Solution algorithms for dock scheduling and truck sequencing in cross-docks: A neural branch-and-price and a metaheuristic

In this study, we present a novel mathematical model for the integrated challenge of dock scheduling and truck sequencing in cross-docking facilities. Many existing models for variations of this problem in the literature rely on big-M constraints, known for their poor performance when applied to gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research Jg. 167; S. 106604
Hauptverfasser: Monemi, Rahimeh Neamatian, Gelareh, Shahin, Maculan, Nelson
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.07.2024
Elsevier
Schlagworte:
ISSN:0305-0548, 1873-765X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this study, we present a novel mathematical model for the integrated challenge of dock scheduling and truck sequencing in cross-docking facilities. Many existing models for variations of this problem in the literature rely on big-M constraints, known for their poor performance when applied to general-purpose mixed-integer programming solvers. This introduces significant limitations, especially when tackling smaller instances. Consequently, most solution methods in the literature gravitate towards metaheuristic approaches. Our proposed model offers a compact formulation without any big-M constraints, utilizing 4-index variables. It is strategically designed to lend itself well to a dual decomposition approach (Dantzig–Wolfe) and can be effectively solved using a branch-and-price methodology. We address the pricing problem through a branch-and-cut scheme and illustrate its efficiency in handling large instances. Recognizing the pricing problem as the primary bottleneck, we employ a deep neural network trained on a comprehensive set of instances with the same distribution to predict promising duals. Extensive computational experiments demonstrate a notable reduction of over 50% in overall computational times. Additionally, we introduce a heuristic sharing similarities with certain Variable Neighborhood Search (VNS) approaches. Our proposed heuristic has proven highly efficient in extensive computational experiments. •A new IP model for the cited problem in cross docking is presented with O(n4) variables.•An efficient branch-and-price as well as a VNS method are proposed to solve the problem.•A deep neural network is trained to predict promising duals, in the process of Branch-and-Price.•Computational experiments shown over 50% reduction in the overall computational times.•This study is showcasing the synergy between operations research and machine learning.
AbstractList In this study, we present a novel mathematical model for the integrated challenge of dock scheduling and truck sequencing in cross-docking facilities. Many existing models for variations of this problem in the literature rely on big-M constraints, known for their poor performance when applied to general-purpose mixed-integer programming solvers. This introduces significant limitations, especially when tackling smaller instances. Consequently, most solution methods in the literature gravitate towards metaheuristic approaches. Our proposed model offers a compact formulation without any big-M constraints, utilizing 4-index variables. It is strategically designed to lend itself well to a dual decomposition approach (Dantzig–Wolfe) and can be effectively solved using a branch-and-price methodology. We address the pricing problem through a branch-and-cut scheme and illustrate its efficiency in handling large instances. Recognizing the pricing problem as the primary bottleneck, we employ a deep neural network trained on a comprehensive set of instances with the same distribution to predict promising duals. Extensive computational experiments demonstrate a notable reduction of over 50% in overall computational times. Additionally, we introduce a heuristic sharing similarities with certain Variable Neighborhood Search (VNS) approaches. Our proposed heuristic has proven highly efficient in extensive computational experiments. •A new IP model for the cited problem in cross docking is presented with O(n4) variables.•An efficient branch-and-price as well as a VNS method are proposed to solve the problem.•A deep neural network is trained to predict promising duals, in the process of Branch-and-Price.•Computational experiments shown over 50% reduction in the overall computational times.•This study is showcasing the synergy between operations research and machine learning.
ArticleNumber 106604
Author Monemi, Rahimeh Neamatian
Maculan, Nelson
Gelareh, Shahin
Author_xml – sequence: 1
  givenname: Rahimeh Neamatian
  orcidid: 0000-0001-5192-5247
  surname: Monemi
  fullname: Monemi, Rahimeh Neamatian
  email: r.n.monemi@gmail.com
  organization: IT and Business Analytics Ltd, UK
– sequence: 2
  givenname: Shahin
  surname: Gelareh
  fullname: Gelareh, Shahin
  organization: Département R&T, IUT de Béthune, Université d’Artois, F62000 Béthune, France
– sequence: 3
  givenname: Nelson
  surname: Maculan
  fullname: Maculan, Nelson
  organization: Federal University of Rio de Janeiro, COPPE-PESC, P.O. Box 68511, Rio de Janeiro, RJ 21941-972, Brazil
BackLink https://hal.science/hal-04538583$$DView record in HAL
BookMark eNp9kD1v2zAQhonCBWqn_QHduGaQe7REfaSTYeSjgIEOaYBsxPlERXRlsiEpA82vLxUXGTKYC8HD-xD3Pgs2s85qxr4KWAoQ5bf9kpxfrmBVpHdZQvGBzUVd5VlVyscZm0MOMgNZ1J_YIoQ9pFOtxJy93LthjMZZjsOT8yb2h8A753nr6DcP1Ot2HIx94mhbHv04DfXzqC1NQ2M5eRdCNqXDFV9zq0ePA995tNRnCcr-eEP6FUd-0BH7lDAhGvrMPnY4BP3l_33BHm6uf23usu3P2x-b9TajXJYxK7EssBWigTwHKki0RC1Q6oKF6GrUTSUIaFV3IOUONWCJ2OyIKmhAyCa_YJenf3scVNrmgP6vcmjU3XqrphkUMq9lnR9FyopT9rWW190bIEBNotVeJdFqEq1OohNTvWPIRJycRo9mOEt-P5E61T8a7VUgk9Tq1nhNUbXOnKH_ARvcm5A
CitedBy_id crossref_primary_10_1016_j_tre_2025_104083
crossref_primary_10_1177_14727978251318811
crossref_primary_10_1007_s11425_024_2301_9
crossref_primary_10_46465_endustrimuhendisligi_1529587
Cites_doi 10.1016/j.ejor.2023.07.014
10.1016/j.eswa.2013.07.007
10.1016/j.ejor.2018.05.046
10.1016/S0305-0548(97)00031-2
10.1111/jbl.12135
10.1287/trsc.1090.0271
10.1016/j.ijpe.2012.03.037
10.1016/j.apm.2019.01.047
10.1007/s10479-011-0971-7
10.1109/TNN.2008.2005605
10.1007/s00170-009-2429-5
10.1007/s10479-022-04939-2
10.1016/j.ejor.2018.11.033
10.1061/(ASCE)0733-947X(1984)110:1(55)
10.1016/j.ejor.2006.10.047
10.1016/j.ejor.2020.07.063
10.1007/s11590-015-0867-6
10.1016/j.tre.2020.102123
10.1016/j.ejor.2015.09.049
10.1287/ijoc.2021.1110
10.1016/j.eswa.2010.07.130
10.1016/j.ejor.2006.02.025
10.1016/j.ejor.2007.09.031
10.1016/j.cor.2003.12.003
10.2514/1.57022
10.1287/trsc.2021.1045
10.1080/00207543.2023.2180307
10.1016/j.ins.2015.07.044
10.1016/j.cie.2006.02.009
10.1016/j.omega.2018.12.004
10.1287/trsc.1050.0135
10.1016/j.cor.2021.105554
10.1016/j.tre.2022.102712
10.1016/j.tre.2019.10.006
10.1057/palgrave.jors.2601736
10.1016/j.cor.2021.105400
10.1002/nav.20113
10.1016/j.omega.2012.01.005
10.1016/j.ejor.2013.03.013
10.1016/j.ins.2021.02.039
10.1007/s10479-009-0657-6
10.1016/0360-8352(92)90117-3
10.1007/s10462-004-7190-4
10.1108/14635770710730955
10.1016/j.promfg.2020.02.045
10.1016/j.omega.2009.10.008
10.1016/j.ejor.2019.04.024
10.1016/j.ejor.2014.03.012
10.1111/j.1937-5956.2009.01068.x
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.cor.2024.106604
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
Mathematics
EISSN 1873-765X
ExternalDocumentID oai:HAL:hal-04538583v1
10_1016_j_cor_2024_106604
S0305054824000765
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABUCO
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEFWE
AEHXG
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ARUGR
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSO
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
UAO
UPT
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
1XC
ID FETCH-LOGICAL-c356t-6a64ad1190330c4c1dccd0c054a41f8ae971c0c28f055bae0a6aa9bcc70901593
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001224317600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-0548
IngestDate Tue Oct 14 20:35:33 EDT 2025
Sat Nov 29 03:23:46 EST 2025
Tue Nov 18 22:37:53 EST 2025
Sat Jul 13 15:31:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Cross docking
Sequencing and scheduling
Branch-and-price
Dantzig–Wolfe reformulation
Logistics
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c356t-6a64ad1190330c4c1dccd0c054a41f8ae971c0c28f055bae0a6aa9bcc70901593
ORCID 0000-0001-5192-5247
0000-0002-6606-9698
ParticipantIDs hal_primary_oai_HAL_hal_04538583v1
crossref_primary_10_1016_j_cor_2024_106604
crossref_citationtrail_10_1016_j_cor_2024_106604
elsevier_sciencedirect_doi_10_1016_j_cor_2024_106604
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Computers & operations research
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Gasse, Chételat, Ferroni, Charlin, Lodi (b23) 2019
Zhang, Chen, Gendreau, Langevin (b67) 2022; 34
Monaco, Sammarra (b44) 2020; 42
Gaudioso, Monaco, Sammarra (b24) 2020
Van Belle, Valckenaers, Cattrysse (b62) 2012; 40
Boloori Arabani, Fatemi Ghomi, Zandieh (b8) 2011; 38
Dulebenets (b19) 2021; 565
Wang, Alidaee (b63) 2019; 132
Shi, Liu, Shang, Cui (b57) 2013; 229
Yu, Egbelu (b66) 2008; 184
Kingma, Ba (b33) 2017
Parsonson, Laterre, Barrett (b50) 2022
Tsui, Chang (b60) 1992; 23
Kim, Feron, Clarke (b32) 2013; 36
Monemi, Gelareh (b45) 2023; 151
Rahbari, Nasiri, Werner, Musavi, Jolai (b52) 2019; 70
Václavík, Novák, Šůcha, Hanzálek (b61) 2018; 271
Bruna, J., Zaremba, W., Szlam, A., Lecun, Y., 2014. Spectral networks and locally connected networks on graphs. In: International Conference on Learning Representations (ICLR2014), CBLS, April 2014.
Gelareh, Glover, Guemri, Hanafi, Nduwayo, Todosijević (b25) 2020; 91
Chami, Abu-El-Haija, Perozzi, Ré, Murphy (b13) 2020; 23
Ou, Hsu, Li (b49) 2010; 19
Cohen, Keren (b15) 2009; 5
Tadumadze, Boysen, Emde, Weidinger (b58) 2019; 278
Deshpande, Yalcin, Zayas-Castro, Herrera (b16) 2007; 14
Li, Hao, Wu (b34) 2024; 312
Gelareh, Monemi, Semet, Goncalves (b26) 2016; 249
Xi, Changchun, Yuan, Hay (b64) 2020; 144
Hansen, Mladenović, Pérez (b30) 2010; 175
Buijs, Danhof, Wortmann (b11) 2016; 37
Miao, Lim, Ma (b41) 2009; 192
Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (b54) 2009; 20
Mladenović, Hansen (b42) 1997; 24
Quesnel, Wu, Desaulniers, Soumis (b51) 2022; 138
Chmielewski, Naujoks, Janas, Clausen (b14) 2009; 43
Gori, Monfardini, Scarselli (b27) 2005; Vol. 2
Todosijević, Urošević, Mladenović, Hanafi (b59) 2017; 11
Fonseca, Nogueira, Ravetti (b22) 2019; 275
Ding, Lim, Rodrigues, Zhu (b18) 2005; 32
Babic, Teodorovic, Tošic (b5) 1984; 110
Mladenović, Todosijević, Urošević (b43) 2016; 326
Bengio, Lodi, Prouvost (b6) 2021; 290
Berghman, Leus, Spieksma (b7) 2014; 213
Lim, Rodrigues, Zhu (b38) 2005; 24
Buijs, Vis, Carlo (b12) 2014; 239
Ilić, A., Urošević, D., Brimberg, J., Mladenović, N., 2010.
Shakeri, Low, Li (b55) 2008
Faghih-Mohammadi, Nasiri, Konur (b21) 2023; 322
Lim, Miao, Rodrigues, Xu (b37) 2005; 52
Liao, Egbelu, Chang (b35) 2013; 141
Morabit, Desaulniers, Lodi (b46) 2021; 55
Ropke, Pisinger (b53) 2006; 40
Agustina, Lee, Piplani (b1) 2010; 2
Hallak, Castro, Mannor (b29) 2015
Boysen, Fliedner (b9) 2010; 38
Morabit, Desaulniers, Lodi (b47) 2022
Yan, Chow, Ho, Kuo, Wu, Ying (b65) 2022; 162
Babaki, B., Jena, S.D., Charlin, L., 2022. Neural Column Generation for Capacitated Vehicle Routing. In: AAAI-22 Workshop on Machine Learning for Operations Research. ML4OR.
Shaw (b56) 1997
Amos, Kolter (b2) 2021
Arabani, Ghomi, Zandieh (b3) 2010; 49
Ding, Lim, Rodrigues, Zhu (b17) 2004; 55
Lim, Ma, Miao (b36) 2006
Miao, Cai, Xu (b40) 2014; 41
Gu, Goetschalckx, McGinnis (b28) 2007; 177
Escudero, Garín, Unzueta (b20) 2024; 62
Oh, Hwang, Cha, Lee (b48) 2006; 51
Mazyavkina, Sviridov, Ivanov, Burnaev (b39) 2021; 134
Xi (10.1016/j.cor.2024.106604_b64) 2020; 144
10.1016/j.cor.2024.106604_b31
Boysen (10.1016/j.cor.2024.106604_b9) 2010; 38
Amos (10.1016/j.cor.2024.106604_b2) 2021
Miao (10.1016/j.cor.2024.106604_b41) 2009; 192
Escudero (10.1016/j.cor.2024.106604_b20) 2024; 62
Li (10.1016/j.cor.2024.106604_b34) 2024; 312
Gaudioso (10.1016/j.cor.2024.106604_b24) 2020
Gelareh (10.1016/j.cor.2024.106604_b26) 2016; 249
Morabit (10.1016/j.cor.2024.106604_b46) 2021; 55
Gelareh (10.1016/j.cor.2024.106604_b25) 2020; 91
Zhang (10.1016/j.cor.2024.106604_b67) 2022; 34
Rahbari (10.1016/j.cor.2024.106604_b52) 2019; 70
10.1016/j.cor.2024.106604_b4
Kingma (10.1016/j.cor.2024.106604_b33) 2017
Tsui (10.1016/j.cor.2024.106604_b60) 1992; 23
Bengio (10.1016/j.cor.2024.106604_b6) 2021; 290
Ding (10.1016/j.cor.2024.106604_b17) 2004; 55
Hansen (10.1016/j.cor.2024.106604_b30) 2010; 175
Boloori Arabani (10.1016/j.cor.2024.106604_b8) 2011; 38
Gu (10.1016/j.cor.2024.106604_b28) 2007; 177
Shi (10.1016/j.cor.2024.106604_b57) 2013; 229
Babic (10.1016/j.cor.2024.106604_b5) 1984; 110
Morabit (10.1016/j.cor.2024.106604_b47) 2022
Ropke (10.1016/j.cor.2024.106604_b53) 2006; 40
Gasse (10.1016/j.cor.2024.106604_b23) 2019
Miao (10.1016/j.cor.2024.106604_b40) 2014; 41
Fonseca (10.1016/j.cor.2024.106604_b22) 2019; 275
Václavík (10.1016/j.cor.2024.106604_b61) 2018; 271
Gori (10.1016/j.cor.2024.106604_b27) 2005; Vol. 2
Mladenović (10.1016/j.cor.2024.106604_b43) 2016; 326
Tadumadze (10.1016/j.cor.2024.106604_b58) 2019; 278
10.1016/j.cor.2024.106604_b10
Lim (10.1016/j.cor.2024.106604_b37) 2005; 52
Yan (10.1016/j.cor.2024.106604_b65) 2022; 162
Monemi (10.1016/j.cor.2024.106604_b45) 2023; 151
Dulebenets (10.1016/j.cor.2024.106604_b19) 2021; 565
Mladenović (10.1016/j.cor.2024.106604_b42) 1997; 24
Ou (10.1016/j.cor.2024.106604_b49) 2010; 19
Shakeri (10.1016/j.cor.2024.106604_b55) 2008
Lim (10.1016/j.cor.2024.106604_b38) 2005; 24
Faghih-Mohammadi (10.1016/j.cor.2024.106604_b21) 2023; 322
Hallak (10.1016/j.cor.2024.106604_b29) 2015
Shaw (10.1016/j.cor.2024.106604_b56) 1997
Wang (10.1016/j.cor.2024.106604_b63) 2019; 132
Kim (10.1016/j.cor.2024.106604_b32) 2013; 36
Liao (10.1016/j.cor.2024.106604_b35) 2013; 141
Chmielewski (10.1016/j.cor.2024.106604_b14) 2009; 43
Ding (10.1016/j.cor.2024.106604_b18) 2005; 32
Buijs (10.1016/j.cor.2024.106604_b11) 2016; 37
Yu (10.1016/j.cor.2024.106604_b66) 2008; 184
Quesnel (10.1016/j.cor.2024.106604_b51) 2022; 138
Van Belle (10.1016/j.cor.2024.106604_b62) 2012; 40
Berghman (10.1016/j.cor.2024.106604_b7) 2014; 213
Mazyavkina (10.1016/j.cor.2024.106604_b39) 2021; 134
Chami (10.1016/j.cor.2024.106604_b13) 2020; 23
Oh (10.1016/j.cor.2024.106604_b48) 2006; 51
Lim (10.1016/j.cor.2024.106604_b36) 2006
Scarselli (10.1016/j.cor.2024.106604_b54) 2009; 20
Todosijević (10.1016/j.cor.2024.106604_b59) 2017; 11
Arabani (10.1016/j.cor.2024.106604_b3) 2010; 49
Cohen (10.1016/j.cor.2024.106604_b15) 2009; 5
Deshpande (10.1016/j.cor.2024.106604_b16) 2007; 14
Parsonson (10.1016/j.cor.2024.106604_b50) 2022
Buijs (10.1016/j.cor.2024.106604_b12) 2014; 239
Agustina (10.1016/j.cor.2024.106604_b1) 2010; 2
Monaco (10.1016/j.cor.2024.106604_b44) 2020; 42
References_xml – volume: 177
  start-page: 1
  year: 2007
  end-page: 21
  ident: b28
  article-title: Research on warehouse operation: A comprehensive review
  publication-title: European J. Oper. Res.
– year: 2022
  ident: b47
  article-title: Machine-learning-based arc selection for constrained shortest path problems in column generation
– volume: 322
  start-page: 497
  year: 2023
  end-page: 538
  ident: b21
  article-title: Cross-dock facility for disaster relief operations
  publication-title: Ann. Oper. Res.
– volume: 138
  year: 2022
  ident: b51
  article-title: Deep-learning-based partial pricing in a branch-and-price algorithm for personalized crew rostering
  publication-title: Comput. Oper. Res.
– year: 2020
  ident: b24
  article-title: A Lagrangian heuristics for the truck scheduling problem in multi-door, multi-product Cross-Docking with constant processing time
  publication-title: Omega
– volume: 34
  start-page: 1419
  year: 2022
  end-page: 1436
  ident: b67
  article-title: Learning-based branch-and-price algorithms for the vehicle routing problem with time windows and two-dimensional loading constraints
  publication-title: INFORMS J. Comput.
– volume: 55
  start-page: 760
  year: 2004
  end-page: 768
  ident: b17
  article-title: New heuristics for over-constrained flight to gate assignments
  publication-title: J. Oper. Res. Soc.
– start-page: 857
  year: 2008
  end-page: 864
  ident: b55
  article-title: A generic model for cross-dock truck scheduling and truck-to-door assignment problems
  publication-title: Industrial Informatics, 2008. INDIN 2008. 6th IEEE International Conference on
– year: 1997
  ident: b56
  article-title: A new local search algorithm providing high quality solutions to vehicle routing problems
– volume: 11
  start-page: 1109
  year: 2017
  end-page: 1121
  ident: b59
  article-title: A general variable neighborhood search for solving the uncapacitated
  publication-title: Optim. Lett.
– volume: 275
  start-page: 139
  year: 2019
  end-page: 154
  ident: b22
  article-title: A hybrid Lagrangian metaheuristic for the cross-docking flow shop scheduling problem
  publication-title: European J. Oper. Res.
– volume: 49
  start-page: 741
  year: 2010
  end-page: 756
  ident: b3
  article-title: A multi-criteria cross-docking scheduling with just-in-time approach
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 32
  start-page: 1867
  year: 2005
  end-page: 1880
  ident: b18
  article-title: The over-constrained airport gate assignment problem
  publication-title: Comput. Oper. Res.
– volume: 40
  start-page: 827
  year: 2012
  end-page: 846
  ident: b62
  article-title: Cross-docking: State of the art
  publication-title: Omega
– volume: 132
  start-page: 30
  year: 2019
  end-page: 47
  ident: b63
  article-title: The multi-floor cross-dock door assignment problem: Rising challenges for the new trend in logistics industry
  publication-title: Transp. Res. E
– volume: 23
  start-page: 89:1
  year: 2020
  end-page: 89:64
  ident: b13
  article-title: Machine learning on graphs: A model and comprehensive taxonomy
  publication-title: J. Mach. Learn. Res.
– volume: 70
  start-page: 605
  year: 2019
  end-page: 625
  ident: b52
  article-title: The vehicle routing and scheduling problem with cross-docking for perishable products under uncertainty: Two robust bi-objective models
  publication-title: Appl. Math. Model.
– volume: 24
  start-page: 1097
  year: 1997
  end-page: 1100
  ident: b42
  article-title: Variable neighborhood search
  publication-title: Comput. Oper. Res.
– volume: 141
  start-page: 212
  year: 2013
  end-page: 229
  ident: b35
  article-title: Simultaneous dock assignment and sequencing of inbound trucks under a fixed outbound truck schedule in multi-door cross docking operations
  publication-title: Int. J. Prod. Econ.
– volume: 23
  start-page: 283
  year: 1992
  end-page: 286
  ident: b60
  article-title: An optimal solution to a dock door assignment problem
  publication-title: Comput. Ind. Eng.
– volume: 175
  start-page: 367
  year: 2010
  end-page: 407
  ident: b30
  article-title: Variable neighbourhood search: methods and applications
  publication-title: Ann. Oper. Res.
– volume: 144
  year: 2020
  ident: b64
  article-title: Two-stage conflict robust optimization models for cross-dock truck scheduling problem under uncertainty
  publication-title: Transp. Res. E
– start-page: 688
  year: 2006
  end-page: 697
  ident: b36
  article-title: Truck dock assignment problem with time windows and capacity constraint in transshipment network through cross-docks
  publication-title: Computational Science and Its Applications-ICCSA 2006
– volume: 62
  start-page: 1262
  year: 2024
  end-page: 1276
  ident: b20
  article-title: On solving the cross-dock door assignment problem
  publication-title: Int. J. Prod. Res.
– volume: 229
  start-page: 695
  year: 2013
  end-page: 706
  ident: b57
  article-title: Multi-criteria robust design of a JIT-based cross-docking distribution center for an auto parts supply chain
  publication-title: European J. Oper. Res.
– volume: 162
  year: 2022
  ident: b65
  article-title: Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities
  publication-title: Transp. Res. E
– reference: Bruna, J., Zaremba, W., Szlam, A., Lecun, Y., 2014. Spectral networks and locally connected networks on graphs. In: International Conference on Learning Representations (ICLR2014), CBLS, April 2014.
– volume: 38
  start-page: 1964
  year: 2011
  end-page: 1979
  ident: b8
  article-title: Meta-heuristics implementation for scheduling of trucks in a cross-docking system with temporary storage
  publication-title: Expert Syst. Appl.
– volume: 19
  start-page: 83
  year: 2010
  end-page: 97
  ident: b49
  article-title: Scheduling truck arrivals at an air cargo terminal
  publication-title: Prod. Oper. Manage.
– volume: Vol. 2
  start-page: 729
  year: 2005
  end-page: 734
  ident: b27
  article-title: A new model for learning in graph domains
  publication-title: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, Montreal, Canada.
– reference: Ilić, A., Urošević, D., Brimberg, J., Mladenović, N., 2010.
– volume: 51
  start-page: 288
  year: 2006
  end-page: 296
  ident: b48
  article-title: A dock-door assignment problem for the Korean mail distribution center
  publication-title: Comput. Ind. Eng.
– volume: 110
  start-page: 55
  year: 1984
  end-page: 66
  ident: b5
  article-title: Aircraft stand assignment to minimize walking
  publication-title: J. Transp. Eng.
– volume: 2
  start-page: 47
  year: 2010
  end-page: 54
  ident: b1
  article-title: A review: Mathematical modles for cross docking planning
  publication-title: Int. J. Eng. Bus. Manag.
– volume: 55
  start-page: 815
  year: 2021
  end-page: 831
  ident: b46
  article-title: Machine-learning–based column selection for column generation
  publication-title: Transp. Sci.
– volume: 42
  start-page: 475
  year: 2020
  end-page: 482
  ident: b44
  article-title: Managing loading and discharging operations at cross-docking terminals
  publication-title: Procedia Manuf.
– year: 2021
  ident: b2
  article-title: OptNet: Differentiable optimization as a layer in neural networks
– volume: 5
  start-page: 574
  year: 2009
  end-page: 590
  ident: b15
  article-title: Trailer to door assignment in a synchronous cross-dock operation
  publication-title: Int. J. Logist. Syst. Manag.
– year: 2022
  ident: b50
  article-title: Reinforcement learning for branch-and-bound optimisation using retrospective trajectories
– volume: 290
  start-page: 405
  year: 2021
  end-page: 421
  ident: b6
  article-title: Machine learning for combinatorial optimization: A methodological tour d’horizon
  publication-title: European J. Oper. Res.
– volume: 20
  start-page: 61
  year: 2009
  end-page: 80
  ident: b54
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Netw.
– volume: 326
  start-page: 160
  year: 2016
  end-page: 171
  ident: b43
  article-title: Less is more: Basic variable neighborhood search for minimum differential dispersion problem
  publication-title: Inform. Sci.
– volume: 24
  start-page: 5
  year: 2005
  end-page: 31
  ident: b38
  article-title: Airport gate scheduling with time windows
  publication-title: Artif. Intell. Rev.
– volume: 192
  start-page: 105
  year: 2009
  end-page: 115
  ident: b41
  article-title: Truck dock assignment problem with operational time constraint within cross-docks
  publication-title: European J. Oper. Res.
– volume: 37
  start-page: 213
  year: 2016
  end-page: 230
  ident: b11
  article-title: Just-in-time retail distribution: A systems perspective on cross-docking
  publication-title: J. Bus. Logist.
– volume: 249
  start-page: 1144
  year: 2016
  end-page: 1152
  ident: b26
  article-title: A branch-and-cut algorithm for the truck dock assignment problem with operational time constraints
  publication-title: European J. Oper. Res.
– volume: 213
  start-page: 3
  year: 2014
  end-page: 25
  ident: b7
  article-title: Optimal solutions for a dock assignment problem with trailer transportation
  publication-title: Ann. Oper. Res.
– volume: 14
  start-page: 92
  year: 2007
  end-page: 101
  ident: b16
  article-title: Simulating less-than-truckload terminal operations
  publication-title: Benchmarking: Int. J.
– year: 2015
  ident: b29
  article-title: Contextual Markov decision processes
– volume: 312
  start-page: 473
  year: 2024
  end-page: 492
  ident: b34
  article-title: A flow based formulation and a reinforcement learning based strategic oscillation for cross-dock door assignment
  publication-title: European J. Oper. Res.
– volume: 271
  start-page: 1055
  year: 2018
  end-page: 1069
  ident: b61
  article-title: Accelerating the branch-and-price algorithm using machine learning
  publication-title: European J. Oper. Res.
– year: 2019
  ident: b23
  article-title: Exact combinatorial optimization with graph convolutional neural networks
  publication-title: Proceedings of the 33rd International Conference on Neural Information Processing Systems
– volume: 38
  start-page: 413
  year: 2010
  end-page: 422
  ident: b9
  article-title: Cross dock scheduling: Classification, literature review and research agenda
  publication-title: Omega
– reference: Babaki, B., Jena, S.D., Charlin, L., 2022. Neural Column Generation for Capacitated Vehicle Routing. In: AAAI-22 Workshop on Machine Learning for Operations Research. ML4OR.
– volume: 43
  start-page: 198
  year: 2009
  end-page: 210
  ident: b14
  article-title: Optimizing the door assignment in LTL-terminals
  publication-title: Transp. Sci.
– volume: 239
  start-page: 593
  year: 2014
  end-page: 608
  ident: b12
  article-title: Synchronization in cross-docking networks: A research classification and framework
  publication-title: European J. Oper. Res.
– volume: 565
  start-page: 390
  year: 2021
  end-page: 421
  ident: b19
  article-title: An Adaptive Polyploid Memetic Algorithm for scheduling trucks at a cross-docking terminal
  publication-title: Inform. Sci.
– volume: 91
  year: 2020
  ident: b25
  article-title: A comparative study of formulations for a cross-dock door assignment problem
  publication-title: Omega
– volume: 151
  year: 2023
  ident: b45
  article-title: Dock assignment and truck scheduling problem; consideration of multiple scenarios with resource allocation constraints
  publication-title: Comput. Oper. Res.
– volume: 40
  start-page: 455
  year: 2006
  end-page: 472
  ident: b53
  article-title: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows
  publication-title: Transp. Sci.
