An update on the role of magnetic resonance imaging in predicting and monitoring multiple sclerosis progression
While magnetic resonance imaging (MRI) is established in diagnosing and monitoring disease activity in multiple sclerosis (MS), its utility in predicting and monitoring disease progression is less clear. The authors consider changing concepts in the phenotypic classification of MS, including progres...
Saved in:
| Published in: | Expert review of neurotherapeutics Vol. 24; no. 2; pp. 201 - 216 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
01.02.2024
|
| Subjects: | |
| ISSN: | 1473-7175, 1744-8360, 1744-8360 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | While magnetic resonance imaging (MRI) is established in diagnosing and monitoring disease activity in multiple sclerosis (MS), its utility in predicting and monitoring disease progression is less clear.
The authors consider changing concepts in the phenotypic classification of MS, including progression independent of relapses; pathological processes underpinning progression; advances in MRI measures to assess them; how well MRI features explain and predict clinical outcomes, including models that assess disease effects on neural networks, and the potential role for machine learning.
Relapsing-remitting and progressive MS have evolved from being viewed as mutually exclusive to having considerable overlap. Progression is likely the consequence of several pathological elements, each important in building more holistic prognostic models beyond conventional phenotypes. MRI is well placed to assess pathogenic processes underpinning progression, but we need to bridge the gap between MRI measures and clinical outcomes. Mapping pathological effects on specific neural networks may help and machine learning methods may be able to optimize predictive markers while identifying new, or previously overlooked, clinically relevant features. The ever-increasing ability to measure features on MRI raises the dilemma of what to measure and when, and the challenge of translating research methods into clinically useable tools. |
|---|---|
| AbstractList | While magnetic resonance imaging (MRI) is established in diagnosing and monitoring disease activity in multiple sclerosis (MS), its utility in predicting and monitoring disease progression is less clear.
The authors consider changing concepts in the phenotypic classification of MS, including progression independent of relapses; pathological processes underpinning progression; advances in MRI measures to assess them; how well MRI features explain and predict clinical outcomes, including models that assess disease effects on neural networks, and the potential role for machine learning.
Relapsing-remitting and progressive MS have evolved from being viewed as mutually exclusive to having considerable overlap. Progression is likely the consequence of several pathological elements, each important in building more holistic prognostic models beyond conventional phenotypes. MRI is well placed to assess pathogenic processes underpinning progression, but we need to bridge the gap between MRI measures and clinical outcomes. Mapping pathological effects on specific neural networks may help and machine learning methods may be able to optimize predictive markers while identifying new, or previously overlooked, clinically relevant features. The ever-increasing ability to measure features on MRI raises the dilemma of what to measure and when, and the challenge of translating research methods into clinically useable tools. While magnetic resonance imaging (MRI) is established in diagnosing and monitoring disease activity in multiple sclerosis (MS), its utility in predicting and monitoring disease progression is less clear.INTRODUCTIONWhile magnetic resonance imaging (MRI) is established in diagnosing and monitoring disease activity in multiple sclerosis (MS), its utility in predicting and monitoring disease progression is less clear.The authors consider changing concepts in the phenotypic classification of MS, including progression independent of relapses; pathological processes underpinning progression; advances in MRI measures to assess them; how well MRI features explain and predict clinical outcomes, including models that assess disease effects on neural networks, and the potential role for machine learning.AREAS COVEREDThe authors consider changing concepts in the phenotypic classification of MS, including progression independent of relapses; pathological processes underpinning progression; advances in MRI measures to assess them; how well MRI features explain and predict clinical outcomes, including models that assess disease effects on neural networks, and the potential role for machine learning.Relapsing-remitting and progressive MS have evolved from being viewed as mutually exclusive to having considerable overlap. Progression is likely the consequence of several pathological elements, each important in building more holistic prognostic models beyond conventional phenotypes. MRI is well placed to assess pathogenic processes underpinning progression, but we need to bridge the gap between MRI measures and clinical outcomes. Mapping pathological effects on specific neural networks may help and machine learning methods may be able to optimize predictive markers while identifying new, or previously overlooked, clinically relevant features. The ever-increasing ability to measure features on MRI raises the dilemma of what to measure and when, and the challenge of translating research methods into clinically useable tools.EXPERT OPINIONRelapsing-remitting and progressive MS have evolved from being viewed as mutually exclusive to having considerable overlap. Progression is likely the consequence of several pathological elements, each important in building more holistic prognostic models beyond conventional phenotypes. MRI is well placed to assess pathogenic processes underpinning progression, but we need to bridge the gap between MRI measures and clinical outcomes. Mapping pathological effects on specific neural networks may help and machine learning methods may be able to optimize predictive markers while identifying new, or previously overlooked, clinically relevant features. The ever-increasing ability to measure features on MRI raises the dilemma of what to measure and when, and the challenge of translating research methods into clinically useable tools. |
| Author | Ananthavarathan, Piriyankan Chard, Declan T Sahi, Nitin |
| Author_xml | – sequence: 1 givenname: Piriyankan orcidid: 0000-0003-4360-8991 surname: Ananthavarathan fullname: Ananthavarathan, Piriyankan organization: Department of Neuroinflammation, University College London Queen Square Multiple Sclerosis Centre, London, UK – sequence: 2 givenname: Nitin orcidid: 0000-0002-0403-916X surname: Sahi fullname: Sahi, Nitin organization: Department of Neuroinflammation, University College London Queen Square Multiple Sclerosis Centre, London, UK – sequence: 3 givenname: Declan T orcidid: 0000-0003-3076-2682 surname: Chard fullname: Chard, Declan T organization: Clinical Research Associate & Consultant Neurologist, Institute of Neurology - Queen Square Multiple Sclerosis Centre, London, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38235594$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1P3DAQhi1ExVf7E1r52EuW8UecRD0hRAsSEhd6tow9WYwSe2s7B_59He3uhQMnz4yed0av30tyGmJAQr4z2DDo4ZrJTnSsazccuNxwAZIxdUIuWCdl0wsFp7WuTLNC5-Qy5zcAIYdWnpFz0XPRtoO8IPEm0GXnTEEaAy2vSFOcaj3S2WwDFm9pwhyDCRaprzMfttQHukvovC1rZ4Kjcwy-xLS28zIVv6s7sp0wxexzheO2bsk-hq_ky2imjN8O7xX5-_vu-fa-eXz683B789hY0arSMMva0TDHR4BWDSDBwWB73hkHTpnBjSOgw0pIjkwJ55SS3L4g70boOYor8nO_t97-t2AuevbZ4jSZgHHJmg9MSRgUkxX9cUCXlxmd3qXqM73r4ydV4NcesNVOTjhq64sp1U1Jxk-agV4j0cdI9BqJPkRS1e0H9fHA57r_bOaPyg |
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2025_110078 crossref_primary_10_1016_j_compbiomed_2024_108728 crossref_primary_10_3390_jcm14124114 crossref_primary_10_1038_s41582_024_01006_1 crossref_primary_10_3390_ijms26030884 crossref_primary_10_1016_j_autrev_2025_103741 crossref_primary_10_1016_j_compbiomed_2024_108416 crossref_primary_10_1177_13524585241289277 crossref_primary_10_1016_j_procs_2024_09_577 crossref_primary_10_3389_fcell_2025_1517369 |
| Cites_doi | 10.1111/jon.12527 10.1016/j.nicl.2018.05.003 10.1007/s00415-019-09421-x 10.1002/jmri.28727 10.1093/brain/awab033 10.1097/01.jnen.0000235119.52311.16 10.1007/s00415-015-7793-5 10.1093/brain/awh641 10.1007/s00401-018-1818-y 10.1016/j.msard.2019.03.027 10.1001/archneur.61.2.217 10.1093/brain/aww037 10.1177/1352458518814117 10.1016/j.nicl.2019.102104 10.1016/j.msard.2022.104094 10.1093/brain/awg081 10.1136/jnnp-2012-302541 10.1002/ana.21906 10.1093/brain/awp334 10.1016/j.neuroimage.2018.06.007 10.1016/j.nicl.2022.103009 10.1016/j.neuroimage.2017.10.063 10.1038/s41572-018-0041-4 10.1007/s00415-016-8341-7 10.1111/ene.15697 10.1111/bpa.12643 10.1111/j.1552-6569.2008.00296.x 10.1038/nrneurol.2012.168 10.1177/1352458516675039 10.1016/j.neuroimage.2006.12.010 10.1093/jnen/62.7.723 10.3389/fimmu.2018.03116 10.1016/S0002-9440(10)64537-3 10.1056/NEJM199801293380502 10.1177/1352458519852093 10.1148/radiol.2361040450 10.1002/ana.1255 10.1056/NEJM200011163432001 10.1093/brain/awv011 10.1093/brain/awx250 10.1016/j.neuroimage.2011.11.070 10.1097/00001756-200001170-00004 10.1212/01.wnl.0000435551.90824.d0 10.1111/j.1750-3639.2004.tb00049.x 10.1016/j.jns.2017.06.003 10.1136/jnnp-2016-313979 10.1016/j.parkreldis.2021.06.004 10.3389/fneur.2021.662855 10.1002/hbm.22196 10.1007/s00415-021-10400-4 10.1007/s00415-019-09643-z 10.1097/WCO.0000000000001067 10.1093/brain/awl208 10.1093/brain/awab029 10.1177/1352458514522537 10.1177/13524585211008743 10.1007/s00500-022-07503-z 10.1038/s41467-021-22265-2 10.3174/ajnr.A2340 10.1016/j.nicl.2022.103099 10.1177/1352458515609430 10.1212/WNL.0b013e31826c1b1c 10.1016/0022-510X(79)90142-4 10.1136/jnnp-2012-303023 10.1093/brain/awu171 10.1136/jnnp-2015-311102 10.1093/brain/awac016 10.1093/brain/120.11.2059 10.1002/ana.1123 10.1002/ana.22230 10.3174/ajnr.A5442 10.1093/brain/awm038 10.1148/radiol.2019181719 10.1093/brain/awm329 10.1093/brain/aww296 10.1177/1352458515586085 10.1007/s10334-013-0396-1 10.1007/s40263-017-0412-5 10.1002/ana.24497 10.1001/archneurol.2010.148 10.1177/1352458520932804 10.1038/s41746-023-00940-6 10.1016/j.jneuroim.2003.10.056 10.1002/mrm.25174 10.1002/brb3.955 10.1212/01.wnl.0000237354.10144.ec 10.1038/s41598-020-79925-4 10.1093/brain/awv065 10.1016/j.neuroimage.2011.08.052 10.1016/j.jns.2010.07.014 10.1177/1352458510365586 10.1002/ana.25463 10.1371/journal.pone.0137715 10.1016/j.msard.2021.102752 10.1177/1352458513494490 10.1097/RLI.0000000000000256 10.1212/WNL.0000000000005292 10.1177/1352458507076411 10.3389/fneur.2020.00606 10.1002/hbm.23168 10.1136/jnnp-2014-307712 10.1148/radiol.2016152843 10.1177/1352458519841810 10.1097/NEN.0000000000000189 10.1212/01.wnl.0000341935.41852.82 10.2214/AJR.16.16851 10.1016/j.msard.2020.102653 10.3174/ajnr.A5150 10.1002/ana.24791 10.1177/1352458514540358 10.1155/2017/8652463 10.12688/f1000research.11932.1 10.1111/jon.12444 10.1111/ene.14859 10.1093/brain/awv337 10.1136/jnnp.59.3.306 10.1002/ana.24620 10.1093/brain/awab454 10.1001/jamaneurol.2015.1241 10.1148/radiol.12112680 10.1177/1352458514562440 10.1038/s41582-020-00439-8 10.1016/j.nicl.2022.103108 10.1002/jmri.25682 10.1001/archneur.64.10.1416 10.1371/journal.pone.0256845 10.1002/hbm.22596 10.1001/jamaneurol.2019.2399 10.1148/radiol.10100326 10.1093/brain/aws012 10.1016/j.tins.2019.03.009 10.1016/j.neuroimage.2020.117561 10.1093/brain/awab025 10.1002/ana.21302 10.1212/WNL.0b013e3181c1e44f 10.1007/s00415-023-11969-8 10.1136/jnnp-2020-325610 10.1093/brain/awz212 10.1007/s00401-016-1636-z 10.1093/brain/awq058 10.1136/jnnp-2012-304333 10.1007/s11064-015-1581-6 10.1093/brain/awn171 10.1212/NXI.0000000000001066 10.1038/s41582-021-00581-x 10.1093/braincomms/fcab134 10.1177/1352458516638941 10.1212/WNL.0b013e31824528a0 10.1212/NXI.0000000000001139 10.3174/ajnr.A5563 10.1212/NXI.0000000000200064 10.1177/1756286419838673 10.1016/j.nicl.2022.103244 10.1136/jnnp-2017-317606 10.1148/radiol.221425 10.1001/jamaneurol.2022.4655 10.1016/j.jneuroim.2013.06.014 10.4161/pri.23499 10.1016/S1474-4422(17)30470-2 10.1016/j.msard.2019.01.027 10.1191/135248506ms1301oa 10.1016/S1474-4422(18)30451-4 10.1212/WNL.0000000000011242 10.1212/WNL.38.12.1822 10.3174/ajnr.A6547 10.1001/archneurol.2009.174 10.1056/NEJMoa1100648 10.1093/brain/awaa233 10.1177/1352458516628657 10.3390/jcm8030344 10.1093/brain/aww258 10.1016/S1474-4422(15)00393-2 10.1038/s41582-023-00801-6 10.1016/j.msard.2023.104934 10.1007/s11604-017-0617-z 10.1177/1352458512465135 10.1212/NXI.0000000000000502 10.1016/S0140-6736(02)08220-X 10.1093/brain/awv354 10.1177/1352458519831400 10.1016/j.mri.2023.09.010 10.1002/ana.25145 10.1007/s00415-009-0110-4 10.1016/S0022-510X(01)00477-4 10.1007/s00234-016-1711-0 10.3389/fneur.2019.00459 10.1371/journal.pone.0057573 10.1016/j.nicl.2017.11.002 10.1136/jnnp-2020-325421 10.1093/brain/awx228 10.1136/jnnp.74.11.1551 10.1093/brain/awy202 10.1177/1352458517723717 10.1001/jamaneurol.2020.1568 10.1371/journal.pone.0185626 10.1001/archneur.65.11.1454 10.1002/ana.23974 10.3174/ajnr.A5796 10.1001/jama.2018.20588 10.1093/brain/aws189 10.1016/j.nicl.2021.102847 10.1586/14737175.2016.1134323 10.1097/WCO.0000000000001045 10.1136/jnnp-2013-305450 10.1212/WNL.38.2.180 10.1177/1352458516678083 10.3174/ajnr.A5876 10.1212/WNL.0000000000001587 10.1016/j.neuroimage.2022.119787 10.1172/JCI86198 10.11138/FNeur/2017.32.2.097 10.1016/j.jns.2008.08.022 10.1097/WCO.0000000000000818 10.1177/1352458511435930 10.1001/archneur.59.1.62 10.1148/radiol.2018180136 10.1093/brain/awp070 10.1093/brain/awr182 10.1016/j.nicl.2015.09.003 10.1212/WNL.0000000000009636 10.1093/brain/awt149 10.1016/j.msard.2019.02.013 10.1007/s004150050442 10.1177/1352458507085129 10.1111/jon.12679 10.1007/s00401-012-1023-3 10.1016/j.neuroimage.2021.117744 10.1007/s00415-002-0686-4 10.1177/13524585211010128 10.1212/WNL.0b013e3181b64bf7 10.1038/s41582-021-00537-1 10.3390/brainsci13020198 10.1093/brain/aws260 10.1016/S1474-4422(14)70256-X 10.1177/1352458509103611 10.1186/1742-2094-9-156 10.1001/archneur.62.9.1371 10.1212/WNL.0000000000012323 10.1002/hbm.20713 10.1148/radiol.2019190306 10.1016/j.nrl.2020.10.017 10.1002/ana.25637 10.1016/j.expneurol.2009.10.009 10.1093/brain/awaa145 10.1016/j.mri.2020.03.010 10.1093/brain/awx247 10.1038/s41582-020-0314-x 10.1177/1352458517751650 10.1177/1352458520974357 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1080/14737175.2024.2304116 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1744-8360 |
| EndPage | 216 |
| ExternalDocumentID | 38235594 10_1080_14737175_2024_2304116 |
| