Prediction of Lung Cancer Based on Serum Biomarkers by Gene Expression Programming Methods

In diagnosis of lung cancer, rapid distinction between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) tumors is very important. Serum markers, including lactate dehydrogenase (LDH), C-reactive protein (CRP), carcino-embryonic antigen (CEA), neurone specific enolase (NSE) and Cy...

Full description

Saved in:
Bibliographic Details
Published in:Asian Pacific journal of cancer prevention : APJCP Vol. 15; no. 21; pp. 9367 - 9373
Main Authors: Yu, Zhuang, Chen, Xiao-Zheng, Cui, Lian-Hua, Si, Hong-Zong, Lu, Hai-Jiao, Liu, Shi-Hai
Format: Journal Article
Language:English
Published: Thailand 01.01.2014
Subjects:
ISSN:1513-7368, 2476-762X, 2476-762X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In diagnosis of lung cancer, rapid distinction between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) tumors is very important. Serum markers, including lactate dehydrogenase (LDH), C-reactive protein (CRP), carcino-embryonic antigen (CEA), neurone specific enolase (NSE) and Cyfra21-1, are reported to reflect lung cancer characteristics. In this study classification of lung tumors was made based on biomarkers (measured in 120 NSCLC and 60 SCLC patients) by setting up optimal biomarker joint models with a powerful computerized tool - gene expression programming (GEP). GEP is a learning algorithm that combines the advantages of genetic programming (GP) and genetic algorithms (GA). It specifically focuses on relationships between variables in sets of data and then builds models to explain these relationships, and has been successfully used in formula finding and function mining. As a basis for defining a GEP environment for SCLC and NSCLC prediction, three explicit predictive models were constructed. CEA and NSE are frequently- used lung cancer markers in clinical trials, CRP, LDH and Cyfra21-1 have significant meaning in lung cancer, basis on CEA and NSE we set up three GEP models-GEP 1(CEA, NSE, Cyfra21-1), GEP2 (CEA, NSE, LDH), GEP3 (CEA, NSE, CRP). The best classification result of GEP gained when CEA, NSE and Cyfra21-1 were combined: 128 of 135 subjects in the training set and 40 of 45 subjects in the test set were classified correctly, the accuracy rate is 94.8% in training set; on collection of samples for testing, the accuracy rate is 88.9%. With GEP2, the accuracy was significantly decreased by 1.5% and 6.6% in training set and test set, in GEP3 was 0.82% and 4.45% respectively. Serum Cyfra21-1 is a useful and sensitive serum biomarker in discriminating between NSCLC and SCLC. GEP modeling is a promising and excellent tool in diagnosis of lung cancer.
AbstractList In diagnosis of lung cancer, rapid distinction between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) tumors is very important. Serum markers, including lactate dehydrogenase (LDH), C-reactive protein (CRP), carcino-embryonic antigen (CEA), neurone specific enolase (NSE) and Cyfra21-1, are reported to reflect lung cancer characteristics. In this study classification of lung tumors was made based on biomarkers (measured in 120 NSCLC and 60 SCLC patients) by setting up optimal biomarker joint models with a powerful computerized tool - gene expression programming (GEP). GEP is a learning algorithm that combines the advantages of genetic programming (GP) and genetic algorithms (GA). It specifically focuses on relationships between variables in sets of data and then builds models to explain these relationships, and has been successfully used in formula finding and function mining. As a basis for defining a GEP environment for SCLC and NSCLC prediction, three explicit predictive models were constructed. CEA and NSE are frequently- used lung cancer markers in clinical trials, CRP, LDH and Cyfra21-1 have significant meaning in lung cancer, basis on CEA and NSE we set up three GEP models-GEP 1(CEA, NSE, Cyfra21-1), GEP2 (CEA, NSE, LDH), GEP3 (CEA, NSE, CRP). The best classification result of GEP gained when CEA, NSE and Cyfra21-1 were combined: 128 of 135 subjects in the training set and 40 of 45 subjects in the test set were classified correctly, the accuracy rate is 94.8% in training set; on collection of samples for testing, the accuracy rate is 88.9%. With GEP2, the accuracy was significantly decreased by 1.5% and 6.6% in training set and test set, in GEP3 was 0.82% and 4.45% respectively. Serum Cyfra21-1 is a useful and sensitive serum biomarker in discriminating between NSCLC and SCLC. GEP modeling is a promising and excellent tool in diagnosis of lung cancer.In diagnosis of lung cancer, rapid distinction between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) tumors is very important. Serum markers, including lactate dehydrogenase (LDH), C-reactive protein (CRP), carcino-embryonic antigen (CEA), neurone specific enolase (NSE) and Cyfra21-1, are reported to reflect lung cancer characteristics. In this study classification of lung tumors was made based on biomarkers (measured in 120 NSCLC and 60 SCLC patients) by setting up optimal biomarker joint models with a powerful computerized tool - gene expression programming (GEP). GEP is a learning algorithm that combines the advantages of genetic programming (GP) and genetic algorithms (GA). It specifically focuses on relationships between variables in sets of data and then builds models to explain these relationships, and has been successfully used in formula finding and function mining. As a basis for defining a GEP environment for SCLC and NSCLC prediction, three explicit predictive models were constructed. CEA and NSE are frequently- used lung cancer markers in clinical trials, CRP, LDH and Cyfra21-1 have significant meaning in lung cancer, basis on CEA and NSE we set up three GEP models-GEP 1(CEA, NSE, Cyfra21-1), GEP2 (CEA, NSE, LDH), GEP3 (CEA, NSE, CRP). The best classification result of GEP gained when CEA, NSE and Cyfra21-1 were combined: 128 of 135 subjects in the training set and 40 of 45 subjects in the test set were classified correctly, the accuracy rate is 94.8% in training set; on collection of samples for testing, the accuracy rate is 88.9%. With GEP2, the accuracy was significantly decreased by 1.5% and 6.6% in training set and test set, in GEP3 was 0.82% and 4.45% respectively. Serum Cyfra21-1 is a useful and sensitive serum biomarker in discriminating between NSCLC and SCLC. GEP modeling is a promising and excellent tool in diagnosis of lung cancer.
In diagnosis of lung cancer, rapid distinction between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) tumors is very important. Serum markers, including lactate dehydrogenase (LDH), C-reactive protein (CRP), carcino-embryonic antigen (CEA), neurone specific enolase (NSE) and Cyfra21-1, are reported to reflect lung cancer characteristics. In this study classification of lung tumors was made based on biomarkers (measured in 120 NSCLC and 60 SCLC patients) by setting up optimal biomarker joint models with a powerful computerized tool - gene expression programming (GEP). GEP is a learning algorithm that combines the advantages of genetic programming (GP) and genetic algorithms (GA). It specifically focuses on relationships between variables in sets of data and then builds models to explain these relationships, and has been successfully used in formula finding and function mining. As a basis for defining a GEP environment for SCLC and NSCLC prediction, three explicit predictive models were constructed. CEA and NSE are frequently- used lung cancer markers in clinical trials, CRP, LDH and Cyfra21-1 have significant meaning in lung cancer, basis on CEA and NSE we set up three GEP models-GEP 1(CEA, NSE, Cyfra21-1), GEP2 (CEA, NSE, LDH), GEP3 (CEA, NSE, CRP). The best classification result of GEP gained when CEA, NSE and Cyfra21-1 were combined: 128 of 135 subjects in the training set and 40 of 45 subjects in the test set were classified correctly, the accuracy rate is 94.8% in training set; on collection of samples for testing, the accuracy rate is 88.9%. With GEP2, the accuracy was significantly decreased by 1.5% and 6.6% in training set and test set, in GEP3 was 0.82% and 4.45% respectively. Serum Cyfra21-1 is a useful and sensitive serum biomarker in discriminating between NSCLC and SCLC. GEP modeling is a promising and excellent tool in diagnosis of lung cancer.