– year: 2017
  ident: b33
  article-title: Adam: A method for stochastic optimization
– volume: 41
  start-page: 16
  year: 2014
  end-page: 22
  ident: b40
  article-title: Applying an adaptive tabu search algorithm to optimize truck-dock assignment in the cross-dock management system
  publication-title: Expert Syst. Appl.
– volume: 184
  start-page: 377
  year: 2008
  end-page: 396
  ident: b66
  article-title: Scheduling of inbound and outbound trucks in cross docking systems with temporary storage
  publication-title: European J. Oper. Res.
– volume: 52
  start-page: 724
  year: 2005
  end-page: 733
  ident: b37
  article-title: Transshipment through cross-docks with inventory and time windows
  publication-title: Nav. Res. Logist.
– volume: 36
  start-page: 467
  year: 2013
  end-page: 475
  ident: b32
  article-title: Gate assignment to minimize passenger transit time and aircraft taxi time
  publication-title: J. Guid. Control Dyn.
– volume: 134
  year: 2021
  ident: b39
  article-title: Reinforcement learning for combinatorial optimization: A survey
  publication-title: Comput. Oper. Res.
– volume: 278
  start-page: 343
  year: 2019
  end-page: 362
  ident: b58
  article-title: Integrated truck and workforce scheduling to accelerate the unloading of trucks
  publication-title: European J. Oper. Res.
– year: 2015
  ident: 10.1016/j.cor.2024.106604_b29
– volume: 312
  start-page: 473
  issue: 2
  year: 2024
  ident: 10.1016/j.cor.2024.106604_b34
  article-title: A flow based formulation and a reinforcement learning based strategic oscillation for cross-dock door assignment
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2023.07.014
– volume: 41
  start-page: 16
  issue: 1
  year: 2014
  ident: 10.1016/j.cor.2024.106604_b40
  article-title: Applying an adaptive tabu search algorithm to optimize truck-dock assignment in the cross-dock management system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.07.007
– volume: 271
  start-page: 1055
  issue: 3
  year: 2018
  ident: 10.1016/j.cor.2024.106604_b61
  article-title: Accelerating the branch-and-price algorithm using machine learning
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2018.05.046
– volume: 24
  start-page: 1097
  issue: 11
  year: 1997
  ident: 10.1016/j.cor.2024.106604_b42
  article-title: Variable neighborhood search
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(97)00031-2
– volume: 37
  start-page: 213
  issue: 3
  year: 2016
  ident: 10.1016/j.cor.2024.106604_b11
  article-title: Just-in-time retail distribution: A systems perspective on cross-docking
  publication-title: J. Bus. Logist.
  doi: 10.1111/jbl.12135
– volume: 43
  start-page: 198
  issue: 2
  year: 2009
  ident: 10.1016/j.cor.2024.106604_b14
  article-title: Optimizing the door assignment in LTL-terminals
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.1090.0271
– volume: 141
  start-page: 212
  year: 2013
  ident: 10.1016/j.cor.2024.106604_b35
  article-title: Simultaneous dock assignment and sequencing of inbound trucks under a fixed outbound truck schedule in multi-door cross docking operations
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2012.03.037
– year: 2019
  ident: 10.1016/j.cor.2024.106604_b23
  article-title: Exact combinatorial optimization with graph convolutional neural networks
– volume: 5
  start-page: 574
  issue: 5
  year: 2009
  ident: 10.1016/j.cor.2024.106604_b15
  article-title: Trailer to door assignment in a synchronous cross-dock operation
  publication-title: Int. J. Logist. Syst. Manag.
– volume: 70
  start-page: 605
  year: 2019
  ident: 10.1016/j.cor.2024.106604_b52
  article-title: The vehicle routing and scheduling problem with cross-docking for perishable products under uncertainty: Two robust bi-objective models
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.01.047
– volume: 213
  start-page: 3
  year: 2014
  ident: 10.1016/j.cor.2024.106604_b7
  article-title: Optimal solutions for a dock assignment problem with trailer transportation
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-011-0971-7
– volume: 20
  start-page: 61
  issue: 1
  year: 2009
  ident: 10.1016/j.cor.2024.106604_b54
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2005605
– volume: 49
  start-page: 741
  issue: 5–8
  year: 2010
  ident: 10.1016/j.cor.2024.106604_b3
  article-title: A multi-criteria cross-docking scheduling with just-in-time approach
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-009-2429-5
– volume: 23
  start-page: 89:1
  year: 2020
  ident: 10.1016/j.cor.2024.106604_b13
  article-title: Machine learning on graphs: A model and comprehensive taxonomy
  publication-title: J. Mach. Learn. Res.
– volume: 322
  start-page: 497
  issue: 1
  year: 2023
  ident: 10.1016/j.cor.2024.106604_b21
  article-title: Cross-dock facility for disaster relief operations
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-022-04939-2
– volume: 275
  start-page: 139
  issue: 1
  year: 2019
  ident: 10.1016/j.cor.2024.106604_b22
  article-title: A hybrid Lagrangian metaheuristic for the cross-docking flow shop scheduling problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2018.11.033
– volume: 110
  start-page: 55
  issue: 1
  year: 1984
  ident: 10.1016/j.cor.2024.106604_b5
  article-title: Aircraft stand assignment to minimize walking
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)0733-947X(1984)110:1(55)
– year: 2017
  ident: 10.1016/j.cor.2024.106604_b33
– volume: 184
  start-page: 377
  issue: 1
  year: 2008
  ident: 10.1016/j.cor.2024.106604_b66
  article-title: Scheduling of inbound and outbound trucks in cross docking systems with temporary storage
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2006.10.047
– volume: 290
  start-page: 405
  issue: 2
  year: 2021
  ident: 10.1016/j.cor.2024.106604_b6
  article-title: Machine learning for combinatorial optimization: A methodological tour d’horizon
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2020.07.063
– volume: 151
  year: 2023
  ident: 10.1016/j.cor.2024.106604_b45
  article-title: Dock assignment and truck scheduling problem; consideration of multiple scenarios with resource allocation constraints
  publication-title: Comput. Oper. Res.
– volume: 11
  start-page: 1109
  issue: 6
  year: 2017
  ident: 10.1016/j.cor.2024.106604_b59
  article-title: A general variable neighborhood search for solving the uncapacitated r-allocation p-hub median problem
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-015-0867-6
– volume: 144
  year: 2020
  ident: 10.1016/j.cor.2024.106604_b64
  article-title: Two-stage conflict robust optimization models for cross-dock truck scheduling problem under uncertainty
  publication-title: Transp. Res. E
  doi: 10.1016/j.tre.2020.102123
– year: 2021
  ident: 10.1016/j.cor.2024.106604_b2
– year: 1997
  ident: 10.1016/j.cor.2024.106604_b56
– volume: 249
  start-page: 1144
  issue: 3
  year: 2016
  ident: 10.1016/j.cor.2024.106604_b26
  article-title: A branch-and-cut algorithm for the truck dock assignment problem with operational time constraints
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2015.09.049
– volume: 34
  start-page: 1419
  issue: 3
  year: 2022
  ident: 10.1016/j.cor.2024.106604_b67
  article-title: Learning-based branch-and-price algorithms for the vehicle routing problem with time windows and two-dimensional loading constraints
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2021.1110
– volume: 38
  start-page: 1964
  issue: 3
  year: 2011
  ident: 10.1016/j.cor.2024.106604_b8
  article-title: Meta-heuristics implementation for scheduling of trucks in a cross-docking system with temporary storage
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.07.130
– volume: 177
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.cor.2024.106604_b28
  article-title: Research on warehouse operation: A comprehensive review
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2006.02.025
– volume: 192
  start-page: 105
  issue: 1
  year: 2009
  ident: 10.1016/j.cor.2024.106604_b41
  article-title: Truck dock assignment problem with operational time constraint within cross-docks
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2007.09.031
– volume: 32
  start-page: 1867
  issue: 7
  year: 2005
  ident: 10.1016/j.cor.2024.106604_b18
  article-title: The over-constrained airport gate assignment problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2003.12.003
– volume: 36
  start-page: 467
  issue: 2
  year: 2013
  ident: 10.1016/j.cor.2024.106604_b32
  article-title: Gate assignment to minimize passenger transit time and aircraft taxi time
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.57022
– volume: 55
  start-page: 815
  issue: 4
  year: 2021
  ident: 10.1016/j.cor.2024.106604_b46
  article-title: Machine-learning–based column selection for column generation
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.2021.1045
– volume: 62
  start-page: 1262
  issue: 4
  year: 2024
  ident: 10.1016/j.cor.2024.106604_b20
  article-title: On solving the cross-dock door assignment problem
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2023.2180307
– volume: 326
  start-page: 160
  year: 2016
  ident: 10.1016/j.cor.2024.106604_b43
  article-title: Less is more: Basic variable neighborhood search for minimum differential dispersion problem
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2015.07.044
– volume: 51
  start-page: 288
  issue: 2
  year: 2006
  ident: 10.1016/j.cor.2024.106604_b48
  article-title: A dock-door assignment problem for the Korean mail distribution center
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2006.02.009
– volume: 91
  year: 2020
  ident: 10.1016/j.cor.2024.106604_b25
  article-title: A comparative study of formulations for a cross-dock door assignment problem
  publication-title: Omega
  doi: 10.1016/j.omega.2018.12.004
– volume: 40
  start-page: 455
  issue: 4
  year: 2006
  ident: 10.1016/j.cor.2024.106604_b53
  article-title: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.1050.0135
– volume: 2
  start-page: 47
  issue: 2
  year: 2010
  ident: 10.1016/j.cor.2024.106604_b1
  article-title: A review: Mathematical modles for cross docking planning
  publication-title: Int. J. Eng. Bus. Manag.
– volume: 138
  year: 2022
  ident: 10.1016/j.cor.2024.106604_b51
  article-title: Deep-learning-based partial pricing in a branch-and-price algorithm for personalized crew rostering
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105554
– volume: 162
  year: 2022
  ident: 10.1016/j.cor.2024.106604_b65
  article-title: Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities
  publication-title: Transp. Res. E
  doi: 10.1016/j.tre.2022.102712
– volume: Vol. 2
  start-page: 729
  year: 2005
  ident: 10.1016/j.cor.2024.106604_b27
  article-title: A new model for learning in graph domains
– volume: 132
  start-page: 30
  year: 2019
  ident: 10.1016/j.cor.2024.106604_b63
  article-title: The multi-floor cross-dock door assignment problem: Rising challenges for the new trend in logistics industry
  publication-title: Transp. Res. E
  doi: 10.1016/j.tre.2019.10.006
– year: 2022
  ident: 10.1016/j.cor.2024.106604_b47
– volume: 55
  start-page: 760
  issue: 7
  year: 2004
  ident: 10.1016/j.cor.2024.106604_b17
  article-title: New heuristics for over-constrained flight to gate assignments
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2601736
– volume: 134
  year: 2021
  ident: 10.1016/j.cor.2024.106604_b39
  article-title: Reinforcement learning for combinatorial optimization: A survey
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105400
– volume: 52
  start-page: 724
  issue: 8
  year: 2005
  ident: 10.1016/j.cor.2024.106604_b37
  article-title: Transshipment through cross-docks with inventory and time windows
  publication-title: Nav. Res. Logist.
