Regularized LTI system identification in the presence of outliers: A variational EM approach
Regularized system identification of linear time invariant systems in the presence of outliers is investigated. The finite impulse response (fir) model and the Gaussian scale mixture are chosen to be the system model and the noise model, respectively. Two special cases of the noise model are conside...
Saved in:
| Published in: | Automatica (Oxford) Vol. 121; p. 109152 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.11.2020
|
| Subjects: | |
| ISSN: | 0005-1098, 1873-2836, 1873-2836 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Regularized system identification of linear time invariant systems in the presence of outliers is investigated. The finite impulse response (fir) model and the Gaussian scale mixture are chosen to be the system model and the noise model, respectively. Two special cases of the noise model are considered: the well-known Student’s t distribution and a proposed G-confluent distribution. Both the fir model parameter and the latent variables in the noise model are treated as parameters of our statistical model and moreover, the scale of the noise variance is treated as a hyper-parameter besides the hyper-parameters used to parameterize the priors of the impulse response and the latent variables. Then a variational expectation–maximization algorithm is proposed for inference of the parameters and hyper-parameters of the statistical model, and the algorithm is guaranteed to converge to a stationary point. Monte Carlo numerical simulations show that when the relative size of outliers is small, the proposed approach performs comparably to a state-of-the-art method and when the relative size of outliers and/or the occurrence probability of outliers is large, the proposed approach outperforms the state-of-the-art method. |
|---|---|
| AbstractList | Regularized system identification of linear time invariant systems in the presence of outliers is investigated. The finite impulse response (FIR) model and the Gaussian scale mixture are chosen to be the system model and the noise model, respectively. Two special cases of the noise model are considered: the well-known Students t distribution and a proposed G-confluent distribution. Both the FIR model parameter and the latent variables in the noise model are treated as parameters of our statistical model and moreover, the scale of the noise variance is treated as a hyper-parameter besides the hyper-parameters used to parameterize the priors of the impulse response and the latent variables. Then a variational expectation-maximization algorithm is proposed for inference of the parameters and hyper-parameters of the statistical model, and the algorithm is guaranteed to converge to a stationary point. Monte Carlo numerical simulations show that when the relative size of outliers is small, the proposed approach performs comparably to a state-of-the-art method and when the relative size of outliers and/or the occurrence probability of outliers is large, the proposed approach outperforms the state-of-the-art method. (C) 2020 Elsevier Ltd. All rights reserved. Regularized system identification of linear time invariant systems in the presence of outliers is investigated. The finite impulse response (fir) model and the Gaussian scale mixture are chosen to be the system model and the noise model, respectively. Two special cases of the noise model are considered: the well-known Student’s t distribution and a proposed G-confluent distribution. Both the fir model parameter and the latent variables in the noise model are treated as parameters of our statistical model and moreover, the scale of the noise variance is treated as a hyper-parameter besides the hyper-parameters used to parameterize the priors of the impulse response and the latent variables. Then a variational expectation–maximization algorithm is proposed for inference of the parameters and hyper-parameters of the statistical model, and the algorithm is guaranteed to converge to a stationary point. Monte Carlo numerical simulations show that when the relative size of outliers is small, the proposed approach performs comparably to a state-of-the-art method and when the relative size of outliers and/or the occurrence probability of outliers is large, the proposed approach outperforms the state-of-the-art method. |
| ArticleNumber | 109152 |
| Author | Lindfors, Martin Chen, Tianshi |
| Author_xml | – sequence: 1 givenname: Martin surname: Lindfors fullname: Lindfors, Martin email: martin.lindfors@liu.se organization: Division of Automatic Control, Department of Electrical Engineering, Linköping University, Linköping, 58183, Sweden – sequence: 2 givenname: Tianshi surname: Chen fullname: Chen, Tianshi email: tschen@cuhk.edu.cn organization: School of Data Science and Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong, Shenzhen, 518172, China |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-170620$$DView record from Swedish Publication Index (Linköpings universitet) |
| BookMark | eNqNkN1KAzEQRoNUsK2-Q15ga36629QLodaqhYog1SshpJtJm7LdLEm2Up_ebSsK3ujVkMn3HZjTQa3SlYAQpqRHCc0u1z1VR7dR0eaqxwjbr4c0ZSeoTcWAJ0zwrIXahJA0aX7EGeqEsG6efSpYG709w7IulLcfoPFsPsVhFyJssNVQRmsaaLSuxLbEcQW48hCgzAE7g10dCws-XOER3jaAQ1AVePKIVVV5p_LVOTo1qghw8TW76OVuMh8_JLOn--l4NEtynmYxYcaYdME5BW1gwEUfFDFcLYbc0OFCk1QxnRnOAKjuCwKZEik3QASnRhOS8S5KjtzwDlW9kJW3G-V30ikrb-3rSDq_lIWtJR2QjJEmL4753LsQPJjvBiVyb1Wu5Y9Vubcqj1ab6vWvam7j4fTolS3-A7g5AqARsm0EypDbvVNtPeRRamf_hnwChMmeeg |
| CitedBy_id | crossref_primary_10_1016_j_oceaneng_2025_122303 crossref_primary_10_1109_JAS_2024_125109 crossref_primary_10_1016_j_automatica_2022_110489 crossref_primary_10_1016_j_automatica_2022_110687 crossref_primary_10_1109_TSMC_2022_3151761 crossref_primary_10_1109_TSMC_2024_3362067 crossref_primary_10_1109_TAC_2023_3338462 crossref_primary_10_1109_TAC_2022_3195151 crossref_primary_10_1002_acs_3497 crossref_primary_10_1016_j_automatica_2021_109682 |
| Cites_doi | 10.1016/j.automatica.2018.04.015 10.3182/20140824-6-ZA-1003.01587 10.1137/0111030 10.1109/MSP.2008.929620 10.1016/j.automatica.2009.10.031 10.1109/TSP.2010.2080271 10.1016/j.automatica.2018.04.035 10.1016/j.automatica.2012.05.026 10.1016/j.automatica.2017.12.039 10.1109/TAC.2016.2582642 10.1109/TAC.2014.2351851 10.1080/03610927708827533 10.1016/j.automatica.2014.01.001 10.1016/j.automatica.2015.05.012 10.1080/01621459.1976.10480376 10.1016/j.automatica.2013.03.030 10.1016/j.neucom.2005.02.016 10.1016/j.automatica.2016.01.036 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION ADTPV AOWAS DG8 |
| DOI | 10.1016/j.automatica.2020.109152 |
| DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Linköpings universitet |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2836 |
| ExternalDocumentID | oai_DiVA_org_liu_170620 10_1016_j_automatica_2020_109152 S0005109820303502 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23N 3R3 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K T9H TAE TN5 VH1 WH7 WUQ X6Y XFK XPP ZMT ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ADTPV AOWAS DG8 |
| ID | FETCH-LOGICAL-c356t-2fff5b331edfe7384ea0f3ab93f19bd05a2d6f32ee1d480e6a853fe0831fd0063 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000571446000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0005-1098 1873-2836 |
| IngestDate | Tue Nov 04 16:41:34 EST 2025 Tue Nov 18 22:39:59 EST 2025 Sat Nov 29 07:01:21 EST 2025 Fri Feb 23 02:50:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Outliers Variational expectation–maximization Kernel-based regularization methods System identification WASP_publications Variational expectation-maximization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c356t-2fff5b331edfe7384ea0f3ab93f19bd05a2d6f32ee1d480e6a853fe0831fd0063 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_liu_170620 crossref_primary_10_1016_j_automatica_2020_109152 crossref_citationtrail_10_1016_j_automatica_2020_109152 elsevier_sciencedirect_doi_10_1016_j_automatica_2020_109152 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-01 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Automatica (Oxford) |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | (pp. 3646–3655). Hawkins (b16) 1980 Bottegal, Aravkin, Hjalmarsson, Pillonetto (b8) 2016; 67 Bottegal, Aravkin, Hjalmarsson, Pillonetto (b7) 2014; 47 Beal, Ghahramani (b2) 2003; 7 Pillonetto, De Nicolao (b24) 2010; 46 Bishop (b5) 2006 Tzikas, Likas, Galatsanos (b27) 2008; 25 Green (b15) 1976; 71 Pillonetto, Chiuso (b23) 2015; 58 Holland, Welsch (b17) 1977; 6 Bickel, Doksum (b4) 2001 Chen (b10) 2018; 90 Wu (b29) 1983 Neal, Hinton (b22) 1998 Wang, Yixin, Kucukelbir, Alp, & Blei, David M. (2017). Robust probabilistic modeling with Bayesian data reweighting. In Abramowitz, Stegun (b1) 1964 Pillonetto, Dinuzzo, Chen, De Nicolao, Ljung (b25) 2014; 50 Bertsekas (b3) 1999 Marquardt (b20) 1963; 11 Ljung (b19) 1999 Björck (b6) 1996 Chen, Ljung (b12) 2013; 49 Tipping, Lawrence (b26) 2005; 69 Mu, Chen, Ljung (b21) 2018; 94 Chen, Andersen, Ljung, Chiuso, Pillonetto (b11) 2013; 59 Huber (b18) 2011 Christmas, Everson (b14) 2011; 59 Carli, Chen, Ljung (b9) 2017; 62 Chen, Ohlsson, Ljung (b13) 2012; 48 Zorzi, Chiuso (b30) 2018; 94 Tzikas (10.1016/j.automatica.2020.109152_b27) 2008; 25 Pillonetto (10.1016/j.automatica.2020.109152_b23) 2015; 58 Pillonetto (10.1016/j.automatica.2020.109152_b25) 2014; 50 Pillonetto (10.1016/j.automatica.2020.109152_b24) 2010; 46 Abramowitz (10.1016/j.automatica.2020.109152_b1) 1964 Bickel (10.1016/j.automatica.2020.109152_b4) 2001 Marquardt (10.1016/j.automatica.2020.109152_b20) 1963; 11 Chen (10.1016/j.automatica.2020.109152_b11) 2013; 59 Chen (10.1016/j.automatica.2020.109152_b10) 2018; 90 Beal (10.1016/j.automatica.2020.109152_b2) 2003; 7 Holland (10.1016/j.automatica.2020.109152_b17) 1977; 6 Mu (10.1016/j.automatica.2020.109152_b21) 2018; 94 10.1016/j.automatica.2020.109152_b28 Chen (10.1016/j.automatica.2020.109152_b12) 2013; 49 Bottegal (10.1016/j.automatica.2020.109152_b7) 2014; 47 Hawkins (10.1016/j.automatica.2020.109152_b16) 1980 Huber (10.1016/j.automatica.2020.109152_b18) 2011 Chen (10.1016/j.automatica.2020.109152_b13) 2012; 48 Björck (10.1016/j.automatica.2020.109152_b6) 1996 Neal (10.1016/j.automatica.2020.109152_b22) 1998 Zorzi (10.1016/j.automatica.2020.109152_b30) 2018; 94 Bottegal (10.1016/j.automatica.2020.109152_b8) 2016; 67 Christmas (10.1016/j.automatica.2020.109152_b14) 2011; 59 Carli (10.1016/j.automatica.2020.109152_b9) 2017; 62 Ljung (10.1016/j.automatica.2020.109152_b19) 1999 Bishop (10.1016/j.automatica.2020.109152_b5) 2006 Wu (10.1016/j.automatica.2020.109152_b29) 1983 Green (10.1016/j.automatica.2020.109152_b15) 1976; 71 Bertsekas (10.1016/j.automatica.2020.109152_b3) 1999 Tipping (10.1016/j.automatica.2020.109152_b26) 2005; 69 |
| References_xml | – year: 2001 ident: b4 article-title: Mathematical statistics: basic ideas and selected topics (vol I) – year: 1996 ident: b6 article-title: Numerical methods for least squares problems – volume: 46 start-page: 81 year: 2010 end-page: 93 ident: b24 article-title: A new kernel-based approach for linear system identification publication-title: Automatica – year: 1980 ident: b16 article-title: Identification of outliers (vol. 11) – year: 2006 ident: b5 article-title: Pattern recognition and machine learning – year: 1999 ident: b3 article-title: Nonlinear programming – volume: 90 start-page: 109 year: 2018 end-page: 122 ident: b10 article-title: On kernel design for regularized system identification publication-title: Automatica – reference: (pp. 3646–3655). – volume: 25 start-page: 131 year: 2008 end-page: 146 ident: b27 article-title: The variational approximation for Bayesian inference publication-title: IEEE Signal Processing Magazine – volume: 6 start-page: 813 year: 1977 end-page: 827 ident: b17 article-title: Robust regression using iteratively reweighted least-squares publication-title: Communications in Statistics-theory and Methods – volume: 94 start-page: 125 year: 2018 end-page: 137 ident: b30 article-title: The harmonic analysis of kernel functions publication-title: Automatica – volume: 50 start-page: 657 year: 2014 end-page: 682 ident: b25 article-title: Kernel methods in system identification, machine learning and function estimation: A survey publication-title: Automatica – volume: 67 start-page: 114 year: 2016 end-page: 126 ident: b8 article-title: Robust EM kernel-based methods for linear system identification publication-title: Automatica – volume: 58 start-page: 106 year: 2015 end-page: 117 ident: b23 article-title: Tuning complexity in regularized kernel-based regression and linear system identification: The robustness of the marginal likelihood estimator publication-title: Automatica – start-page: 1248 year: 2011 end-page: 1251 ident: b18 article-title: Robust statistics publication-title: International Encyclopedia of Statistical Science – volume: 47 start-page: 1073 year: 2014 end-page: 1078 ident: b7 article-title: Outlier robust system identification: a Bayesian kernel-based approach publication-title: IFAC Proceedings Volumes – reference: Wang, Yixin, Kucukelbir, Alp, & Blei, David M. (2017). Robust probabilistic modeling with Bayesian data reweighting. In – volume: 62 start-page: 1471 year: 2017 end-page: 1477 ident: b9 article-title: Maximum entropy kernels for system identification publication-title: IEEE Transactions on Automatic Control – volume: 71 start-page: 502 year: 1976 end-page: 505 ident: b15 article-title: Outlier-prone and outlier-resistant distributions publication-title: Journal of the American Statistical Association – year: 1964 ident: b1 article-title: Handbook of mathematical functions: with formulas, graphs, and mathematical tables (vol. 55) – volume: 94 start-page: 381 year: 2018 end-page: 395 ident: b21 article-title: On asymptotic properties of hyperparameter estimators for kernel-based regularization methods publication-title: Automatica – start-page: 95 year: 1983 end-page: 103 ident: b29 article-title: On the convergence properties of the EM algorithm publication-title: The Annals of statistics – volume: 48 start-page: 1525 year: 2012 end-page: 1535 ident: b13 article-title: On the estimation of transfer functions, regularizations and Gaussian processes – revisited publication-title: Automatica – volume: 59 start-page: 2933 year: 2013 end-page: 2945 ident: b11 article-title: System identification via sparse multiple kernel-based regularization using sequential convex optimization techniques publication-title: IEEE Transactions on Automatic Control – volume: 69 start-page: 123 year: 2005 end-page: 141 ident: b26 article-title: Variational inference for Student- publication-title: Neurocomputing – volume: 11 start-page: 431 year: 1963 end-page: 441 ident: b20 article-title: An algorithm for least-squares estimation of nonlinear parameters publication-title: Journal of the Society for Industrial and Applied Mathematics – volume: 49 start-page: 2213 year: 2013 end-page: 2220 ident: b12 article-title: Implementation of algorithms for tuning parameters in regularized least squares problems in system identification publication-title: Automatica – year: 1999 ident: b19 article-title: System identification - theory for the user publication-title: Wiley encyclopedia of electrical and electronics engineering – volume: 7 start-page: 453 year: 2003 end-page: 464 ident: b2 article-title: The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures publication-title: Bayesian Statistics – volume: 59 start-page: 48 year: 2011 end-page: 57 ident: b14 article-title: Robust autoregression: Student- publication-title: IEEE Transactions on Signal Processing – start-page: 355 year: 1998 end-page: 368 ident: b22 article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants publication-title: Learning in Graphical Models – volume: 94 start-page: 125 year: 2018 ident: 10.1016/j.automatica.2020.109152_b30 article-title: The harmonic analysis of kernel functions publication-title: Automatica doi: 10.1016/j.automatica.2018.04.015 – volume: 47 start-page: 1073 issue: 3 year: 2014 ident: 10.1016/j.automatica.2020.109152_b7 article-title: Outlier robust system identification: a Bayesian kernel-based approach publication-title: IFAC Proceedings Volumes doi: 10.3182/20140824-6-ZA-1003.01587 – volume: 11 start-page: 431 issue: 2 year: 1963 ident: 10.1016/j.automatica.2020.109152_b20 article-title: An algorithm for least-squares estimation of nonlinear parameters publication-title: Journal of the Society for Industrial and Applied Mathematics doi: 10.1137/0111030 – volume: 25 start-page: 131 issue: 6 year: 2008 ident: 10.1016/j.automatica.2020.109152_b27 article-title: The variational approximation for Bayesian inference publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2008.929620 – volume: 46 start-page: 81 issue: 1 year: 2010 ident: 10.1016/j.automatica.2020.109152_b24 article-title: A new kernel-based approach for linear system identification publication-title: Automatica doi: 10.1016/j.automatica.2009.10.031 – start-page: 95 year: 1983 ident: 10.1016/j.automatica.2020.109152_b29 article-title: On the convergence properties of the EM algorithm publication-title: The Annals of statistics – volume: 59 start-page: 48 issue: 1 year: 2011 ident: 10.1016/j.automatica.2020.109152_b14 article-title: Robust autoregression: Student-t innovations using variational Bayes publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2010.2080271 – year: 1999 ident: 10.1016/j.automatica.2020.109152_b19 article-title: System identification - theory for the user – volume: 94 start-page: 381 year: 2018 ident: 10.1016/j.automatica.2020.109152_b21 article-title: On asymptotic properties of hyperparameter estimators for kernel-based regularization methods publication-title: Automatica doi: 10.1016/j.automatica.2018.04.035 – year: 1999 ident: 10.1016/j.automatica.2020.109152_b3 – year: 1996 ident: 10.1016/j.automatica.2020.109152_b6 – ident: 10.1016/j.automatica.2020.109152_b28 – volume: 48 start-page: 1525 issue: 8 year: 2012 ident: 10.1016/j.automatica.2020.109152_b13 article-title: On the estimation of transfer functions, regularizations and Gaussian processes – revisited publication-title: Automatica doi: 10.1016/j.automatica.2012.05.026 – year: 1980 ident: 10.1016/j.automatica.2020.109152_b16 – volume: 90 start-page: 109 year: 2018 ident: 10.1016/j.automatica.2020.109152_b10 article-title: On kernel design for regularized system identification publication-title: Automatica doi: 10.1016/j.automatica.2017.12.039 – volume: 62 start-page: 1471 issue: 3 year: 2017 ident: 10.1016/j.automatica.2020.109152_b9 article-title: Maximum entropy kernels for system identification publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2016.2582642 – volume: 59 start-page: 2933 issue: 11 year: 2013 ident: 10.1016/j.automatica.2020.109152_b11 article-title: System identification via sparse multiple kernel-based regularization using sequential convex optimization techniques publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2014.2351851 – volume: 6 start-page: 813 issue: 9 year: 1977 ident: 10.1016/j.automatica.2020.109152_b17 article-title: Robust regression using iteratively reweighted least-squares publication-title: Communications in Statistics-theory and Methods doi: 10.1080/03610927708827533 – volume: 50 start-page: 657 issue: 3 year: 2014 ident: 10.1016/j.automatica.2020.109152_b25 article-title: Kernel methods in system identification, machine learning and function estimation: A survey publication-title: Automatica doi: 10.1016/j.automatica.2014.01.001 – year: 2006 ident: 10.1016/j.automatica.2020.109152_b5 – start-page: 1248 year: 2011 ident: 10.1016/j.automatica.2020.109152_b18 article-title: Robust statistics – volume: 58 start-page: 106 year: 2015 ident: 10.1016/j.automatica.2020.109152_b23 article-title: Tuning complexity in regularized kernel-based regression and linear system identification: The robustness of the marginal likelihood estimator publication-title: Automatica doi: 10.1016/j.automatica.2015.05.012 – volume: 71 start-page: 502 issue: 354 year: 1976 ident: 10.1016/j.automatica.2020.109152_b15 article-title: Outlier-prone and outlier-resistant distributions publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1976.10480376 – start-page: 355 year: 1998 ident: 10.1016/j.automatica.2020.109152_b22 article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants – volume: 7 start-page: 453 year: 2003 ident: 10.1016/j.automatica.2020.109152_b2 article-title: The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures publication-title: Bayesian Statistics – volume: 49 start-page: 2213 issue: 7 year: 2013 ident: 10.1016/j.automatica.2020.109152_b12 article-title: Implementation of algorithms for tuning parameters in regularized least squares problems in system identification publication-title: Automatica doi: 10.1016/j.automatica.2013.03.030 – volume: 69 start-page: 123 issue: 1 year: 2005 ident: 10.1016/j.automatica.2020.109152_b26 article-title: Variational inference for Student-t models: Robust Bayesian interpolation and generalised component analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.02.016 – year: 1964 ident: 10.1016/j.automatica.2020.109152_b1 – year: 2001 ident: 10.1016/j.automatica.2020.109152_b4 – volume: 67 start-page: 114 year: 2016 ident: 10.1016/j.automatica.2020.109152_b8 article-title: Robust EM kernel-based methods for linear system identification publication-title: Automatica doi: 10.1016/j.automatica.2016.01.036 |
| SSID | ssj0004182 |
| Score | 2.4214814 |
| Snippet | Regularized system identification of linear time invariant systems in the presence of outliers is investigated. The finite impulse response (fir) model and the... Regularized system identification of linear time invariant systems in the presence of outliers is investigated. The finite impulse response (FIR) model and the... |
| SourceID | swepub crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 109152 |
| SubjectTerms | Kernel-based regularization methods Outliers System identification Variational expectation–maximization |
| Title | Regularized LTI system identification in the presence of outliers: A variational EM approach |
| URI | https://dx.doi.org/10.1016/j.automatica.2020.109152 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-170620 |
| Volume | 121 |
| WOSCitedRecordID | wos000571446000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2836 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004182 issn: 0005-1098 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHVF6iQJEPiAsKSuIkduAU0a0oaiuElmoPSJbjR0lVZVf7qFb8esaPZINopeXAJVpZa6_lz5n9ZjTzDUJvMpnVaUIkuKmURpnQOqplnkQpIUCXmVapawd0fkLPzthkUn4NbdkXrp0AbVu2Xpez_wo1jAHYtnT2H-DuF4UB-AygwxNgh-dWwH9z3eXnzS-gkifj46DV_K5RIS9IDNMbZ676SLrAgc0Nco2xXbH6NSzRBQpHp732-JDMVqvl1Cm-CidauvZ58n1kwbr7MLQIJUGdxrfLJfDGbgx3c_GzGUYewM1M-shDZ02tiqnvIt1bU1_w_Jdl9kGCS5uXE7b23q5p5awSr2F7g-71YXNe8en8gl81K26FftL4LtpNaV6CDd6tjkeTL5si2IR5afiwKetpM0oi4E9FSOHyiX037-BWXjIUkHWkY7yHHgZvAVce5Ufojm4fowcDDckn6McAbwx4Y483_hNv3LQY8MYd3nhqcIf3B1zhAdp4dIo7tJ-i70ej8afPUWiZEUmSF8soNcbkNSGJVkZTwjItYkNEXRKTlLWKc5GqwpBU60RlLNaFALpmtG03Z5Slq8_QTjtt9XOEpS7qOFOaCqEzxWSt4c8RXmtWCy0pyfYR7Q6My6Anb9uaXPEucfCSb46a26Pm_qj3UdLPnHlNlS3mfOww4YEbes7H4YJtMfuth7H_vVtu14ttv_gS3d-8Eq_QznK-0gfonrxeNov563A3fwOb-Zbn |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularized+LTI+system+identification+in+the+presence+of+outliers%3A+A+variational+EM+approach&rft.jtitle=Automatica+%28Oxford%29&rft.au=Lindfors%2C+Martin&rft.au=Chen%2C+Tianshi&rft.date=2020-11-01&rft.issn=0005-1098&rft.volume=121&rft_id=info:doi/10.1016%2Fj.automatica.2020.109152&rft.externalDocID=oai_DiVA_org_liu_170620 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon |