Prediction of Lung Cancer Based on Serum Biomarkers by Gene Expression Programming Methods
In diagnosis of lung cancer, rapid distinction between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) tumors is very important. Serum markers, including lactate dehydrogenase (LDH), C-reactive protein (CRP), carcino-embryonic antigen (CEA), neurone specific enolase (NSE) and Cy...
Saved in:
| Published in: | Asian Pacific journal of cancer prevention : APJCP Vol. 15; no. 21; pp. 9367 - 9373 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Thailand
01.01.2014
|
| Subjects: | |
| ISSN: | 1513-7368, 2476-762X, 2476-762X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In diagnosis of lung cancer, rapid distinction between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) tumors is very important. Serum markers, including lactate dehydrogenase (LDH), C-reactive protein (CRP), carcino-embryonic antigen (CEA), neurone specific enolase (NSE) and Cyfra21-1, are reported to reflect lung cancer characteristics. In this study classification of lung tumors was made based on biomarkers (measured in 120 NSCLC and 60 SCLC patients) by setting up optimal biomarker joint models with a powerful computerized tool - gene expression programming (GEP). GEP is a learning algorithm that combines the advantages of genetic programming (GP) and genetic algorithms (GA). It specifically focuses on relationships between variables in sets of data and then builds models to explain these relationships, and has been successfully used in formula finding and function mining. As a basis for defining a GEP environment for SCLC and NSCLC prediction, three explicit predictive models were constructed. CEA and NSE are frequently- used lung cancer markers in clinical trials, CRP, LDH and Cyfra21-1 have significant meaning in lung cancer, basis on CEA and NSE we set up three GEP models-GEP 1(CEA, NSE, Cyfra21-1), GEP2 (CEA, NSE, LDH), GEP3 (CEA, NSE, CRP). The best classification result of GEP gained when CEA, NSE and Cyfra21-1 were combined: 128 of 135 subjects in the training set and 40 of 45 subjects in the test set were classified correctly, the accuracy rate is 94.8% in training set; on collection of samples for testing, the accuracy rate is 88.9%. With GEP2, the accuracy was significantly decreased by 1.5% and 6.6% in training set and test set, in GEP3 was 0.82% and 4.45% respectively. Serum Cyfra21-1 is a useful and sensitive serum biomarker in discriminating between NSCLC and SCLC. GEP modeling is a promising and excellent tool in diagnosis of lung cancer. |
|---|---|
| AbstractList | In diagnosis of lung cancer, rapid distinction between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) tumors is very important. Serum markers, including lactate dehydrogenase (LDH), C-reactive protein (CRP), carcino-embryonic antigen (CEA), neurone specific enolase (NSE) and Cyfra21-1, are reported to reflect lung cancer characteristics. In this study classification of lung tumors was made based on biomarkers (measured in 120 NSCLC and 60 SCLC patients) by setting up optimal biomarker joint models with a powerful computerized tool - gene expression programming (GEP). GEP is a learning algorithm that combines the advantages of genetic programming (GP) and genetic algorithms (GA). It specifically focuses on relationships between variables in sets of data and then builds models to explain these relationships, and has been successfully used in formula finding and function mining. As a basis for defining a GEP environment for SCLC and NSCLC prediction, three explicit predictive models were constructed. CEA and NSE are frequently- used lung cancer markers in clinical trials, CRP, LDH and Cyfra21-1 have significant meaning in lung cancer, basis on CEA and NSE we set up three GEP models-GEP 1(CEA, NSE, Cyfra21-1), GEP2 (CEA, NSE, LDH), GEP3 (CEA, NSE, CRP). The best classification result of GEP gained when CEA, NSE and Cyfra21-1 were combined: 128 of 135 subjects in the training set and 40 of 45 subjects in the test set were classified correctly, the accuracy rate is 94.8% in training set; on collection of samples for testing, the accuracy rate is 88.9%. With GEP2, the accuracy was significantly decreased by 1.5% and 6.6% in training set and test set, in GEP3 was 0.82% and 4.45% respectively. Serum Cyfra21-1 is a useful and sensitive serum biomarker in discriminating between NSCLC and SCLC. GEP modeling is a promising and excellent tool in diagnosis of lung cancer.In diagnosis of lung cancer, rapid distinction between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) tumors is very important. Serum markers, including lactate dehydrogenase (LDH), C-reactive protein (CRP), carcino-embryonic antigen (CEA), neurone specific enolase (NSE) and Cyfra21-1, are reported to reflect lung cancer characteristics. In this study classification of lung tumors was made based on biomarkers (measured in 120 NSCLC and 60 SCLC patients) by setting up optimal biomarker joint models with a powerful computerized tool - gene expression programming (GEP). GEP is a learning algorithm that combines the advantages of genetic programming (GP) and genetic algorithms (GA). It specifically focuses on relationships between variables in sets of data and then builds models to explain these relationships, and has been successfully used in formula finding and function mining. As a basis for defining a GEP environment for SCLC and NSCLC prediction, three explicit predictive models were constructed. CEA and NSE are frequently- used lung cancer markers in clinical trials, CRP, LDH and Cyfra21-1 have significant meaning in lung cancer, basis on CEA and NSE we set up three GEP models-GEP 1(CEA, NSE, Cyfra21-1), GEP2 (CEA, NSE, LDH), GEP3 (CEA, NSE, CRP). The best classification result of GEP gained when CEA, NSE and Cyfra21-1 were combined: 128 of 135 subjects in the training set and 40 of 45 subjects in the test set were classified correctly, the accuracy rate is 94.8% in training set; on collection of samples for testing, the accuracy rate is 88.9%. With GEP2, the accuracy was significantly decreased by 1.5% and 6.6% in training set and test set, in GEP3 was 0.82% and 4.45% respectively. Serum Cyfra21-1 is a useful and sensitive serum biomarker in discriminating between NSCLC and SCLC. GEP modeling is a promising and excellent tool in diagnosis of lung cancer. In diagnosis of lung cancer, rapid distinction between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) tumors is very important. Serum markers, including lactate dehydrogenase (LDH), C-reactive protein (CRP), carcino-embryonic antigen (CEA), neurone specific enolase (NSE) and Cyfra21-1, are reported to reflect lung cancer characteristics. In this study classification of lung tumors was made based on biomarkers (measured in 120 NSCLC and 60 SCLC patients) by setting up optimal biomarker joint models with a powerful computerized tool - gene expression programming (GEP). GEP is a learning algorithm that combines the advantages of genetic programming (GP) and genetic algorithms (GA). It specifically focuses on relationships between variables in sets of data and then builds models to explain these relationships, and has been successfully used in formula finding and function mining. As a basis for defining a GEP environment for SCLC and NSCLC prediction, three explicit predictive models were constructed. CEA and NSE are frequently- used lung cancer markers in clinical trials, CRP, LDH and Cyfra21-1 have significant meaning in lung cancer, basis on CEA and NSE we set up three GEP models-GEP 1(CEA, NSE, Cyfra21-1), GEP2 (CEA, NSE, LDH), GEP3 (CEA, NSE, CRP). The best classification result of GEP gained when CEA, NSE and Cyfra21-1 were combined: 128 of 135 subjects in the training set and 40 of 45 subjects in the test set were classified correctly, the accuracy rate is 94.8% in training set; on collection of samples for testing, the accuracy rate is 88.9%. With GEP2, the accuracy was significantly decreased by 1.5% and 6.6% in training set and test set, in GEP3 was 0.82% and 4.45% respectively. Serum Cyfra21-1 is a useful and sensitive serum biomarker in discriminating between NSCLC and SCLC. GEP modeling is a promising and excellent tool in diagnosis of lung cancer. |
| Author | Si, Hong-Zong Cui, Lian-Hua Lu, Hai-Jiao Chen, Xiao-Zheng Liu, Shi-Hai Yu, Zhuang |
| Author_xml | – sequence: 1 givenname: Zhuang surname: Yu fullname: Yu, Zhuang – sequence: 2 givenname: Xiao-Zheng surname: Chen fullname: Chen, Xiao-Zheng – sequence: 3 givenname: Lian-Hua surname: Cui fullname: Cui, Lian-Hua – sequence: 4 givenname: Hong-Zong surname: Si fullname: Si, Hong-Zong – sequence: 5 givenname: Hai-Jiao surname: Lu fullname: Lu, Hai-Jiao – sequence: 6 givenname: Shi-Hai surname: Liu fullname: Liu, Shi-Hai |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25422226$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kD1PwzAQhi0Eghb4CSCPLAnxRxxHTG1UCqiISHRALJYTXyDQxMVOJPj3JHwsDHg5yfc-d7pninZb2wJCJyQKE0b4-Sy_yfKQRoSHJA4pCVMmkh00oTwRQSLowy6akJiwIGFCHqCp9y9RxGOZxPvogMacDk9M0GPuwNRlV9sW2wqv-vYJZ7otweG59mDw8H8Prm_wvLaNdq_gPC4-8BJawIv3rQPvRzZ39snppqkH_ha6Z2v8Edqr9MbD8U89ROvLxTq7ClZ3y-tstgpKFosu4IXkLC0jyVJjUh1RIXVipKRa6HLoATBBq1ToglUsraguogS04AQKYVLDDtHZ99its289-E41tS9hs9Et2N4rIqikLOWSDdHTn2hfNGDU1tXDSR_qV8cQuPgOlM5676BSZd3pUU7ndL1RJFKjfPUlX43yFYkVJWqUP9DxH_p3wf_cJ_UoiIk |
| CitedBy_id | crossref_primary_10_1038_s41598_017_09284_0 crossref_primary_10_1111_ecc_12446 crossref_primary_10_1155_2015_309784 crossref_primary_10_3390_cancers16152643 crossref_primary_10_3390_cancers9110155 crossref_primary_10_1186_s12920_018_0447_6 crossref_primary_10_1049_iet_syb_2015_0082 crossref_primary_10_1080_10255842_2025_2530645 crossref_primary_10_1007_s12291_024_01267_z crossref_primary_10_1049_iet_syb_2016_0033 crossref_primary_10_1007_s00500_019_04507_0 crossref_primary_10_1016_j_compbiomed_2025_110856 crossref_primary_10_1371_journal_pone_0126276 |
| Cites_doi | 10.1186/1471-2164-14-7 10.1371/journal.pone.0044960 10.1016/j.canlet.2005.05.008 10.1016/j.nano.2011.10.001 10.1186/1471-2407-13-354 10.1186/1465-9921-11-18 10.1007/s10549-012-2039-z 10.1093/jnci/djk195 10.7314/APJCP.2013.14.7.4215 10.1373/clinchem.2005.052878 10.1016/j.eururo.2005.01.015 10.7314/APJCP.2013.14.1.97 10.4161/cbt.11.12.15526 10.1159/000074432 10.1513/pats.201006-040MS 10.1038/sj.bjc.6605865 10.1016/j.lungcan.2008.04.011 10.18632/oncotarget.1007 10.1007/s101470200021 10.7314/APJCP.2013.14.7.4369 10.1001/jama.283.22.2975 10.1007/s13139-013-0218-4 10.1002/1097-0142(19950101)75:1+<191::AID-CNCR2820751307>3.0.CO;2-Y 10.1200/JCO.2007.13.5392 10.1111/ajco.12066 10.1002/1097-0142(19950901)76:5<807::AID-CNCR2820760515>3.0.CO;2-M 10.1053/j.ro.2011.02.003 10.7314/APJCP.2014.15.4.1617 10.2214/AJR.09.3354 10.7314/APJCP.2014.15.12.4933 10.1007/s10916-011-9775-1 10.1378/chest.108.1.163 10.7314/APJCP.2012.13.3.927 10.1038/sj.bjc.6602074 10.1007/s11517-013-1108-8 10.7314/APJCP.2014.15.8.3451 10.1016/j.biopha.2007.08.005 10.1067/j.cpradiol.2010.02.002 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.7314/APJCP.2014.15.21.9367 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2476-762X |
| EndPage | 9373 |
| ExternalDocumentID | 25422226 10_7314_APJCP_2014_15_21_9367 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
| GroupedDBID | --- .UV 23N 2WC 53G 5GY 9ZL AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BAWUL BCNDV CITATION E3Z EBS EJD F5P FRJ GROUPED_DOAJ GX1 JDI OK1 OVT RPM TR2 W2D WOW CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c356t-4b8439c0839dd9a0268a7d882a6acb84ee362f96ab3f39f2ab07ea641eb6d9d3 |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351056100049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1513-7368 2476-762X |
| IngestDate | Fri Jul 11 03:23:26 EDT 2025 Fri Sep 17 21:52:56 EDT 2021 Tue Nov 18 22:34:13 EST 2025 Sat Nov 29 06:43:24 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c356t-4b8439c0839dd9a0268a7d882a6acb84ee362f96ab3f39f2ab07ea641eb6d9d3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://doi.org/10.7314/apjcp.2014.15.21.9367 |
| PMID | 25422226 |
| PQID | 1628239483 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_1628239483 pubmed_primary_25422226 crossref_citationtrail_10_7314_APJCP_2014_15_21_9367 crossref_primary_10_7314_APJCP_2014_15_21_9367 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-01-01 |
| PublicationDateYYYYMMDD | 2014-01-01 |
| PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Thailand |
| PublicationPlace_xml | – name: Thailand |
| PublicationTitle | Asian Pacific journal of cancer prevention : APJCP |
| PublicationTitleAlternate | Asian Pac J Cancer Prev |
| PublicationYear | 2014 |
| References | (POCPA9_2014_v15n21_9367_029) 2010; 30 POCPA9_2014_v15n21_9367_015 POCPA9_2014_v15n21_9367_037 POCPA9_2014_v15n21_9367_014 POCPA9_2014_v15n21_9367_017 POCPA9_2014_v15n21_9367_016 POCPA9_2014_v15n21_9367_038 POCPA9_2014_v15n21_9367_019 POCPA9_2014_v15n21_9367_018 POCPA9_2014_v15n21_9367_031 POCPA9_2014_v15n21_9367_030 POCPA9_2014_v15n21_9367_011 POCPA9_2014_v15n21_9367_033 POCPA9_2014_v15n21_9367_010 POCPA9_2014_v15n21_9367_032 POCPA9_2014_v15n21_9367_013 POCPA9_2014_v15n21_9367_035 POCPA9_2014_v15n21_9367_012 POCPA9_2014_v15n21_9367_034 (POCPA9_2014_v15n21_9367_025) 2003; 68 (POCPA9_2014_v15n21_9367_036) 2010; 78 (POCPA9_2014_v15n21_9367_020) 2004; 91 (POCPA9_2014_v15n21_9367_039) 2013; 4 POCPA9_2014_v15n21_9367_004 POCPA9_2014_v15n21_9367_026 POCPA9_2014_v15n21_9367_003 POCPA9_2014_v15n21_9367_006 POCPA9_2014_v15n21_9367_028 POCPA9_2014_v15n21_9367_005 POCPA9_2014_v15n21_9367_027 POCPA9_2014_v15n21_9367_008 POCPA9_2014_v15n21_9367_007 POCPA9_2014_v15n21_9367_009 POCPA9_2014_v15n21_9367_040 POCPA9_2014_v15n21_9367_041 POCPA9_2014_v15n21_9367_022 POCPA9_2014_v15n21_9367_021 POCPA9_2014_v15n21_9367_002 POCPA9_2014_v15n21_9367_024 POCPA9_2014_v15n21_9367_001 POCPA9_2014_v15n21_9367_023 |
| References_xml | – ident: POCPA9_2014_v15n21_9367_040 doi: 10.1186/1471-2164-14-7 – volume: 30 start-page: 3099 year: 2010 ident: POCPA9_2014_v15n21_9367_029 publication-title: Anticancer Res – ident: POCPA9_2014_v15n21_9367_011 doi: 10.1371/journal.pone.0044960 – ident: POCPA9_2014_v15n21_9367_032 doi: 10.1016/j.canlet.2005.05.008 – ident: POCPA9_2014_v15n21_9367_002 doi: 10.1016/j.nano.2011.10.001 – ident: POCPA9_2014_v15n21_9367_023 doi: 10.1186/1471-2407-13-354 – ident: POCPA9_2014_v15n21_9367_016 doi: 10.1186/1465-9921-11-18 – ident: POCPA9_2014_v15n21_9367_022 doi: 10.1007/s10549-012-2039-z – volume: 68 start-page: 1075 year: 2003 ident: POCPA9_2014_v15n21_9367_025 publication-title: Am Fam Physician – ident: POCPA9_2014_v15n21_9367_028 doi: 10.1093/jnci/djk195 – ident: POCPA9_2014_v15n21_9367_038 doi: 10.7314/APJCP.2013.14.7.4215 – ident: POCPA9_2014_v15n21_9367_018 doi: 10.1373/clinchem.2005.052878 – ident: POCPA9_2014_v15n21_9367_001 doi: 10.1016/j.eururo.2005.01.015 – volume: 78 start-page: 407 year: 2010 ident: POCPA9_2014_v15n21_9367_036 publication-title: Pneumonol Alergol Pol – ident: POCPA9_2014_v15n21_9367_009 doi: 10.7314/APJCP.2013.14.1.97 – ident: POCPA9_2014_v15n21_9367_005 doi: 10.4161/cbt.11.12.15526 – ident: POCPA9_2014_v15n21_9367_019 doi: 10.1159/000074432 – ident: POCPA9_2014_v15n21_9367_021 doi: 10.1513/pats.201006-040MS – ident: POCPA9_2014_v15n21_9367_006 doi: 10.1038/sj.bjc.6605865 – ident: POCPA9_2014_v15n21_9367_014 doi: 10.1016/j.lungcan.2008.04.011 – volume: 4 start-page: 802 year: 2013 ident: POCPA9_2014_v15n21_9367_039 publication-title: Oncotarget doi: 10.18632/oncotarget.1007 – ident: POCPA9_2014_v15n21_9367_027 doi: 10.1007/s101470200021 – ident: POCPA9_2014_v15n21_9367_033 doi: 10.7314/APJCP.2013.14.7.4369 – ident: POCPA9_2014_v15n21_9367_034 doi: 10.1001/jama.283.22.2975 – ident: POCPA9_2014_v15n21_9367_015 doi: 10.1007/s13139-013-0218-4 – ident: POCPA9_2014_v15n21_9367_031 doi: 10.1002/1097-0142(19950101)75:1+<191::AID-CNCR2820751307>3.0.CO;2-Y – ident: POCPA9_2014_v15n21_9367_024 doi: 10.1200/JCO.2007.13.5392 – ident: POCPA9_2014_v15n21_9367_017 doi: 10.1111/ajco.12066 – ident: POCPA9_2014_v15n21_9367_008 doi: 10.1002/1097-0142(19950901)76:5<807::AID-CNCR2820760515>3.0.CO;2-M – ident: POCPA9_2014_v15n21_9367_030 doi: 10.1053/j.ro.2011.02.003 – ident: POCPA9_2014_v15n21_9367_041 doi: 10.7314/APJCP.2014.15.4.1617 – ident: POCPA9_2014_v15n21_9367_012 doi: 10.2214/AJR.09.3354 – ident: POCPA9_2014_v15n21_9367_010 doi: 10.7314/APJCP.2014.15.12.4933 – ident: POCPA9_2014_v15n21_9367_007 doi: 10.1007/s10916-011-9775-1 – ident: POCPA9_2014_v15n21_9367_035 doi: 10.1378/chest.108.1.163 – ident: POCPA9_2014_v15n21_9367_003 doi: 10.7314/APJCP.2012.13.3.927 – volume: 91 start-page: 873 year: 2004 ident: POCPA9_2014_v15n21_9367_020 publication-title: Br J Cancer doi: 10.1038/sj.bjc.6602074 – ident: POCPA9_2014_v15n21_9367_013 doi: 10.1007/s11517-013-1108-8 – ident: POCPA9_2014_v15n21_9367_037 doi: 10.7314/APJCP.2014.15.8.3451 – ident: POCPA9_2014_v15n21_9367_004 doi: 10.1016/j.biopha.2007.08.005 – ident: POCPA9_2014_v15n21_9367_026 doi: 10.1067/j.cpradiol.2010.02.002 |
| SSID | ssj0045875 |
| Score | 2.1454298 |
| Snippet | In diagnosis of lung cancer, rapid distinction between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) tumors is very important. Serum... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 9367 |
| SubjectTerms | Aged Biomarkers, Tumor - blood Biomarkers, Tumor - genetics C-Reactive Protein - analysis CA-125 Antigen - blood Carcinoembryonic Antigen - blood Carcinoma, Non-Small-Cell Lung - blood Carcinoma, Non-Small-Cell Lung - diagnosis Carcinoma, Non-Small-Cell Lung - genetics Cohort Studies Diagnosis, Differential Female Gene Expression Profiling - methods Gene Expression Regulation, Neoplastic Humans Lung Neoplasms - blood Lung Neoplasms - diagnosis Male Middle Aged Neoplasm Invasiveness - pathology Neoplasm Staging Phosphopyruvate Hydratase - blood Predictive Value of Tests Retrospective Studies Sensitivity and Specificity Small Cell Lung Carcinoma - blood Small Cell Lung Carcinoma - diagnosis Small Cell Lung Carcinoma - genetics |
| Title | Prediction of Lung Cancer Based on Serum Biomarkers by Gene Expression Programming Methods |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25422226 https://www.proquest.com/docview/1628239483 |
| Volume | 15 |
| WOSCitedRecordID | wos000351056100049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2476-762X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045875 issn: 1513-7368 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6gRAviDvlMhmJtyllsZ04fhwTaEK0qkQfSl8iO3HGpDWp2mYaP4t_yDmxmwQ0LnvgJWqT-jjp-XIu9rkQ8kYyY0ScxYEsNDgoolCB1iYLjDSJ0IWJjXTNJuRkksznajoYfN_lwlxeyLJMrq7U6r-yGs4BszF19gbsbonCCfgMTIcjsB2O_8T46Rr3XnaG4Kca9_WRtevDd6Cx8kMnIOoltqFcYnDOeoM2KNafxsLHLi62xAwCDNxa4lLCuGkzvekbssdN8qUP6evXn8jcXCtfGgrBhWuP048nbSbZl7rZEvlaa682m_ACJ__m57oKFvClu1K7BG6YLzitWy3y2bXbrsqzYFH5X_vVi1D0Vi-8wA15ILlrrdNK5KiHPJdA7eWr4q55h9fVYFvx6_SA5KHAehT4bBi-J0ZhNGLhqBver7v9iz5soxTBP0JCaUMmRTJpGKUsTJHMHrnFZKSSnRfvlL-Ikqa2c_tYLmkMyby99m5-Nod-4-M0ts7sPrnnnRR67MD1gAxs-ZDcGfswjEdk0WGMVgVFjFGHMdpgjML5BmO0wxg13yhijHYYoz2MUY-xx2T24f3s5DTwTTqCjEfxNhDwTnOVgSWv8lxpcOkTLXPw23SsM7hmLZhIhYq14QVXBdPmSFodi9CaOFc5f0L2y6q0zwjNWQ4jpVYsi4SMQpAhRzkqci21jawdErH7q9LMF7DHPioX6R8ZNSSjdtjKVXD524DXOz6kIGtxA02Xtqo3aRizhHElEj4kTx2DWpIswsVUFj-_6XQvyN3uxXhJ9rfr2r4it7PL7flmfUD25Dw5aDAGx8l0_AML8qd1 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Lung+Cancer+Based+on+Serum+Biomarkers+by+Gene+Expression+Programming+Methods&rft.jtitle=Asian+Pacific+journal+of+cancer+prevention+%3A+APJCP&rft.au=Yu%2C+Zhuang&rft.au=Chen%2C+Xiao-Zheng&rft.au=Cui%2C+Lian-Hua&rft.au=Si%2C+Hong-Zong&rft.date=2014-01-01&rft.issn=1513-7368&rft.volume=15&rft.issue=21&rft.spage=9367&rft.epage=9373&rft_id=info:doi/10.7314%2FAPJCP.2014.15.21.9367&rft.externalDBID=n%2Fa&rft.externalDocID=10_7314_APJCP_2014_15_21_9367 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1513-7368&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1513-7368&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1513-7368&client=summon |