Differentiable optimization as a layer in neural networks – volume: 5 start-page: 574 year: 2009 end-page: 590 ident: b15 article-title: Trailer to door assignment in a synchronous cross-dock operation publication-title: Int. J. Logist. Syst. Manag. – year: 2022 ident: b50 article-title: Reinforcement learning for branch-and-bound optimisation using retrospective trajectories – volume: 290 start-page: 405 year: 2021 end-page: 421 ident: b6 article-title: Machine learning for combinatorial optimization: A methodological tour d’horizon publication-title: European J. Oper. Res. – volume: 20 start-page: 61 year: 2009 end-page: 80 ident: b54 article-title: The graph neural network model publication-title: IEEE Trans. Neural Netw. – volume: 326 start-page: 160 year: 2016 end-page: 171 ident: b43 article-title: Less is more: Basic variable neighborhood search for minimum differential dispersion problem publication-title: Inform. Sci. – volume: 24 start-page: 5 year: 2005 end-page: 31 ident: b38 article-title: Airport gate scheduling with time windows publication-title: Artif. Intell. Rev. – volume: 192 start-page: 105 year: 2009 end-page: 115 ident: b41 article-title: Truck dock assignment problem with operational time constraint within cross-docks publication-title: European J. Oper. Res. – volume: 37 start-page: 213 year: 2016 end-page: 230 ident: b11 article-title: Just-in-time retail distribution: A systems perspective on cross-docking publication-title: J. Bus. Logist. – volume: 249 start-page: 1144 year: 2016 end-page: 1152 ident: b26 article-title: A branch-and-cut algorithm for the truck dock assignment problem with operational time constraints publication-title: European J. Oper. Res. – volume: 213 start-page: 3 year: 2014 end-page: 25 ident: b7 article-title: Optimal solutions for a dock assignment problem with trailer transportation publication-title: Ann. Oper. Res. – volume: 14 start-page: 92 year: 2007 end-page: 101 ident: b16 article-title: Simulating less-than-truckload terminal operations publication-title: Benchmarking: Int. J. – year: 2015 ident: b29 article-title: Contextual Markov decision processes – volume: 312 start-page: 473 year: 2024 end-page: 492 ident: b34 article-title: A flow based formulation and a reinforcement learning based strategic oscillation for cross-dock door assignment publication-title: European J. Oper. Res. – volume: 271 start-page: 1055 year: 2018 end-page: 1069 ident: b61 article-title: Accelerating the branch-and-price algorithm using machine learning publication-title: European J. Oper. Res. – year: 2019 ident: b23 article-title: Exact combinatorial optimization with graph convolutional neural networks publication-title: Proceedings of the 33rd International Conference on Neural Information Processing Systems – volume: 38 start-page: 413 year: 2010 end-page: 422 ident: b9 article-title: Cross dock scheduling: Classification, literature review and research agenda publication-title: Omega – reference: Babaki, B., Jena, S.D., Charlin, L., 2022. Neural Column Generation for Capacitated Vehicle Routing. In: AAAI-22 Workshop on Machine Learning for Operations Research. ML4OR. – volume: 43 start-page: 198 year: 2009 end-page: 210 ident: b14 article-title: Optimizing the door assignment in LTL-terminals publication-title: Transp. Sci. – volume: 239 start-page: 593 year: 2014 end-page: 608 ident: b12 article-title: Synchronization in cross-docking networks: A research classification and framework publication-title: European J. Oper. Res. – volume: 565 start-page: 390 year: 2021 end-page: 421 ident: b19 article-title: An Adaptive Polyploid Memetic Algorithm for scheduling trucks at a cross-docking terminal publication-title: Inform. Sci. – volume: 91 year: 2020 ident: b25 article-title: A comparative study of formulations for a cross-dock door assignment problem publication-title: Omega – volume: 151 year: 2023 ident: b45 article-title: Dock assignment and truck scheduling problem; consideration of multiple scenarios with resource allocation constraints publication-title: Comput. Oper. Res. – volume: 40 start-page: 455 year: 2006 end-page: 472 ident: b53 article-title: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows publication-title: Transp. Sci. – year: 2017 ident: b33 article-title: Adam: A method for stochastic optimization – volume: 41 start-page: 16 year: 2014 end-page: 22 ident: b40 article-title: Applying an adaptive tabu search algorithm to optimize truck-dock assignment in the cross-dock management system publication-title: Expert Syst. Appl. – volume: 184 start-page: 377 year: 2008 end-page: 396 ident: b66 article-title: Scheduling of inbound and outbound trucks in cross docking systems with temporary storage publication-title: European J. Oper. Res. – volume: 52 start-page: 724 year: 2005 end-page: 733 ident: b37 article-title: Transshipment through cross-docks with inventory and time windows publication-title: Nav. Res. Logist. – volume: 36 start-page: 467 year: 2013 end-page: 475 ident: b32 article-title: Gate assignment to minimize passenger transit time and aircraft taxi time publication-title: J. Guid. Control Dyn. – volume: 134 year: 2021 ident: b39 article-title: Reinforcement learning for combinatorial optimization: A survey publication-title: Comput. Oper. Res. – volume: 278 start-page: 343 year: 2019 end-page: 362 ident: b58 article-title: Integrated truck and workforce scheduling to accelerate the unloading of trucks publication-title: European J. Oper. Res. – year: 2015 ident: 10.1016/j.cor.2024.106604_b29 – volume: 312 start-page: 473 issue: 2 year: 2024 ident: 10.1016/j.cor.2024.106604_b34 article-title: A flow based formulation and a reinforcement learning based strategic oscillation for cross-dock door assignment publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2023.07.014 – volume: 41 start-page: 16 issue: 1 year: 2014 ident: 10.1016/j.cor.2024.106604_b40 article-title: Applying an adaptive tabu search algorithm to optimize truck-dock assignment in the cross-dock management system publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.07.007 – volume: 271 start-page: 1055 issue: 3 year: 2018 ident: 10.1016/j.cor.2024.106604_b61 article-title: Accelerating the branch-and-price algorithm using machine learning publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2018.05.046 – volume: 24 start-page: 1097 issue: 11 year: 1997 ident: 10.1016/j.cor.2024.106604_b42 article-title: Variable neighborhood search publication-title: Comput. Oper. Res. doi: 10.1016/S0305-0548(97)00031-2 – volume: 37 start-page: 213 issue: 3 year: 2016 ident: 10.1016/j.cor.2024.106604_b11 article-title: Just-in-time retail distribution: A systems perspective on cross-docking publication-title: J. Bus. Logist. doi: 10.1111/jbl.12135 – volume: 43 start-page: 198 issue: 2 year: 2009 ident: 10.1016/j.cor.2024.106604_b14 article-title: Optimizing the door assignment in LTL-terminals publication-title: Transp. Sci. doi: 10.1287/trsc.1090.0271 – volume: 141 start-page: 212 year: 2013 ident: 10.1016/j.cor.2024.106604_b35 article-title: Simultaneous dock assignment and sequencing of inbound trucks under a fixed outbound truck schedule in multi-door cross docking operations publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2012.03.037 – year: 2019 ident: 10.1016/j.cor.2024.106604_b23 article-title: Exact combinatorial optimization with graph convolutional neural networks – volume: 5 start-page: 574 issue: 5 year: 2009 ident: 10.1016/j.cor.2024.106604_b15 article-title: Trailer to door assignment in a synchronous cross-dock operation publication-title: Int. J. Logist. Syst. Manag. – volume: 70 start-page: 605 year: 2019 ident: 10.1016/j.cor.2024.106604_b52 article-title: The vehicle routing and scheduling problem with cross-docking for perishable products under uncertainty: Two robust bi-objective models publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.01.047 – volume: 213 start-page: 3 year: 2014 ident: 10.1016/j.cor.2024.106604_b7 article-title: Optimal solutions for a dock assignment problem with trailer transportation publication-title: Ann. Oper. Res. doi: 10.1007/s10479-011-0971-7 – volume: 20 start-page: 61 issue: 1 year: 2009 ident: 10.1016/j.cor.2024.106604_b54 article-title: The graph neural network model publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2008.2005605 – volume: 49 start-page: 741 issue: 5–8 year: 2010 ident: 10.1016/j.cor.2024.106604_b3 article-title: A multi-criteria cross-docking scheduling with just-in-time approach publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-009-2429-5 – volume: 23 start-page: 89:1 year: 2020 ident: 10.1016/j.cor.2024.106604_b13 article-title: Machine learning on graphs: A model and comprehensive taxonomy publication-title: J. Mach. Learn. Res. – volume: 322 start-page: 497 issue: 1 year: 2023 ident: 10.1016/j.cor.2024.106604_b21 article-title: Cross-dock facility for disaster relief operations publication-title: Ann. Oper. Res. doi: 10.1007/s10479-022-04939-2 – volume: 275 start-page: 139 issue: 1 year: 2019 ident: 10.1016/j.cor.2024.106604_b22 article-title: A hybrid Lagrangian metaheuristic for the cross-docking flow shop scheduling problem publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2018.11.033 – volume: 110 start-page: 55 issue: 1 year: 1984 ident: 10.1016/j.cor.2024.106604_b5 article-title: Aircraft stand assignment to minimize walking publication-title: J. Transp. Eng. doi: 10.1061/(ASCE)0733-947X(1984)110:1(55) – year: 2017 ident: 10.1016/j.cor.2024.106604_b33 – volume: 184 start-page: 377 issue: 1 year: 2008 ident: 10.1016/j.cor.2024.106604_b66 article-title: Scheduling of inbound and outbound trucks in cross docking systems with temporary storage publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2006.10.047 – volume: 290 start-page: 405 issue: 2 year: 2021 ident: 10.1016/j.cor.2024.106604_b6 article-title: Machine learning for combinatorial optimization: A methodological tour d’horizon publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2020.07.063 – volume: 151 year: 2023 ident: 10.1016/j.cor.2024.106604_b45 article-title: Dock assignment and truck scheduling problem; consideration of multiple scenarios with resource allocation constraints publication-title: Comput. Oper. Res. – volume: 11 start-page: 1109 issue: 6 year: 2017 ident: 10.1016/j.cor.2024.106604_b59 article-title: A general variable neighborhood search for solving the uncapacitated r-allocation p-hub median problem publication-title: Optim. Lett. doi: 10.1007/s11590-015-0867-6 – volume: 144 year: 2020 ident: 10.1016/j.cor.2024.106604_b64 article-title: Two-stage conflict robust optimization models for cross-dock truck scheduling problem under uncertainty publication-title: Transp. Res. E doi: 10.1016/j.tre.2020.102123 – year: 2021 ident: 10.1016/j.cor.2024.106604_b2 – year: 1997 ident: 10.1016/j.cor.2024.106604_b56 – volume: 249 start-page: 1144 issue: 3 year: 2016 ident: 10.1016/j.cor.2024.106604_b26 article-title: A branch-and-cut algorithm for the truck dock assignment problem with operational time constraints publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2015.09.049 – volume: 34 start-page: 1419 issue: 3 year: 2022 ident: 10.1016/j.cor.2024.106604_b67 article-title: Learning-based branch-and-price algorithms for the vehicle routing problem with time windows and two-dimensional loading constraints publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2021.1110 – volume: 38 start-page: 1964 issue: 3 year: 2011 ident: 10.1016/j.cor.2024.106604_b8 article-title: Meta-heuristics implementation for scheduling of trucks in a cross-docking system with temporary storage publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.07.130 – volume: 177 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.cor.2024.106604_b28 article-title: Research on warehouse operation: A comprehensive review publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2006.02.025 – volume: 192 start-page: 105 issue: 1 year: 2009 ident: 10.1016/j.cor.2024.106604_b41 article-title: Truck dock assignment problem with operational time constraint within cross-docks publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2007.09.031 – volume: 32 start-page: 1867 issue: 7 year: 2005 ident: 10.1016/j.cor.2024.106604_b18 article-title: The over-constrained airport gate assignment problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2003.12.003 – volume: 36 start-page: 467 issue: 2 year: 2013 ident: 10.1016/j.cor.2024.106604_b32 article-title: Gate assignment to minimize passenger transit time and aircraft taxi time publication-title: J. Guid. Control Dyn. doi: 10.2514/1.57022 – volume: 55 start-page: 815 issue: 4 year: 2021 ident: 10.1016/j.cor.2024.106604_b46 article-title: Machine-learning–based column selection for column generation publication-title: Transp. Sci. doi: 10.1287/trsc.2021.1045 – volume: 62 start-page: 1262 issue: 4 year: 2024 ident: 10.1016/j.cor.2024.106604_b20 article-title: On solving the cross-dock door assignment problem publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2023.2180307 – volume: 326 start-page: 160 year: 2016 ident: 10.1016/j.cor.2024.106604_b43 article-title: Less is more: Basic variable neighborhood search for minimum differential dispersion problem publication-title: Inform. Sci. doi: 10.1016/j.ins.2015.07.044 – volume: 51 start-page: 288 issue: 2 year: 2006 ident: 10.1016/j.cor.2024.106604_b48 article-title: A dock-door assignment problem for the Korean mail distribution center publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2006.02.009 – volume: 91 year: 2020 ident: 10.1016/j.cor.2024.106604_b25 article-title: A comparative study of formulations for a cross-dock door assignment problem publication-title: Omega doi: 10.1016/j.omega.2018.12.004 – volume: 40 start-page: 455 issue: 4 year: 2006 ident: 10.1016/j.cor.2024.106604_b53 article-title: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows publication-title: Transp. Sci. doi: 10.1287/trsc.1050.0135 – volume: 2 start-page: 47 issue: 2 year: 2010 ident: 10.1016/j.cor.2024.106604_b1 article-title: A review: Mathematical modles for cross docking planning publication-title: Int. J. Eng. Bus. Manag. – volume: 138 year: 2022 ident: 10.1016/j.cor.2024.106604_b51 article-title: Deep-learning-based partial pricing in a branch-and-price algorithm for personalized crew rostering publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2021.105554 – volume: 162 year: 2022 ident: 10.1016/j.cor.2024.106604_b65 article-title: Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities publication-title: Transp. Res. E doi: 10.1016/j.tre.2022.102712 – volume: Vol. 2 start-page: 729 year: 2005 ident: 10.1016/j.cor.2024.106604_b27 article-title: A new model for learning in graph domains – volume: 132 start-page: 30 year: 2019 ident: 10.1016/j.cor.2024.106604_b63 article-title: The multi-floor cross-dock door assignment problem: Rising challenges for the new trend in logistics industry publication-title: Transp. Res. E doi: 10.1016/j.tre.2019.10.006 – year: 2022 ident: 10.1016/j.cor.2024.106604_b47 – volume: 55 start-page: 760 issue: 7 year: 2004 ident: 10.1016/j.cor.2024.106604_b17 article-title: New heuristics for over-constrained flight to gate assignments publication-title: J. Oper. Res. Soc. doi: 10.1057/palgrave.jors.2601736 – volume: 134 year: 2021 ident: 10.1016/j.cor.2024.106604_b39 article-title: Reinforcement learning for combinatorial optimization: A survey publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2021.105400 – volume: 52 start-page: 724 issue: 8 year: 2005 ident: 10.1016/j.cor.2024.106604_b37 article-title: Transshipment through cross-docks with inventory and time windows publication-title: Nav. Res. Logist. doi: 10.1002/nav.20113 – start-page: 857 year: 2008 ident: 10.1016/j.cor.2024.106604_b55 article-title: A generic model for cross-dock truck scheduling and truck-to-door assignment problems – ident: 10.1016/j.cor.2024.106604_b31 – volume: 40 start-page: 827 issue: 6 year: 2012 ident: 10.1016/j.cor.2024.106604_b62 article-title: Cross-docking: State of the art publication-title: Omega doi: 10.1016/j.omega.2012.01.005 – ident: 10.1016/j.cor.2024.106604_b10 – ident: 10.1016/j.cor.2024.106604_b4 – start-page: 688 year: 2006 ident: 10.1016/j.cor.2024.106604_b36 article-title: Truck dock assignment problem with time windows and capacity constraint in transshipment network through cross-docks – volume: 229 start-page: 695 issue: 3 year: 2013 ident: 10.1016/j.cor.2024.106604_b57 article-title: Multi-criteria robust design of a JIT-based cross-docking distribution center for an auto parts supply chain publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2013.03.013 – volume: 565 start-page: 390 year: 2021 ident: 10.1016/j.cor.2024.106604_b19 article-title: An Adaptive Polyploid Memetic Algorithm for scheduling trucks at a cross-docking terminal publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.02.039 – volume: 175 start-page: 367 issue: 1 year: 2010 ident: 10.1016/j.cor.2024.106604_b30 article-title: Variable neighbourhood search: methods and applications publication-title: Ann. Oper. Res. doi: 10.1007/s10479-009-0657-6 – volume: 23 start-page: 283 issue: 1 year: 1992 ident: 10.1016/j.cor.2024.106604_b60 article-title: An optimal solution to a dock door assignment problem publication-title: Comput. Ind. Eng. doi: 10.1016/0360-8352(92)90117-3 – volume: 24 start-page: 5 issue: 1 year: 2005 ident: 10.1016/j.cor.2024.106604_b38 article-title: Airport gate scheduling with time windows publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-004-7190-4 – volume: 14 start-page: 92 issue: 1 year: 2007 ident: 10.1016/j.cor.2024.106604_b16 article-title: Simulating less-than-truckload terminal operations publication-title: Benchmarking: Int. J. doi: 10.1108/14635770710730955 – volume: 42 start-page: 475 year: 2020 ident: 10.1016/j.cor.2024.106604_b44 article-title: Managing loading and discharging operations at cross-docking terminals publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2020.02.045 – year: 2022 ident: 10.1016/j.cor.2024.106604_b50 – volume: 38 start-page: 413 issue: 6 year: 2010 ident: 10.1016/j.cor.2024.106604_b9 article-title: Cross dock scheduling: Classification, literature review and research agenda publication-title: Omega doi: 10.1016/j.omega.2009.10.008 – year: 2020 ident: 10.1016/j.cor.2024.106604_b24 article-title: A Lagrangian heuristics for the truck scheduling problem in multi-door, multi-product Cross-Docking with constant processing time publication-title: Omega – volume: 278 start-page: 343 issue: 1 year: 2019 ident: 10.1016/j.cor.2024.106604_b58 article-title: Integrated truck and workforce scheduling to accelerate the unloading of trucks publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2019.04.024 – volume: 239 start-page: 593 issue: 3 year: 2014 ident: 10.1016/j.cor.2024.106604_b12 article-title: Synchronization in cross-docking networks: A research classification and framework publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2014.03.012 – volume: 19 start-page: 83 issue: 1 year: 2010 ident: 10.1016/j.cor.2024.106604_b49 article-title: Scheduling truck arrivals at an air cargo terminal publication-title: Prod. Oper. Manage. doi: 10.1111/j.1937-5956.2009.01068.x |
| SSID | ssj0000721 |
| Score | 2.4651139 |
| Snippet | In this study, we present a novel mathematical model for the integrated challenge of dock scheduling and truck sequencing in cross-docking facilities. Many... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 106604 |
| SubjectTerms | Branch-and-price Computer Science Cross docking Dantzig–Wolfe reformulation Logistics Mathematics Sequencing and scheduling |
| Title | Solution algorithms for dock scheduling and truck sequencing in cross-docks: A neural branch-and-price and a metaheuristic |
| URI | https://dx.doi.org/10.1016/j.cor.2024.106604 https://hal.science/hal-04538583 |
| Volume | 167 |
| WOSCitedRecordID | wos001224317600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-765X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000721 issn: 0305-0548 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DiF44FJAjJssxBOVUeLYufBWocFAY0IwpL5FjuOQTl1WraOa-CX8XI6v6Yo2sQdeosqxrSjfV_sc55zvIPSK8QZgVpSAOUAJE3lNRE4r0gjY31QFLkRiEoX3s4ODfDotvgwGv30uzGqedV1-fl4s_ivU0AZg69TZa8AdJoUG-A2gwxVgh-s_Ae8PusZi_uMEXP_WSi6Ma1j5xuDLwt4y95mJWjwWGm04tctuMfsm0b2XNm1dS14CkJUuwdESGEYWWonIyrzqEtSiVT-t4PO6qevrRSwNu04W6tRF3Tl9oXAODcuKOjZBBV9FOztWLay8QhvSPXE_KHDAlTkB-tZCp3Djs9BxtDZnTGnhyfVTDMpCxGvI3tJBhNyqboaV2VbqcGsrOK-pLVX817JvTyCOADUt8UrZm77vRYntja0vBCT6WLejEqYo9RSlnWILbdOMF_kQbU8-7k4_9bt8ZnL6wnP7L-YmdnDjOS6zebZaf3pvrJnDe-iOc0PwxNLnPhqoboRu-iyIEbrr0cNu8R-h22vSlQ_QL08z3NMMA82wJg7uaYaBJdjQDPc0w7MOr9HsLZ5gSzK8STIzXOALJHuIvr_fPXy3R1wdDyITnp6RVKRM1DGYnkkSSSbjWso6kvDWBIubXKgii2Ukad5EnFdCRSIVoqikzCJtrRbJIzTsgIqPEaZZwytaS8UYZZlIikjyKqWKJ7RQ4AnsoMi_6VI6kXtda2VeXorwDnodhiyswstVnZmHr3QmqjU9S6DiVcNeAtRhei3pvjfZL3UbuFT623yyip9c50Geolv93-gZGgKQ6jm6IVdns-XpC0fWP_zYv3A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+algorithms+for+dock+scheduling+and+truck+sequencing+in+cross-docks%3A+A+neural+branch-and-price+and+a+metaheuristic&rft.jtitle=Computers+%26+operations+research&rft.au=Monemi%2C+Rahimeh+Neamatian&rft.au=Gelareh%2C+Shahin&rft.au=Maculan%2C+Nelson&rft.date=2024-07-01&rft.issn=0305-0548&rft.volume=167&rft.spage=106604&rft_id=info:doi/10.1016%2Fj.cor.2024.106604&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cor_2024_106604 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon |