A 1.2-V 8.3-nJ CMOS Humidity Sensor for RFID Applications
This paper presents a fully integrated CMOS humidity sensor for a smart RFID sensor platform. The sensing element is a CMOS-compatible capacitive humidity sensor, which consists of top-metal finger-structure electrodes covered by a humidity-sensitive polyimide layer. Its humidity-sensitive capacitan...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of solid-state circuits Jg. 48; H. 10; S. 2469 - 2477 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
IEEE
01.10.2013
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9200, 1558-173X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper presents a fully integrated CMOS humidity sensor for a smart RFID sensor platform. The sensing element is a CMOS-compatible capacitive humidity sensor, which consists of top-metal finger-structure electrodes covered by a humidity-sensitive polyimide layer. Its humidity-sensitive capacitance is digitized by an energy-efficient capacitance-to-digital converter (CDC) based on a third-order delta-sigma modulator. This CDC employs current-efficient operational transconductance amplifiers based on current-starved cascoded inverters, whose limited output swing is accommodated by employing a feedforward loop-filter topology. A programmable offset capacitor is included to remove the sensor's baseline capacitance and thus reduce the required dynamic range. To reduce offset errors due to charge injection of the switches, the entire system is auto-zeroed. The proposed humidity sensor has been realized in a 0.16- μm CMOS technology. Measurement results show that the CDC performs a 12.5-bit capacitance-to-digital conversion in a measurement time of 0.8 ms, while consuming only 8.6 μA from a 1.2-V supply. This corresponds to a state-of-the-art figure-of-merit of 1.4 pJ/conversion-step. Combined with the co-integrated humidity sensing element, it provides a resolution of 0.05% RH in the range from 30% RH to 100% RH while consuming only 8.3 nJ per measurement, which is an order-of-magnitude less energy than the state-of-the-art. |
|---|---|
| AbstractList | This paper presents a fully integrated CMOS humidity sensor for a smart RFID sensor platform. The sensing element is a CMOS-compatible capacitive humidity sensor, which consists of top-metal finger-structure electrodes covered by a humidity-sensitive polyimide layer. Its humidity-sensitive capacitance is digitized by an energy-efficient capacitance-to-digital converter (CDC) based on a third-order delta-sigma modulator. This CDC employs current-efficient operational transconductance amplifiers based on current-starved cascoded inverters, whose limited output swing is accommodated by employing a feedforward loop-filter topology. A programmable offset capacitor is included to remove the sensor's baseline capacitance and thus reduce the required dynamic range. To reduce offset errors due to charge injection of the switches, the entire system is auto-zeroed. The proposed humidity sensor has been realized in a 0.16- μm CMOS technology. Measurement results show that the CDC performs a 12.5-bit capacitance-to-digital conversion in a measurement time of 0.8 ms, while consuming only 8.6 μA from a 1.2-V supply. This corresponds to a state-of-the-art figure-of-merit of 1.4 pJ/conversion-step. Combined with the co-integrated humidity sensing element, it provides a resolution of 0.05% RH in the range from 30% RH to 100% RH while consuming