Square-root RTS smoothing algorithms
Two kinds of new square-root algorithms for Rauch-Tung-Striebel (RTS) smoothing formulas are suggested: stable square-root algorithms and a fast square-root (or so-called Chandrasekhar-type) algorithm. The new stable square-root algorithms use square-root arrays composed of smoothed estimates and th...
Uloženo v:
| Vydáno v: | International journal of control Ročník 62; číslo 5; s. 1049 - 1060 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Taylor & Francis Group
01.11.1995
Taylor & Francis |
| Témata: | |
| ISSN: | 0020-7179, 1366-5820 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Two kinds of new square-root algorithms for Rauch-Tung-Striebel (RTS) smoothing formulas are suggested: stable square-root algorithms and a fast square-root (or so-called Chandrasekhar-type) algorithm. The new stable square-root algorithms use square-root arrays composed of smoothed estimates and their error covariances. These square-root algorithms provide many advantages over the conventional algorithms with respect to systolic array and parallel implementations as well as numerical stability and conditioning. For the case of constant-parameter systems, a fast square-root algorithm is suggested, which requires less computation than others. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0020-7179 1366-5820 |
| DOI: | 10.1080/00207179508921582 |