  doi: 10.1002/nav.20113
– start-page: 857
  year: 2008
  ident: 10.1016/j.cor.2024.106604_b55
  article-title: A generic model for cross-dock truck scheduling and truck-to-door assignment problems
– ident: 10.1016/j.cor.2024.106604_b31
– volume: 40
  start-page: 827
  issue: 6
  year: 2012
  ident: 10.1016/j.cor.2024.106604_b62
  article-title: Cross-docking: State of the art
  publication-title: Omega
  doi: 10.1016/j.omega.2012.01.005
– ident: 10.1016/j.cor.2024.106604_b10
– ident: 10.1016/j.cor.2024.106604_b4
– start-page: 688
  year: 2006
  ident: 10.1016/j.cor.2024.106604_b36
  article-title: Truck dock assignment problem with time windows and capacity constraint in transshipment network through cross-docks
– volume: 229
  start-page: 695
  issue: 3
  year: 2013
  ident: 10.1016/j.cor.2024.106604_b57
  article-title: Multi-criteria robust design of a JIT-based cross-docking distribution center for an auto parts supply chain
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2013.03.013
– volume: 565
  start-page: 390
  year: 2021
  ident: 10.1016/j.cor.2024.106604_b19
  article-title: An Adaptive Polyploid Memetic Algorithm for scheduling trucks at a cross-docking terminal
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.02.039
– volume: 175
  start-page: 367
  issue: 1
  year: 2010
  ident: 10.1016/j.cor.2024.106604_b30
  article-title: Variable neighbourhood search: methods and applications
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-009-0657-6
– volume: 23
  start-page: 283
  issue: 1
  year: 1992
  ident: 10.1016/j.cor.2024.106604_b60
  article-title: An optimal solution to a dock door assignment problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/0360-8352(92)90117-3
– volume: 24
  start-page: 5
  issue: 1
  year: 2005
  ident: 10.1016/j.cor.2024.106604_b38
  article-title: Airport gate scheduling with time windows
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-004-7190-4
– volume: 14
  start-page: 92
  issue: 1
  year: 2007
  ident: 10.1016/j.cor.2024.106604_b16
  article-title: Simulating less-than-truckload terminal operations
  publication-title: Benchmarking: Int. J.
  doi: 10.1108/14635770710730955
– volume: 42
  start-page: 475
  year: 2020
  ident: 10.1016/j.cor.2024.106604_b44
  article-title: Managing loading and discharging operations at cross-docking terminals
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2020.02.045
– year: 2022
  ident: 10.1016/j.cor.2024.106604_b50
– volume: 38
  start-page: 413
  issue: 6
  year: 2010
  ident: 10.1016/j.cor.2024.106604_b9
  article-title: Cross dock scheduling: Classification, literature review and research agenda
  publication-title: Omega
  doi: 10.1016/j.omega.2009.10.008
– year: 2020
  ident: 10.1016/j.cor.2024.106604_b24
  article-title: A Lagrangian heuristics for the truck scheduling problem in multi-door, multi-product Cross-Docking with constant processing time
  publication-title: Omega
– volume: 278
  start-page: 343
  issue: 1
  year: 2019
  ident: 10.1016/j.cor.2024.106604_b58
  article-title: Integrated truck and workforce scheduling to accelerate the unloading of trucks
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2019.04.024
– volume: 239
  start-page: 593
  issue: 3
  year: 2014
  ident: 10.1016/j.cor.2024.106604_b12
  article-title: Synchronization in cross-docking networks: A research classification and framework
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2014.03.012
– volume: 19
  start-page: 83
  issue: 1
  year: 2010
  ident: 10.1016/j.cor.2024.106604_b49
  article-title: Scheduling truck arrivals at an air cargo terminal
  publication-title: Prod. Oper. Manage.
  doi: 10.1111/j.1937-5956.2009.01068.x
SSID ssj0000721
Score 2.4651139
Snippet In this study, we present a novel mathematical model for the integrated challenge of dock scheduling and truck sequencing in cross-docking facilities. Many...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 106604
SubjectTerms Branch-and-price
Computer Science
Cross docking
Dantzig–Wolfe reformulation
Logistics
Mathematics
Sequencing and scheduling
Title Solution algorithms for dock scheduling and truck sequencing in cross-docks: A neural branch-and-price and a metaheuristic
URI https://dx.doi.org/10.1016/j.cor.2024.106604
https://hal.science/hal-04538583
Volume 167
WOSCitedRecordID wos001224317600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-765X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000721
  issn: 0305-0548
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DiF44FJAjJssxBOVUeLYufBWocFAY0IwpL5FjuOQTl1WraOa-CX8XI6v6Yo2sQdeosqxrSjfV_sc55zvIPSK8QZgVpSAOUAJE3lNRE4r0gjY31QFLkRiEoX3s4ODfDotvgwGv30uzGqedV1-fl4s_ivU0AZg69TZa8AdJoUG-A2gwxVgh-s_Ae8PusZi_uMEXP_WSi6Ma1j5xuDLwt4y95mJWjwWGm04tctuMfsm0b2XNm1dS14CkJUuwdESGEYWWonIyrzqEtSiVT-t4PO6qevrRSwNu04W6tRF3Tl9oXAODcuKOjZBBV9FOztWLay8QhvSPXE_KHDAlTkB-tZCp3Djs9BxtDZnTGnhyfVTDMpCxGvI3tJBhNyqboaV2VbqcGsrOK-pLVX817JvTyCOADUt8UrZm77vRYntja0vBCT6WLejEqYo9RSlnWILbdOMF_kQbU8-7k4_9bt8ZnL6wnP7L-YmdnDjOS6zebZaf3pvrJnDe-iOc0PwxNLnPhqoboRu-iyIEbrr0cNu8R-h22vSlQ_QL08z3NMMA82wJg7uaYaBJdjQDPc0w7MOr9HsLZ5gSzK8STIzXOALJHuIvr_fPXy3R1wdDyITnp6RVKRM1DGYnkkSSSbjWso6kvDWBIubXKgii2Ukad5EnFdCRSIVoqikzCJtrRbJIzTsgIqPEaZZwytaS8UYZZlIikjyKqWKJ7RQ4AnsoMi_6VI6kXtda2VeXorwDnodhiyswstVnZmHr3QmqjU9S6DiVcNeAtRhei3pvjfZL3UbuFT623yyip9c50Geolv93-gZGgKQ6jm6IVdns-XpC0fWP_zYv3A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+algorithms+for+dock+scheduling+and+truck+sequencing+in+cross-docks%3A+A+neural+branch-and-price+and+a+metaheuristic&rft.jtitle=Computers+%26+operations+research&rft.au=Monemi%2C+Rahimeh+Neamatian&rft.au=Gelareh%2C+Shahin&rft.au=Maculan%2C+Nelson&rft.date=2024-07-01&rft.issn=0305-0548&rft.volume=167&rft.spage=106604&rft_id=info:doi/10.1016%2Fj.cor.2024.106604&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cor_2024_106604
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon