A 1.2-V 8.3-nJ CMOS Humidity Sensor for RFID Applications

This paper presents a fully integrated CMOS humidity sensor for a smart RFID sensor platform. The sensing element is a CMOS-compatible capacitive humidity sensor, which consists of top-metal finger-structure electrodes covered by a humidity-sensitive polyimide layer. Its humidity-sensitive capacitan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits Jg. 48; H. 10; S. 2469 - 2477
Hauptverfasser: Zhichao Tan, Daamen, Roel, Humbert, Aurelie, Ponomarev, Youri V., Youngcheol Chae, Pertijs, Michiel A. P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.10.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9200, 1558-173X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents a fully integrated CMOS humidity sensor for a smart RFID sensor platform. The sensing element is a CMOS-compatible capacitive humidity sensor, which consists of top-metal finger-structure electrodes covered by a humidity-sensitive polyimide layer. Its humidity-sensitive capacitance is digitized by an energy-efficient capacitance-to-digital converter (CDC) based on a third-order delta-sigma modulator. This CDC employs current-efficient operational transconductance amplifiers based on current-starved cascoded inverters, whose limited output swing is accommodated by employing a feedforward loop-filter topology. A programmable offset capacitor is included to remove the sensor's baseline capacitance and thus reduce the required dynamic range. To reduce offset errors due to charge injection of the switches, the entire system is auto-zeroed. The proposed humidity sensor has been realized in a 0.16- μm CMOS technology. Measurement results show that the CDC performs a 12.5-bit capacitance-to-digital conversion in a measurement time of 0.8 ms, while consuming only 8.6 μA from a 1.2-V supply. This corresponds to a state-of-the-art figure-of-merit of 1.4 pJ/conversion-step. Combined with the co-integrated humidity sensing element, it provides a resolution of 0.05% RH in the range from 30% RH to 100% RH while consuming only 8.3 nJ per measurement, which is an order-of-magnitude less energy than the state-of-the-art.
AbstractList This paper presents a fully integrated CMOS humidity sensor for a smart RFID sensor platform. The sensing element is a CMOS-compatible capacitive humidity sensor, which consists of top-metal finger-structure electrodes covered by a humidity-sensitive polyimide layer. Its humidity-sensitive capacitance is digitized by an energy-efficient capacitance-to-digital converter (CDC) based on a third-order delta-sigma modulator. This CDC employs current-efficient operational transconductance amplifiers based on current-starved cascoded inverters, whose limited output swing is accommodated by employing a feedforward loop-filter topology. A programmable offset capacitor is included to remove the sensor's baseline capacitance and thus reduce the required dynamic range. To reduce offset errors due to charge injection of the switches, the entire system is auto-zeroed. The proposed humidity sensor has been realized in a 0.16- μm CMOS technology. Measurement results show that the CDC performs a 12.5-bit capacitance-to-digital conversion in a measurement time of 0.8 ms, while consuming only 8.6 μA from a 1.2-V supply. This corresponds to a state-of-the-art figure-of-merit of 1.4 pJ/conversion-step. Combined with the co-integrated humidity sensing element, it provides a resolution of 0.05% RH in the range from 30% RH to 100% RH while consuming only 8.3 nJ per measurement, which is an order-of-magnitude less energy than the state-of-the-art.
This paper presents a fully integrated CMOS humidity sensor for a smart RFID sensor platform. The sensing element is a CMOS-compatible capacitive humidity sensor, which consists of top-metal finger-structure electrodes covered by a humidity-sensitive polyimide layer. Its humidity-sensitive capacitance is digitized by an energy-efficient capacitance-to-digital converter (CDC) based on a third-order delta-sigma modulator. This CDC employs current-efficient operational transconductance amplifiers based on current-starved cascoded inverters, whose limited output swing is accommodated by employing a feedforward loop-filter topology. A programmable offset capacitor is included to remove the sensor's baseline capacitance and thus reduce the required dynamic range. To reduce offset errors due to charge injection of the switches, the entire system is auto-zeroed. The proposed humidity sensor has been realized in a 0.16- mu hbox m CMOS technology. Measurement results show that the CDC performs a 12.5-bit capacitance-to-digital conversion in a measurement time of 0.8 ms, while consuming only 8.6 mu hbox A from a 1.2-V supply. This corresponds to a state-of-the-art figure-of-merit of 1.4 pJ/conversion-step. Combined with the co-integrated humidity sensing element, it provides a resolution of 0.05% RH in the range from 30% RH to 100% RH while consuming only 8.3 nJ per measurement, which is an order-of-magnitude less energy than the state-of-the-art.
This paper presents a fully integrated CMOS humidity sensor for a smart RFID sensor platform. The sensing element is a CMOS-compatible capacitive humidity sensor, which consists of top-metal finger-structure electrodes covered by a humidity-sensitive polyimide layer. Its humidity-sensitive capacitance is digitized by an energy-efficient capacitance-to-digital converter (CDC) based on a third-order delta-sigma modulator. This CDC employs current-efficient operational transconductance amplifiers based on current-starved cascoded inverters, whose limited output swing is accommodated by employing a feedforward loop-filter topology. A programmable offset capacitor is included to remove the sensor's baseline capacitance and thus reduce the required dynamic range. To reduce offset errors due to charge injection of the switches, the entire system is auto-zeroed. The proposed humidity sensor has been realized in a 0.16-[Formula Omitted] CMOS technology. Measurement results show that the CDC performs a 12.5-bit capacitance-to-digital conversion in a measurement time of 0.8 ms, while consuming only 8.6 [Formula Omitted] from a 1.2-V supply. This corresponds to a state-of-the-art figure-of-merit of 1.4 pJ/conversion-step. Combined with the co-integrated humidity sensing element, it provides a resolution of 0.05% RH in the range from 30% RH to 100% RH while consuming only 8.3 nJ per measurement, which is an order-of-magnitude less energy than the state-of-the-art.
Author Daamen, Roel
Zhichao Tan
Pertijs, Michiel A. P.
Humbert, Aurelie
Youngcheol Chae
Ponomarev, Youri V.
Author_xml – sequence: 1
  surname: Zhichao Tan
  fullname: Zhichao Tan
  email: zhichao.tan@gmail.com
  organization: Electron. Instrum. Lab., Delft Univ. of Technol., Delft, Netherlands
– sequence: 2
  givenname: Roel
  surname: Daamen
  fullname: Daamen, Roel
  organization: NXP Semicond., Central R&D, Leuven, Belgium
– sequence: 3
  givenname: Aurelie
  surname: Humbert
  fullname: Humbert, Aurelie
  organization: NXP Semicond., Central R&D, Leuven, Belgium
– sequence: 4
  givenname: Youri V.
  surname: Ponomarev
  fullname: Ponomarev, Youri V.
  organization: NXP Semicond., Central R&D, Leuven, Belgium
– sequence: 5
  surname: Youngcheol Chae
  fullname: Youngcheol Chae
  email: ychae@yonsei.ac.kr
  organization: Dept. of Electr. & Electron. Eng., Yonsei Univ., Seoul, South Korea
– sequence: 6
  givenname: Michiel A. P.
  surname: Pertijs
  fullname: Pertijs, Michiel A. P.
  email: M.A.P.Pertijs@tudelft.nl
  organization: Electron. Instrum. Lab., Delft Univ. of Technol., Delft, Netherlands
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27784246$$DView record in Pascal Francis
BookMark eNp9kE1Lw0AQhhepYFv9AeIlIIKXxP3-OJZobaVSsCrelnW7gS1pEnfTQ_-9qS099OBhGAaed2Z4BqBX1ZUD4BrBDCGoHl4WizzDEJEMY8E4R2egjxiTKRLkqwf6ECKZKgzhBRjEuOpGSiXqAzVKUIbTz0RmJK1ekvx1vkgmm7Vf-nabLFwV65AUXb2Np4_JqGlKb03r6ypegvPClNFdHfoQfIyf3vNJOps_T_PRLLWE8TallkBJmJXUUM6c4ohYCwVRS1xwp6CAWGAOqcXMKO4kU9CqbyKl4KRQdkmG4H6_twn1z8bFVq99tK4sTeXqTdSIQU4UwQR26O0Juqo3oeq-04gSJjHDjHXU3YEy0ZqyCKayPuom-LUJW42FkBRT3nFoz9lQxxhccUQQ1Dvpeidd76Trg_QuI04y1rd_vtpgfPlv8maf9M654yXOJBWKkl_M3Ypq
CODEN IJSCBC
CitedBy_id crossref_primary_10_3390_mi14040731
crossref_primary_10_1109_TCSII_2014_2387551
crossref_primary_10_1109_TCSI_2016_2525098
crossref_primary_10_1109_JSEN_2016_2577688
crossref_primary_10_1109_JSEN_2021_3067804
crossref_primary_10_1109_JIOT_2022_3164919
crossref_primary_10_1109_JSEN_2020_3035109
crossref_primary_10_1109_JSSC_2022_3222229
crossref_primary_10_1109_TCSI_2017_2730600
crossref_primary_10_1109_JSEN_2024_3396842
crossref_primary_10_1109_JSSC_2019_2907041
crossref_primary_10_1109_TCSI_2021_3134010
crossref_primary_10_1016_j_sna_2020_111838
crossref_primary_10_1109_TCSI_2023_3237694
crossref_primary_10_1109_JSEN_2014_2331704
crossref_primary_10_3390_s151025564
crossref_primary_10_3390_s140508728
crossref_primary_10_1109_JSSC_2021_3114189
crossref_primary_10_1109_TCSI_2021_3128811
crossref_primary_10_1109_ACCESS_2019_2922840
crossref_primary_10_1109_TIE_2017_2726982
crossref_primary_10_3390_s17010108
crossref_primary_10_1109_JSSC_2017_2750326
crossref_primary_10_1109_JSSC_2017_2734900
crossref_primary_10_1109_JSEN_2017_2695124
crossref_primary_10_1109_ACCESS_2020_3018130
crossref_primary_10_1109_JSSC_2020_3030995
crossref_primary_10_3390_mi10090561
crossref_primary_10_1109_TMTT_2020_3017674
crossref_primary_10_1109_JSSC_2016_2587861
crossref_primary_10_1016_j_sna_2014_07_015
crossref_primary_10_1109_JSSC_2024_3353008
crossref_primary_10_1016_j_mejo_2025_106712
crossref_primary_10_1109_JSSC_2020_3005812
crossref_primary_10_1109_TIM_2014_2365405
crossref_primary_10_1109_JSEN_2018_2791426
crossref_primary_10_1109_TCSII_2018_2869103
crossref_primary_10_1109_JSSC_2020_2989585
crossref_primary_10_1109_JSSC_2018_2866374
crossref_primary_10_1109_TCSII_2023_3297856
crossref_primary_10_1109_JSSC_2015_2435736
crossref_primary_10_1049_el_2017_3593
crossref_primary_10_1109_TCSI_2021_3095622
crossref_primary_10_1109_JSSC_2017_2693237
crossref_primary_10_3390_s150306872
crossref_primary_10_1016_j_aeue_2022_154286
crossref_primary_10_1109_JSSC_2022_3184531
crossref_primary_10_3390_electronics8010080
crossref_primary_10_1109_JSSC_2016_2633510
crossref_primary_10_1109_TCSI_2017_2777872
crossref_primary_10_3390_electronics14071386
crossref_primary_10_1016_j_sna_2016_04_038
crossref_primary_10_1109_JSSC_2023_3344114
crossref_primary_10_1109_JSSC_2024_3422671
crossref_primary_10_1109_TCSI_2016_2608905
crossref_primary_10_35848_1347_4065_acb659
crossref_primary_10_1109_TCSII_2019_2898365
crossref_primary_10_1109_JSEN_2014_2361530
crossref_primary_10_1038_srep29672
crossref_primary_10_1016_j_snb_2014_11_043