only 8.3 nJ per measurement, which is an order-of-magnitude less energy than the state-of-the-art. This paper presents a fully integrated CMOS humidity sensor for a smart RFID sensor platform. The sensing element is a CMOS-compatible capacitive humidity sensor, which consists of top-metal finger-structure electrodes covered by a humidity-sensitive polyimide layer. Its humidity-sensitive capacitance is digitized by an energy-efficient capacitance-to-digital converter (CDC) based on a third-order delta-sigma modulator. This CDC employs current-efficient operational transconductance amplifiers based on current-starved cascoded inverters, whose limited output swing is accommodated by employing a feedforward loop-filter topology. A programmable offset capacitor is included to remove the sensor's baseline capacitance and thus reduce the required dynamic range. To reduce offset errors due to charge injection of the switches, the entire system is auto-zeroed. The proposed humidity sensor has been realized in a 0.16- mu hbox m CMOS technology. Measurement results show that the CDC performs a 12.5-bit capacitance-to-digital conversion in a measurement time of 0.8 ms, while consuming only 8.6 mu hbox A from a 1.2-V supply. This corresponds to a state-of-the-art figure-of-merit of 1.4 pJ/conversion-step. Combined with the co-integrated humidity sensing element, it provides a resolution of 0.05% RH in the range from 30% RH to 100% RH while consuming only 8.3 nJ per measurement, which is an order-of-magnitude less energy than the state-of-the-art. This paper presents a fully integrated CMOS humidity sensor for a smart RFID sensor platform. The sensing element is a CMOS-compatible capacitive humidity sensor, which consists of top-metal finger-structure electrodes covered by a humidity-sensitive polyimide layer. Its humidity-sensitive capacitance is digitized by an energy-efficient capacitance-to-digital converter (CDC) based on a third-order delta-sigma modulator. This CDC employs current-efficient operational transconductance amplifiers based on current-starved cascoded inverters, whose limited output swing is accommodated by employing a feedforward loop-filter topology. A programmable offset capacitor is included to remove the sensor's baseline capacitance and thus reduce the required dynamic range. To reduce offset errors due to charge injection of the switches, the entire system is auto-zeroed. The proposed humidity sensor has been realized in a 0.16-[Formula Omitted] CMOS technology. Measurement results show that the CDC performs a 12.5-bit capacitance-to-digital conversion in a measurement time of 0.8 ms, while consuming only 8.6 [Formula Omitted] from a 1.2-V supply. This corresponds to a state-of-the-art figure-of-merit of 1.4 pJ/conversion-step. Combined with the co-integrated humidity sensing element, it provides a resolution of 0.05% RH in the range from 30% RH to 100% RH while consuming only 8.3 nJ per measurement, which is an order-of-magnitude less energy than the state-of-the-art. |
| Author | Daamen, Roel Zhichao Tan Pertijs, Michiel A. P. Humbert, Aurelie Youngcheol Chae Ponomarev, Youri V. |
| Author_xml | – sequence: 1 surname: Zhichao Tan fullname: Zhichao Tan email: zhichao.tan@gmail.com organization: Electron. Instrum. Lab., Delft Univ. of Technol., Delft, Netherlands – sequence: 2 givenname: Roel surname: Daamen fullname: Daamen, Roel organization: NXP Semicond., Central R&D, Leuven, Belgium – sequence: 3 givenname: Aurelie surname: Humbert fullname: Humbert, Aurelie organization: NXP Semicond., Central R&D, Leuven, Belgium – sequence: 4 givenname: Youri V. surname: Ponomarev fullname: Ponomarev, Youri V. organization: NXP Semicond., Central R&D, Leuven, Belgium – sequence: 5 surname: Youngcheol Chae fullname: Youngcheol Chae email: ychae@yonsei.ac.kr organization: Dept. of Electr. & Electron. Eng., Yonsei Univ., Seoul, South Korea – sequence: 6 givenname: Michiel A. P. surname: Pertijs fullname: Pertijs, Michiel A. P. email: M.A.P.Pertijs@tudelft.nl organization: Electron. Instrum. Lab., Delft Univ. of Technol., Delft, Netherlands |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27784246$$DView record in Pascal Francis |
| BookMark | eNp9kE1Lw0AQhhepYFv9AeIlIIKXxP3-OJZobaVSsCrelnW7gS1pEnfTQ_-9qS099OBhGAaed2Z4BqBX1ZUD4BrBDCGoHl4WizzDEJEMY8E4R2egjxiTKRLkqwf6ECKZKgzhBRjEuOpGSiXqAzVKUIbTz0RmJK1ekvx1vkgmm7Vf-nabLFwV65AUXb2Np4_JqGlKb03r6ypegvPClNFdHfoQfIyf3vNJOps_T_PRLLWE8TallkBJmJXUUM6c4ohYCwVRS1xwp6CAWGAOqcXMKO4kU9CqbyKl4KRQdkmG4H6_twn1z8bFVq99tK4sTeXqTdSIQU4UwQR26O0Juqo3oeq-04gSJjHDjHXU3YEy0ZqyCKayPuom-LUJW42FkBRT3nFoz9lQxxhccUQQ1Dvpeidd76Trg_QuI04y1rd_vtpgfPlv8maf9M654yXOJBWKkl_M3Ypq |
| CODEN | IJSCBC |
| CitedBy_id | crossref_primary_10_3390_mi14040731 crossref_primary_10_1109_TCSII_2014_2387551 crossref_primary_10_1109_TCSI_2016_2525098 crossref_primary_10_1109_JSEN_2016_2577688 crossref_primary_10_1109_JSEN_2021_3067804 crossref_primary_10_1109_JIOT_2022_3164919 crossref_primary_10_1109_JSEN_2020_3035109 crossref_primary_10_1109_JSSC_2022_3222229 crossref_primary_10_1109_TCSI_2017_2730600 crossref_primary_10_1109_JSEN_2024_3396842 crossref_primary_10_1109_JSSC_2019_2907041 crossref_primary_10_1109_TCSI_2021_3134010 crossref_primary_10_1016_j_sna_2020_111838 crossref_primary_10_1109_TCSI_2023_3237694 crossref_primary_10_1109_JSEN_2014_2331704 crossref_primary_10_3390_s151025564 crossref_primary_10_3390_s140508728 crossref_primary_10_1109_JSSC_2021_3114189 crossref_primary_10_1109_TCSI_2021_3128811 crossref_primary_10_1109_ACCESS_2019_2922840 crossref_primary_10_1109_TIE_2017_2726982 crossref_primary_10_3390_s17010108 crossref_primary_10_1109_JSSC_2017_2750326 crossref_primary_10_1109_JSSC_2017_2734900 crossref_primary_10_1109_JSEN_2017_2695124 crossref_primary_10_1109_ACCESS_2020_3018130 crossref_primary_10_1109_JSSC_2020_3030995 crossref_primary_10_3390_mi10090561 crossref_primary_10_1109_TMTT_2020_3017674 crossref_primary_10_1109_JSSC_2016_2587861 crossref_primary_10_1016_j_sna_2014_07_015 crossref_primary_10_1109_JSSC_2024_3353008 crossref_primary_10_1016_j_mejo_2025_106712 crossref_primary_10_1109_JSSC_2020_3005812 crossref_primary_10_1109_TIM_2014_2365405 crossref_primary_10_1109_JSEN_2018_2791426 crossref_primary_10_1109_TCSII_2018_2869103 crossref_primary_10_1109_JSSC_2020_2989585 crossref_primary_10_1109_JSSC_2018_2866374 crossref_primary_10_1109_TCSII_2023_3297856 crossref_primary_10_1109_JSSC_2015_2435736 crossref_primary_10_1049_el_2017_3593 crossref_primary_10_1109_TCSI_2021_3095622 crossref_primary_10_1109_JSSC_2017_2693237 crossref_primary_10_3390_s150306872 crossref_primary_10_1016_j_aeue_2022_154286 crossref_primary_10_1109_JSSC_2022_3184531 crossref_primary_10_3390_electronics8010080 crossref_primary_10_1109_JSSC_2016_2633510 crossref_primary_10_1109_TCSI_2017_2777872 crossref_primary_10_3390_electronics14071386 crossref_primary_10_1016_j_sna_2016_04_038 crossref_primary_10_1109_JSSC_2023_3344114 crossref_primary_10_1109_JSSC_2024_3422671 crossref_primary_10_1109_TCSI_2016_2608905 crossref_primary_10_35848_1347_4065_acb659 crossref_primary_10_1109_TCSII_2019_2898365 crossref_primary_10_1109_JSEN_2014_2361530 crossref_primary_10_1038_srep29672 crossref_primary_10_1016_j_snb_2014_11_043 crossref_primary_10_1109_JSSC_2024_3354243 crossref_primary_10_3390_s19173673 crossref_primary_10_1109_JSEN_2017_2681065 crossref_primary_10_1109_TIM_2018_2844899 crossref_primary_10_1109_TIM_2014_2361552 crossref_primary_10_3390_s20143858 crossref_primary_10_23919_cje_2023_00_425 crossref_primary_10_1109_JIOT_2025_3553153 crossref_primary_10_1109_TCSII_2025_3551361 crossref_primary_10_1088_0957_0233_25_12_125104 crossref_primary_10_1109_JSSC_2024_3371878 crossref_primary_10_1109_TCSII_2014_2327312 crossref_primary_10_1109_JETCAS_2015_2502135 crossref_primary_10_1109_JSSC_2023_3344587 crossref_primary_10_1109_JSSC_2022_3167912 crossref_primary_10_1109_JSSC_2015_2413842 crossref_primary_10_1109_JSSC_2019_2930140 crossref_primary_10_1109_JSEN_2020_3017508 crossref_primary_10_3390_s20195657 |
| Cites_doi | 10.1109/JSSC.2012.2191212 10.1109/TCSII.2010.2104015 10.1109/VLSIC.1995.520681 10.1109/9780470546772 10.1109/84.925735 10.1016/j.snb.2009.04.019 10.1007/978-94-007-0596-8 10.1109/JSSC.2005.858476 10.1109/5.542410 10.1109/ISCAS.2009.5117967 10.1109/ICSENS.2009.5398415 10.1049/el:20010542 10.1109/TCSI.2006.887978 10.1109/JSSC.2008.2010973 10.1016/j.jfoodeng.2009.02.004 10.1109/TCSI.2004.826202 10.1109/TED.2007.907165 10.1109/JSSC.2009.2031059 |
| ContentType | Journal Article |
| Copyright | 2014 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2013 |
| Copyright_xml | – notice: 2014 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2013 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SP 8FD L7M F28 FR3 |
| DOI | 10.1109/JSSC.2013.2275661 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Engineering Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1558-173X |
| EndPage | 2477 |
| ExternalDocumentID | 3080584911 27784246 10_1109_JSSC_2013_2275661 6584794 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PZZ RIA RIE RNS TAE TN5 UKR VH1 AAYXX CITATION 8W4 IPNFZ IQODW RIG XFK 7SP 8FD L7M F28 FR3 |
| ID | FETCH-LOGICAL-c356t-4c30835c84a465e9613cc0739d2f6e9070272604c25a96e8590c9b388763f9cd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 122 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324929700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9200 |
| IngestDate | Wed Oct 01 14:26:05 EDT 2025 Mon Jun 30 10:20:17 EDT 2025 Fri Nov 25 01:07:29 EST 2022 Sat Nov 29 02:50:02 EST 2025 Tue Nov 18 22:23:52 EST 2025 Tue Aug 26 16:41:56 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Polyimide Moisture sensor Digital converter Sigma-delta modulation humidity sensor delta-sigma modulator Complementary MOS technology Humidity Electric power consumption Minimum energy Feedforward Transconductance capacitive-sensor interface current-starved cascoded inverter (CSCI) Inverter Modulator Operational amplifier Capacitive transducer Third order Measurement sensor Baseline Capacitance-to-digital converter Intelligent sensors Capacitance Low-power electronics Capacitor Radio frequency identification |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c356t-4c30835c84a465e9613cc0739d2f6e9070272604c25a96e8590c9b388763f9cd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 1435825255 |
| PQPubID | 85482 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_6584794 crossref_primary_10_1109_JSSC_2013_2275661 crossref_citationtrail_10_1109_JSSC_2013_2275661 pascalfrancis_primary_27784246 proquest_journals_1435825255 proquest_miscellaneous_1506393230 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-10-01 |
| PublicationDateYYYYMMDD | 2013-10-01 |
| PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE journal of solid-state circuits |
| PublicationTitleAbbrev | JSSC |
| PublicationYear | 2013 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 tan (ref7) 2011 ref10 ref2 ref1 van der goes (ref20) 1996 ref16 pertijs (ref27) 2005; 40 pertijs (ref11) 2012 ref24 ref23 k m r inen (ref14) 2009; 44 ref26 ref25 danneels (ref19) 2011 ref22 ref21 tan (ref8) 2012 (ref6) 0 (ref17) 0 ref9 ref4 ref3 ref5 jawed (ref15) 2008 xia (ref18) 2012 |
| References_xml | – ident: ref12 doi: 10.1109/JSSC.2012.2191212 – ident: ref16 doi: 10.1109/TCSII.2010.2104015 – start-page: 287 year: 2011 ident: ref19 article-title: A fully-digital, 0.3 V, 270 nW capacitive sensor interface without external references publication-title: Proc Eur Solid-State Circuits Conf – ident: ref10 doi: 10.1109/VLSIC.1995.520681 – start-page: 105 year: 2011 ident: ref7 article-title: A 1.8 V 11 <tex Notation="TeX">$\mu{\rm W}$</tex> CMOS smart humidity sensor for RFID sensing applications publication-title: Proc IEEE Asian Solid-State Circuits Conf – ident: ref21 doi: 10.1109/9780470546772 – year: 2012 ident: ref11 publication-title: Nyquist AD Converters Sensor Interfaces and Robustness Advances in Analog Circuit Design – start-page: 442 year: 2008 ident: ref15 article-title: A 828 <tex Notation="TeX">$\mu{\rm W}$</tex> 1.8 V 80 dB dynamic range readout interface for a MEMS capacitive microphone publication-title: Proc Eur Solid-State Circuits Conf – ident: ref9 doi: 10.1109/84.925735 – ident: ref2 doi: 10.1016/j.snb.2009.04.019 – ident: ref25 doi: 10.1007/978-94-007-0596-8 – volume: 40 start-page: 2805 year: 2005 ident: ref27 article-title: A CMOS temperature sensor with a <tex Notation="TeX">$3\sigma$</tex> inaccuracy of <tex Notation="TeX">$\pm 0.1~^{\circ}{\hbox{C}}$</tex> from <tex Notation="TeX">$-55~^{\circ}{\hbox{C}}$</tex> to 125 <tex Notation="TeX">$~^{\circ}{\hbox{C}}$</tex> publication-title: IEEE J Solid-State Circuits doi: 10.1109/JSSC.2005.858476 – year: 0 ident: ref6 publication-title: SHT21 Datasheet – ident: ref26 doi: 10.1109/5.542410 – start-page: 197 year: 2012 ident: ref18 article-title: A capacitance-to-digital converter for displacement sensing with 17 b resolution and 20 <tex Notation="TeX">$\mu{\rm s}$</tex> conversion time publication-title: Int Solid-State Circuits Conf Dig Tech Papers – start-page: 24 year: 2012 ident: ref8 article-title: A 1.2 V 8.3 nJ energy-efficient CMOS humidity sensor for RFID applications publication-title: Symp VLSI Circuits Dig Tech Papers – ident: ref3 doi: 10.1109/ISCAS.2009.5117967 – ident: ref5 doi: 10.1109/ICSENS.2009.5398415 – ident: ref23 doi: 10.1049/el:20010542 – ident: ref13 doi: 10.1109/TCSI.2006.887978 – year: 1996 ident: ref20 publication-title: Low-cost smart sensor interfacing – ident: ref24 doi: 10.1109/JSSC.2008.2010973 – ident: ref1 doi: 10.1016/j.jfoodeng.2009.02.004 – year: 0 ident: ref17 publication-title: AD7156 Datasheet – ident: ref22 doi: 10.1109/TCSI.2004.826202 – ident: ref4 doi: 10.1109/TED.2007.907165 – volume: 44 start-page: 3193 year: 2009 ident: ref14 article-title: A micropower <tex Notation="TeX">$\Delta\Sigma$</tex>-based interface ASIC for a capacitive 3-axis micro-accelerometer publication-title: IEEE J Solid-State Circuits doi: 10.1109/JSSC.2009.2031059 |
| SSID | ssj0014481 |
| Score | 2.3897796 |
| Snippet | This paper presents a fully integrated CMOS humidity sensor for a smart RFID sensor platform. The sensing element is a CMOS-compatible capacitive humidity... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2469 |
| SubjectTerms | Amplifiers Applied sciences Capacitance Capacitance-to-digital converter capacitive-sensor interface Capacitors Circuit properties CMOS CMOS integrated circuits current-starved cascoded inverter (CSCI) delta-sigma modulator Design. Technologies. Operation analysis. Testing Electric, optical and optoelectronic circuits Electronic circuits Electronic equipment and fabrication. Passive components, printed wiring boards, connectics Electronics Exact sciences and technology Humidity humidity sensor Integrated circuits Inverters Modulation Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Sensors Signal convertors |
| Title | A 1.2-V 8.3-nJ CMOS Humidity Sensor for RFID Applications |
| URI | https://ieeexplore.ieee.org/document/6584794 https://www.proquest.com/docview/1435825255 https://www.proquest.com/docview/1506393230 |
| Volume | 48 |
| WOSCitedRecordID | wos000324929700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-173X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014481 issn: 0018-9200 databaseCode: RIE dateStart: 19660101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_c8EEf_Jpi_RgRfBK7dU2aNo9jOlT8wqnsrXRpAgPpZB_-_d61tUwUwbdCEhp-l-vdr3e5Azg1JgitNoGbIAFyhVYj1DklXbQlhlupfZ3mkr4N7--j4VA9rsB5dRfGGJMnn5kWPeax_HSiF_SrrE3WEs9PDWphKIu7WlXEAGlG0R2vgwqMoi8jmB1PtW8Ggx4lcfGWT8XOZeebDcqbqlBKZDJDVGzRzuLHlzk3N_3N_210CzZKt5J1i3OwDSsm24H1pWKDDVBdhkzVfWVRi7vZDevdPQwYSnOcoiPOBkhnJ1OGLix76l9fsO5SYHsXXvqXz70rt2yc4GoeyDlCzsmz0pFIhAyMQpOtNYXkUt9Kg3QYuSjyGKH9IFHSRIHyUEg8oup0VumU70E9m2RmH5iWIh1Zm4jQUiVBO6L25CIVOoxSLT3ugPcFZazLquLU3OItztmFp2JCPyb04xJ9B86qJe9FSY2_JjcI3mpiiawDzW_yqsb9MIyEL6QDR18CjEutnMXkGyIjRhblwEk1jPpEQZIkM5MFzgnIaePIzA5-f_UhrNEGi4S-I6jPpwtzDKv6Yz6eTZv5ofwERr_ZkQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8AvXBb7E6NYJPYmfXpGnzOKbDjznFqfhWujQBQTrZh3-_d20tE0XwrZCEht_levfrXe4Ajo0JQqtN4CZIgFyhVR91TkkXbYnhVmpfp7mkO2G3G728qPsZOK3uwhhj8uQzU6fHPJafDvSEfpWdkbXE8zML84EQvlfc1qpiBkg0iv54DVRhFH4Zw2x46uy612tRGhev-1TuXDa-WaG8rQolRSYjxMUWDS1-fJtzg9Ne_d9W12CldCxZszgJ6zBjsg1Ynio3uAmqyZCrus8sqnM3u2at27seQ3m-puiKsx4S2sGQoRPLHtpX56w5Fdregqf2xWPr0i1bJ7iaB3KMoHPyrXQkEiEDo9Boa01BudS30iAhRjaKTEZoP0iUNFGgPBQTj6g-nVU65dswlw0yswNMS5H2rU1EaKmWoO1Tg3KRCh1GqZYed8D7gjLWZV1xam_xFuf8wlMxoR8T-nGJvgMn1ZL3oqjGX5M3Cd5qYomsAwff5FWN-2EYCV9IB2pfAoxLvRzF5B0iJ0Ye5cBRNYwaRWGSJDODCc4JyG3jyM12f3_1ISxePt524s5V92YPlmizRXpfDebGw4nZhwX9MX4dDQ_yA_oJxWXc2A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+1.2-V+8.3-nJ+CMOS+Humidity+Sensor+for+RFID+Applications&rft.jtitle=IEEE+journal+of+solid-state+circuits&rft.au=Tan%2C+Zhichao&rft.au=Daamen%2C+Roel&rft.au=Humbert%2C+Aurelie&rft.au=Ponomarev%2C+Youri+V&rft.date=2013-10-01&rft.issn=0018-9200&rft.eissn=1558-173X&rft.volume=48&rft.issue=10&rft.spage=2469&rft.epage=2477&rft_id=info:doi/10.1109%2FJSSC.2013.2275661&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9200&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9200&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9200&client=summon |