Author Si, Hong-Zong
Cui, Lian-Hua
Lu, Hai-Jiao
Chen, Xiao-Zheng
Liu, Shi-Hai
Yu, Zhuang
Author_xml – sequence: 1
  givenname: Zhuang
  surname: Yu
  fullname: Yu, Zhuang
– sequence: 2
  givenname: Xiao-Zheng
  surname: Chen
  fullname: Chen, Xiao-Zheng
– sequence: 3
  givenname: Lian-Hua
  surname: Cui
  fullname: Cui, Lian-Hua
– sequence: 4
  givenname: Hong-Zong
  surname: Si
  fullname: Si, Hong-Zong
– sequence: 5
  givenname: Hai-Jiao
  surname: Lu
  fullname: Lu, Hai-Jiao
– sequence: 6
  givenname: Shi-Hai
  surname: Liu
  fullname: Liu, Shi-Hai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25422226$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAQhi0Eghb4CSCPLAnxRxxHTG1UCqiISHRALJYTXyDQxMVOJPj3JHwsDHg5yfc-d7pninZb2wJCJyQKE0b4-Sy_yfKQRoSHJA4pCVMmkh00oTwRQSLowy6akJiwIGFCHqCp9y9RxGOZxPvogMacDk9M0GPuwNRlV9sW2wqv-vYJZ7otweG59mDw8H8Prm_wvLaNdq_gPC4-8BJawIv3rQPvRzZ39snppqkH_ha6Z2v8Edqr9MbD8U89ROvLxTq7ClZ3y-tstgpKFosu4IXkLC0jyVJjUh1RIXVipKRa6HLoATBBq1ToglUsraguogS04AQKYVLDDtHZ99its289-E41tS9hs9Et2N4rIqikLOWSDdHTn2hfNGDU1tXDSR_qV8cQuPgOlM5676BSZd3pUU7ndL1RJFKjfPUlX43yFYkVJWqUP9DxH_p3wf_cJ_UoiIk
CitedBy_id crossref_primary_10_1038_s41598_017_09284_0
crossref_primary_10_1111_ecc_12446
crossref_primary_10_1155_2015_309784
crossref_primary_10_3390_cancers16152643
crossref_primary_10_3390_cancers9110155
crossref_primary_10_1186_s12920_018_0447_6
crossref_primary_10_1049_iet_syb_2015_0082
crossref_primary_10_1080_10255842_2025_2530645
crossref_primary_10_1007_s12291_024_01267_z
crossref_primary_10_1049_iet_syb_2016_0033
crossref_primary_10_1007_s00500_019_04507_0
crossref_primary_10_1016_j_compbiomed_2025_110856
crossref_primary_10_1371_journal_pone_0126276
Cites_doi 10.1186/1471-2164-14-7
10.1371/journal.pone.0044960
10.1016/j.canlet.2005.05.008
10.1016/j.nano.2011.10.001
10.1186/1471-2407-13-354
10.1186/1465-9921-11-18
10.1007/s10549-012-2039-z
10.1093/jnci/djk195
10.7314/APJCP.2013.14.7.4215
10.1373/clinchem.2005.052878
10.1016/j.eururo.2005.01.015
10.7314/APJCP.2013.14.1.97
10.4161/cbt.11.12.15526
10.1159/000074432
10.1513/pats.201006-040MS
10.1038/sj.bjc.6605865
10.1016/j.lungcan.2008.04.011
10.18632/oncotarget.1007
10.1007/s101470200021
10.7314/APJCP.2013.14.7.4369
10.1001/jama.283.22.2975
10.1007/s13139-013-0218-4
10.1002/1097-0142(19950101)75:1+<191::AID-CNCR2820751307>3.0.CO;2-Y
10.1200/JCO.2007.13.5392
10.1111/ajco.12066
10.1002/1097-0142(19950901)76:5<807::AID-CNCR2820760515>3.0.CO;2-M
10.1053/j.ro.2011.02.003
10.7314/APJCP.2014.15.4.1617
10.2214/AJR.09.3354
10.7314/APJCP.2014.15.12.4933
10.1007/s10916-011-9775-1
10.1378/chest.108.1.163
10.7314/APJCP.2012.13.3.927
10.1038/sj.bjc.6602074
10.1007/s11517-013-1108-8
10.7314/APJCP.2014.15.8.3451
10.1016/j.biopha.2007.08.005
10.1067/j.cpradiol.2010.02.002
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.7314/APJCP.2014.15.21.9367
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2476-762X
EndPage 9373
ExternalDocumentID 25422226
10_7314_APJCP_2014_15_21_9367
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
.UV
23N
2WC
53G
5GY
9ZL
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BCNDV
CITATION
E3Z
EBS
EJD
F5P
FRJ
GROUPED_DOAJ
GX1
JDI
OK1
OVT
RPM
TR2
W2D
WOW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c356t-4b8439c0839dd9a0268a7d882a6acb84ee362f96ab3f39f2ab07ea641eb6d9d3
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351056100049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1513-7368
2476-762X
IngestDate Fri Jul 11 03:23:26 EDT 2025
Fri Sep 17 21:52:56 EDT 2021
Tue Nov 18 22:34:13 EST 2025
Sat Nov 29 06:43:24 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c356t-4b8439c0839dd9a0268a7d882a6acb84ee362f96ab3f39f2ab07ea641eb6d9d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://doi.org/10.7314/apjcp.2014.15.21.9367
PMID 25422226
PQID 1628239483
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1628239483
pubmed_primary_25422226
crossref_citationtrail_10_7314_APJCP_2014_15_21_9367
crossref_primary_10_7314_APJCP_2014_15_21_9367
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Thailand
PublicationPlace_xml – name: Thailand
PublicationTitle Asian Pacific journal of cancer prevention : APJCP
PublicationTitleAlternate Asian Pac J Cancer Prev
PublicationYear 2014
References (POCPA9_2014_v15n21_9367_029) 2010; 30
POCPA9_2014_v15n21_9367_015
POCPA9_2014_v15n21_9367_037
POCPA9_2014_v15n21_9367_014
POCPA9_2014_v15n21_9367_017
POCPA9_2014_v15n21_9367_016
POCPA9_2014_v15n21_9367_038
POCPA9_2014_v15n21_9367_019
POCPA9_2014_v15n21_9367_018
POCPA9_2014_v15n21_9367_031
POCPA9_2014_v15n21_9367_030
POCPA9_2014_v15n21_9367_011
POCPA9_2014_v15n21_9367_033
POCPA9_2014_v15n21_9367_010
POCPA9_2014_v15n21_9367_032
POCPA9_2014_v15n21_9367_013
POCPA9_2014_v15n21_9367_035
POCPA9_2014_v15n21_9367_012
POCPA9_2014_v15n21_9367_034
(POCPA9_2014_v15n21_9367_025) 2003; 68
(POCPA9_2014_v15n21_9367_036) 2010; 78
(POCPA9_2014_v15n21_9367_020) 2004; 91
(POCPA9_2014_v15n21_9367_039) 2013; 4
POCPA9_2014_v15n21_9367_004
POCPA9_2014_v15n21_9367_026
POCPA9_2014_v15n21_9367_003
POCPA9_2014_v15n21_9367_006
POCPA9_2014_v15n21_9367_028
POCPA9_2014_v15n21_9367_005
POCPA9_2014_v15n21_9367_027
POCPA9_2014_v15n21_9367_008
POCPA9_2014_v15n21_9367_007
POCPA9_2014_v15n21_9367_009
POCPA9_2014_v15n21_9367_040
POCPA9_2014_v15n21_9367_041
POCPA9_2014_v15n21_9367_022
POCPA9_2014_v15n21_9367_021
POCPA9_2014_v15n21_9367_002
POCPA9_2014_v15n21_9367_024
POCPA9_2014_v15n21_9367_001
POCPA9_2014_v15n21_9367_023
References_xml – ident: POCPA9_2014_v15n21_9367_040
  doi: 10.1186/1471-2164-14-7
– volume: 30
  start-page: 3099
  year: 2010
  ident: POCPA9_2014_v15n21_9367_029
  publication-title: Anticancer Res
– ident: POCPA9_2014_v15n21_9367_011
  doi: 10.1371/journal.pone.0044960
– ident: POCPA9_2014_v15n21_9367_032
  doi: 10.1016/j.canlet.2005.05.008
– ident: POCPA9_2014_v15n21_9367_002
  doi: 10.1016/j.nano.2011.10.001
– ident: POCPA9_2014_v15n21_9367_023
  doi: 10.1186/1471-2407-13-354
– ident: POCPA9_2014_v15n21_9367_016
  doi: 10.1186/1465-9921-11-18
– ident: POCPA9_2014_v15n21_9367_022
  doi: 10.1007/s10549-012-2039-z
– volume: 68
  start-page: 1075
  year: 2003
  ident: POCPA9_2014_v15n21_9367_025
  publication-title: Am Fam Physician
– ident: POCPA9_2014_v15n21_9367_028
  doi: 10.1093/jnci/djk195
– ident: POCPA9_2014_v15n21_9367_038
  doi: 10.7314/APJCP.2013.14.7.4215
– ident: POCPA9_2014_v15n21_9367_018
  doi: 10.1373/clinchem.2005.052878
– ident: POCPA9_2014_v15n21_9367_001
  doi: 10.1016/j.eururo.2005.01.015
– volume: 78
  start-page: 407
  year: 2010
  ident: POCPA9_2014_v15n21_9367_036
  publication-title: Pneumonol Alergol Pol
– ident: POCPA9_2014_v15n21_9367_009
  doi: 10.7314/APJCP.2013.14.1.97
– ident: POCPA9_2014_v15n21_9367_005
  doi: 10.4161/cbt.11.12.15526
– ident: POCPA9_2014_v15n21_9367_019
  doi: 10.1159/000074432
– ident: POCPA9_2014_v15n21_9367_021
  doi: 10.1513/pats.201006-040MS
– ident: POCPA9_2014_v15n21_9367_006
  doi: 10.1038/sj.bjc.6605865
– ident: POCPA9_2014_v15n21_9367_014
  doi: 10.1016/j.lungcan.2008.04.011
– volume: 4
  start-page: 802
  year: 2013
  ident: POCPA9_2014_v15n21_9367_039
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.1007
– ident: POCPA9_2014_v15n21_9367_027
  doi: 10.1007/s101470200021
– ident: POCPA9_2014_v15n21_9367_033
  doi: 10.7314/APJCP.2013.14.7.4369
– ident: POCPA9_2014_v15n21_9367_034
  doi: 10.1001/jama.283.22.2975
– ident: POCPA9_2014_v15n21_9367_015
  doi: 10.1007/s13139-013-0218-4
– ident: POCPA9_2014_v15n21_9367_031
  doi: 10.1002/1097-0142(19950101)75:1+<191::AID-CNCR2820751307>3.0.CO;2-Y
– ident: POCPA9_2014_v15n21_9367_024
  doi: 10.1200/JCO.2007.13.5392
– ident: POCPA9_2014_v15n21_9367_017
  doi: 10.1111/ajco.12066
– ident: POCPA9_2014_v15n21_9367_008
  doi: 10.1002/1097-0142(19950901)76:5<807::AID-CNCR2820760515>3.0.CO;2-M
– ident: POCPA9_2014_v15n21_9367_030
  doi: 10.1053/j.ro.2011.02.003
– ident: POCPA9_2014_v15n21_9367_041
  doi: 10.7314/APJCP.2014.15.4.1617
– ident: POCPA9_2014_v15n21_9367_012
  doi: 10.2214/AJR.09.3354
– ident: POCPA9_2014_v15n21_9367_010
  doi: 10.7314/APJCP.2014.15.12.4933
– ident: POCPA9_2014_v15n21_9367_007
  doi: 10.1007/s10916-011-9775-1
– ident: POCPA9_2014_v15n21_9367_035
  doi: 10.1378/chest.108.1.163
– ident: POCPA9_2014_v15n21_9367_003
  doi: 10.7314/APJCP.2012.13.3.927
– volume: 91
  start-page: 873
  year: 2004
  ident: POCPA9_2014_v15n21_9367_020
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6602074
– ident: POCPA9_2014_v15n21_9367_013
  doi: 10.1007/s11517-013-1108-8
– ident: POCPA9_2014_v15n21_9367_037
  doi: 10.7314/APJCP.2014.15.8.3451
– ident: POCPA9_2014_v15n21_9367_004
  doi: 10.1016/j.biopha.2007.08.005
– ident: POCPA9_2014_v15n21_9367_026
  doi: 10.1067/j.cpradiol.2010.02.002
SSID ssj0045875
Score 2.1454298
Snippet In diagnosis of lung cancer, rapid distinction between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) tumors is very important. Serum...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 9367
SubjectTerms Aged
Biomarkers, Tumor - blood
Biomarkers, Tumor - genetics
C-Reactive Protein - analysis
CA-125 Antigen - blood
Carcinoembryonic Antigen - blood
Carcinoma, Non-Small-Cell Lung - blood
Carcinoma, Non-Small-Cell Lung - diagnosis
Carcinoma, Non-Small-Cell Lung - genetics
Cohort Studies
Diagnosis, Differential
Female
Gene Expression Profiling - methods
Gene Expression Regulation, Neoplastic
Humans
Lung Neoplasms - blood
Lung Neoplasms - diagnosis
Male
Middle Aged
Neoplasm Invasiveness - pathology
Neoplasm Staging
Phosphopyruvate Hydratase - blood
Predictive Value of Tests
Retrospective Studies
Sensitivity and Specificity
Small Cell Lung Carcinoma - blood
Small Cell Lung Carcinoma - diagnosis
Small Cell Lung Carcinoma - genetics
Title Prediction of Lung Cancer Based on Serum Biomarkers by Gene Expression Programming Methods
URI https://www.ncbi.nlm.nih.gov/pubmed/25422226
https://www.proquest.com/docview/1628239483
Volume 15
WOSCitedRecordID wos000351056100049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2476-762X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045875
  issn: 1513-7368
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6gRAviDvlMhmJtyllsZ04fhwTaEK0qkQfSl8iO3HGpDWp2mYaP4t_yDmxmwQ0LnvgJWqT-jjp-XIu9rkQ8kYyY0ScxYEsNDgoolCB1iYLjDSJ0IWJjXTNJuRkksznajoYfN_lwlxeyLJMrq7U6r-yGs4BszF19gbsbonCCfgMTIcjsB2O_8T46Rr3XnaG4Kca9_WRtevDd6Cx8kMnIOoltqFcYnDOeoM2KNafxsLHLi62xAwCDNxa4lLCuGkzvekbssdN8qUP6evXn8jcXCtfGgrBhWuP048nbSbZl7rZEvlaa682m_ACJ__m57oKFvClu1K7BG6YLzitWy3y2bXbrsqzYFH5X_vVi1D0Vi-8wA15ILlrrdNK5KiHPJdA7eWr4q55h9fVYFvx6_SA5KHAehT4bBi-J0ZhNGLhqBver7v9iz5soxTBP0JCaUMmRTJpGKUsTJHMHrnFZKSSnRfvlL-Ikqa2c_tYLmkMyby99m5-Nod-4-M0ts7sPrnnnRR67MD1gAxs-ZDcGfswjEdk0WGMVgVFjFGHMdpgjML5BmO0wxg13yhijHYYoz2MUY-xx2T24f3s5DTwTTqCjEfxNhDwTnOVgSWv8lxpcOkTLXPw23SsM7hmLZhIhYq14QVXBdPmSFodi9CaOFc5f0L2y6q0zwjNWQ4jpVYsi4SMQpAhRzkqci21jawdErH7q9LMF7DHPioX6R8ZNSSjdtjKVXD524DXOz6kIGtxA02Xtqo3aRizhHElEj4kTx2DWpIswsVUFj-_6XQvyN3uxXhJ9rfr2r4it7PL7flmfUD25Dw5aDAGx8l0_AML8qd1
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Lung+Cancer+Based+on+Serum+Biomarkers+by+Gene+Expression+Programming+Methods&rft.jtitle=Asian+Pacific+journal+of+cancer+prevention+%3A+APJCP&rft.au=Yu%2C+Zhuang&rft.au=Chen%2C+Xiao-Zheng&rft.au=Cui%2C+Lian-Hua&rft.au=Si%2C+Hong-Zong&rft.date=2014-01-01&rft.issn=1513-7368&rft.volume=15&rft.issue=21&rft.spage=9367&rft.epage=9373&rft_id=info:doi/10.7314%2FAPJCP.2014.15.21.9367&rft.externalDBID=n%2Fa&rft.externalDocID=10_7314_APJCP_2014_15_21_9367
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1513-7368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1513-7368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1513-7368&client=summon