crossref_primary_10_1109_JSSC_2024_3354243
crossref_primary_10_3390_s19173673
crossref_primary_10_1109_JSEN_2017_2681065
crossref_primary_10_1109_TIM_2018_2844899
crossref_primary_10_1109_TIM_2014_2361552
crossref_primary_10_3390_s20143858
crossref_primary_10_23919_cje_2023_00_425
crossref_primary_10_1109_JIOT_2025_3553153
crossref_primary_10_1109_TCSII_2025_3551361
crossref_primary_10_1088_0957_0233_25_12_125104
crossref_primary_10_1109_JSSC_2024_3371878
crossref_primary_10_1109_TCSII_2014_2327312
crossref_primary_10_1109_JETCAS_2015_2502135
crossref_primary_10_1109_JSSC_2023_3344587
crossref_primary_10_1109_JSSC_2022_3167912
crossref_primary_10_1109_JSSC_2015_2413842
crossref_primary_10_1109_JSSC_2019_2930140
crossref_primary_10_1109_JSEN_2020_3017508
crossref_primary_10_3390_s20195657
Cites_doi 10.1109/JSSC.2012.2191212
10.1109/TCSII.2010.2104015
10.1109/VLSIC.1995.520681
10.1109/9780470546772
10.1109/84.925735
10.1016/j.snb.2009.04.019
10.1007/978-94-007-0596-8
10.1109/JSSC.2005.858476
10.1109/5.542410
10.1109/ISCAS.2009.5117967
10.1109/ICSENS.2009.5398415
10.1049/el:20010542
10.1109/TCSI.2006.887978
10.1109/JSSC.2008.2010973
10.1016/j.jfoodeng.2009.02.004
10.1109/TCSI.2004.826202
10.1109/TED.2007.907165
10.1109/JSSC.2009.2031059
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2013
Copyright_xml – notice: 2014 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SP
8FD
L7M
F28
FR3
DOI 10.1109/JSSC.2013.2275661
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Engineering Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1558-173X
EndPage 2477
ExternalDocumentID 3080584911
27784246
10_1109_JSSC_2013_2275661
6584794
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RNS
TAE
TN5
UKR
VH1
AAYXX
CITATION
8W4
IPNFZ
IQODW
RIG
XFK
7SP
8FD
L7M
F28
FR3
ID FETCH-LOGICAL-c356t-4c30835c84a465e9613cc0739d2f6e9070272604c25a96e8590c9b388763f9cd3
IEDL.DBID RIE
ISICitedReferencesCount 122
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324929700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9200
IngestDate Wed Oct 01 14:26:05 EDT 2025
Mon Jun 30 10:20:17 EDT 2025
Fri Nov 25 01:07:29 EST 2022
Sat Nov 29 02:50:02 EST 2025
Tue Nov 18 22:23:52 EST 2025
Tue Aug 26 16:41:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Polyimide
Moisture sensor
Digital converter
Sigma-delta modulation
humidity sensor
delta-sigma modulator
Complementary MOS technology
Humidity
Electric power consumption
Minimum energy
Feedforward
Transconductance
capacitive-sensor interface
current-starved cascoded inverter (CSCI)
Inverter
Modulator
Operational amplifier
Capacitive transducer
Third order
Measurement sensor
Baseline
Capacitance-to-digital converter
Intelligent sensors
Capacitance
Low-power electronics
Capacitor
Radio frequency identification
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-4c30835c84a465e9613cc0739d2f6e9070272604c25a96e8590c9b388763f9cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1435825255
PQPubID 85482
PageCount 9
ParticipantIDs ieee_primary_6584794
crossref_primary_10_1109_JSSC_2013_2275661
crossref_citationtrail_10_1109_JSSC_2013_2275661
pascalfrancis_primary_27784246
proquest_journals_1435825255
proquest_miscellaneous_1506393230
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE journal of solid-state circuits
PublicationTitleAbbrev JSSC
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
tan (ref7) 2011
ref10
ref2
ref1
van der goes (ref20) 1996
ref16
pertijs (ref27) 2005; 40
pertijs (ref11) 2012
ref24
ref23
k m r inen (ref14) 2009; 44
ref26
ref25
danneels (ref19) 2011
ref22
ref21
tan (ref8) 2012
(ref6) 0
(ref17) 0
ref9
ref4
ref3
ref5
jawed (ref15) 2008
xia (ref18) 2012
References_xml – ident: ref12
  doi: 10.1109/JSSC.2012.2191212
– ident: ref16
  doi: 10.1109/TCSII.2010.2104015
– start-page: 287
  year: 2011
  ident: ref19
  article-title: A fully-digital, 0.3 V, 270 nW capacitive sensor interface without external references
  publication-title: Proc Eur Solid-State Circuits Conf
– ident: ref10
  doi: 10.1109/VLSIC.1995.520681
– start-page: 105
  year: 2011
  ident: ref7
  article-title: A 1.8 V 11 <tex Notation="TeX">$\mu{\rm W}$</tex> CMOS smart humidity sensor for RFID sensing applications
  publication-title: Proc IEEE Asian Solid-State Circuits Conf
– ident: ref21
  doi: 10.1109/9780470546772
– year: 2012
  ident: ref11
  publication-title: Nyquist AD Converters Sensor Interfaces and Robustness Advances in Analog Circuit Design
– start-page: 442
  year: 2008
  ident: ref15
  article-title: A 828 <tex Notation="TeX">$\mu{\rm W}$</tex> 1.8 V 80 dB dynamic range readout interface for a MEMS capacitive microphone
  publication-title: Proc Eur Solid-State Circuits Conf
– ident: ref9
  doi: 10.1109/84.925735
– ident: ref2
  doi: 10.1016/j.snb.2009.04.019
– ident: ref25
  doi: 10.1007/978-94-007-0596-8
– volume: 40
  start-page: 2805
  year: 2005
  ident: ref27
  article-title: A CMOS temperature sensor with a <tex Notation="TeX">$3\sigma$</tex> inaccuracy of <tex Notation="TeX">$\pm 0.1~^{\circ}{\hbox{C}}$</tex> from <tex Notation="TeX">$-55~^{\circ}{\hbox{C}}$</tex> to 125 <tex Notation="TeX">$~^{\circ}{\hbox{C}}$</tex>
  publication-title: IEEE J Solid-State Circuits
  doi: 10.1109/JSSC.2005.858476
– year: 0
  ident: ref6
  publication-title: SHT21 Datasheet
– ident: ref26
  doi: 10.1109/5.542410
– start-page: 197
  year: 2012
  ident: ref18
  article-title: A capacitance-to-digital converter for displacement sensing with 17 b resolution and 20 <tex Notation="TeX">$\mu{\rm s}$</tex> conversion time
  publication-title: Int Solid-State Circuits Conf Dig Tech Papers
– start-page: 24
  year: 2012
  ident: ref8
  article-title: A 1.2 V 8.3 nJ energy-efficient CMOS humidity sensor for RFID applications
  publication-title: Symp VLSI Circuits Dig Tech Papers
– ident: ref3
  doi: 10.1109/ISCAS.2009.5117967
– ident: ref5
  doi: 10.1109/ICSENS.2009.5398415
– ident: ref23
  doi: 10.1049/el:20010542
– ident: ref13
  doi: 10.1109/TCSI.2006.887978
– year: 1996
  ident: ref20
  publication-title: Low-cost smart sensor interfacing
– ident: ref24
  doi: 10.1109/JSSC.2008.2010973
– ident: ref1
  doi: 10.1016/j.jfoodeng.2009.02.004
– year: 0
  ident: ref17
  publication-title: AD7156 Datasheet
– ident: ref22
  doi: 10.1109/TCSI.2004.826202
– ident: ref4
  doi: 10.1109/TED.2007.907165
– volume: 44
  start-page: 3193
  year: 2009
  ident: ref14
  article-title: A micropower <tex Notation="TeX">$\Delta\Sigma$</tex>-based interface ASIC for a capacitive 3-axis micro-accelerometer
  publication-title: IEEE J Solid-State Circuits
  doi: 10.1109/JSSC.2009.2031059
SSID ssj0014481
Score 2.3897796
Snippet This paper presents a fully integrated CMOS humidity sensor for a smart RFID sensor platform. The sensing element is a CMOS-compatible capacitive humidity...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2469
SubjectTerms Amplifiers
Applied sciences
Capacitance
Capacitance-to-digital converter
capacitive-sensor interface
Capacitors
Circuit properties
CMOS
CMOS integrated circuits
current-starved cascoded inverter (CSCI)
delta-sigma modulator
Design. Technologies. Operation analysis. Testing
Electric, optical and optoelectronic circuits
Electronic circuits
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Exact sciences and technology
Humidity
humidity sensor
Integrated circuits
Inverters
Modulation
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Sensors
Signal convertors
Title A 1.2-V 8.3-nJ CMOS Humidity Sensor for RFID Applications
URI https://ieeexplore.ieee.org/document/6584794
https://www.proquest.com/docview/1435825255
https://www.proquest.com/docview/1506393230
Volume 48
WOSCitedRecordID wos000324929700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-173X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014481
  issn: 0018-9200
  databaseCode: RIE
  dateStart: 19660101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_c8EEf_Jpi_RgRfBK7dU2aNo9jOlT8wqnsrXRpAgPpZB_-_d61tUwUwbdCEhp-l-vdr3e5Azg1JgitNoGbIAFyhVYj1DklXbQlhlupfZ3mkr4N7--j4VA9rsB5dRfGGJMnn5kWPeax_HSiF_SrrE3WEs9PDWphKIu7WlXEAGlG0R2vgwqMoi8jmB1PtW8Ggx4lcfGWT8XOZeebDcqbqlBKZDJDVGzRzuLHlzk3N_3N_210CzZKt5J1i3OwDSsm24H1pWKDDVBdhkzVfWVRi7vZDevdPQwYSnOcoiPOBkhnJ1OGLix76l9fsO5SYHsXXvqXz70rt2yc4GoeyDlCzsmz0pFIhAyMQpOtNYXkUt9Kg3QYuSjyGKH9IFHSRIHyUEg8oup0VumU70E9m2RmH5iWIh1Zm4jQUiVBO6L25CIVOoxSLT3ugPcFZazLquLU3OItztmFp2JCPyb04xJ9B86qJe9FSY2_JjcI3mpiiawDzW_yqsb9MIyEL6QDR18CjEutnMXkGyIjRhblwEk1jPpEQZIkM5MFzgnIaePIzA5-f_UhrNEGi4S-I6jPpwtzDKv6Yz6eTZv5ofwERr_ZkQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8AvXBb7E6NYJPYmfXpGnzOKbDjznFqfhWujQBQTrZh3-_d20tE0XwrZCEht_levfrXe4Ajo0JQqtN4CZIgFyhVR91TkkXbYnhVmpfp7mkO2G3G728qPsZOK3uwhhj8uQzU6fHPJafDvSEfpWdkbXE8zML84EQvlfc1qpiBkg0iv54DVRhFH4Zw2x46uy612tRGhev-1TuXDa-WaG8rQolRSYjxMUWDS1-fJtzg9Ne_d9W12CldCxZszgJ6zBjsg1Ynio3uAmqyZCrus8sqnM3u2at27seQ3m-puiKsx4S2sGQoRPLHtpX56w5Fdregqf2xWPr0i1bJ7iaB3KMoHPyrXQkEiEDo9Boa01BudS30iAhRjaKTEZoP0iUNFGgPBQTj6g-nVU65dswlw0yswNMS5H2rU1EaKmWoO1Tg3KRCh1GqZYed8D7gjLWZV1xam_xFuf8wlMxoR8T-nGJvgMn1ZL3oqjGX5M3Cd5qYomsAwff5FWN-2EYCV9IB2pfAoxLvRzF5B0iJ0Ye5cBRNYwaRWGSJDODCc4JyG3jyM12f3_1ISxePt524s5V92YPlmizRXpfDebGw4nZhwX9MX4dDQ_yA_oJxWXc2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+1.2-V+8.3-nJ+CMOS+Humidity+Sensor+for+RFID+Applications&rft.jtitle=IEEE+journal+of+solid-state+circuits&rft.au=Tan%2C+Zhichao&rft.au=Daamen%2C+Roel&rft.au=Humbert%2C+Aurelie&rft.au=Ponomarev%2C+Youri+V&rft.date=2013-10-01&rft.issn=0018-9200&rft.eissn=1558-173X&rft.volume=48&rft.issue=10&rft.spage=2469&rft.epage=2477&rft_id=info:doi/10.1109%2FJSSC.2013.2275661&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9200&client=summon