Exact Algorithms for Treewidth and Minimum Fill-In
We show that the treewidth and the minimum fill-in of an $n$-vertex graph can be computed in time $\mathcal{O}(1.8899^n)$. Our results are based on combinatorial proofs that an $n$-vertex graph has $\mathcal{O}(1.7087^n)$ minimal separators and $\mathcal{O}(1.8135^n)$ potential maximal cliques. We a...
Saved in:
| Published in: | SIAM journal on computing Vol. 38; no. 3; pp. 1058 - 1079 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2008
|
| Subjects: | |
| ISSN: | 0097-5397, 1095-7111 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We show that the treewidth and the minimum fill-in of an $n$-vertex graph can be computed in time $\mathcal{O}(1.8899^n)$. Our results are based on combinatorial proofs that an $n$-vertex graph has $\mathcal{O}(1.7087^n)$ minimal separators and $\mathcal{O}(1.8135^n)$ potential maximal cliques. We also show that for the class of asteroidal triple-free graphs the running time of our algorithms can be reduced to $\mathcal{O}(1.4142^n)$. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0097-5397 1095-7111 |
| DOI: | 10.1137/050643350 |