Solving generalized semi-infinite programs by reduction to simpler problems

The article intends to give a unifying treatment of different approaches to solve generalized semi-infinite programs by transformation to simpler problems. In particular dual-, penalty-, discretization-, reduction-, and Karush-Kuhn-Tucker (KKT)-methods are applied to obtain equivalent problems or re...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization Ročník 53; číslo 1; s. 19 - 38
Hlavní autor: Still, G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis Group 01.02.2004
Témata:
ISSN:0233-1934, 1029-4945
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The article intends to give a unifying treatment of different approaches to solve generalized semi-infinite programs by transformation to simpler problems. In particular dual-, penalty-, discretization-, reduction-, and Karush-Kuhn-Tucker (KKT)-methods are applied to obtain equivalent problems or relaxations of a simpler structure. The relaxations are viewed as a perturbation P τ of the original problem P, depending on a perturbation parameter τ > 0, and are analyzed by using parametric programming techniques. We give convergence results and results on the rate of convergence for the minimal values and the optimal solutions of P τ when τ tends toward 0. We review earlier studies and present new ones.
ISSN:0233-1934
1029-4945
DOI:10.1080/02331930410001661190