Relationships between Robinson metric regularity and Lipschitz-like behavior of implicit multifunctions
By constructing some suitable examples, Jeyakumar and Yen (2004) [1] have shown that the Robinson metric regularity (Rmr) and the Lipschitz-like property (Llp) of implicit multifunctions are not equivalent. This paper clarifies relationships between the two properties of implicit multifunctions. It...
Uloženo v:
| Vydáno v: | Nonlinear analysis Ročník 72; číslo 9; s. 3594 - 3601 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier Ltd
01.05.2010
Elsevier |
| Témata: | |
| ISSN: | 0362-546X, 1873-5215 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | By constructing some suitable examples, Jeyakumar and Yen (2004)
[1] have shown that the Robinson metric regularity (Rmr) and the Lipschitz-like property (Llp) of implicit multifunctions are not equivalent. This paper clarifies relationships between the two properties of implicit multifunctions. It turns out that the (reasonable) sufficient conditions for having (Rmr)
⇒
(Llp) are quite different from those for the validity of the reverse implication. The implicit function theorem due to Yen and Yao (2009)
[2] serves as a tool for our analysis of (Rmr) and (Llp). |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0362-546X 1873-5215 |
| DOI: | 10.1016/j.na.2009.12.039 |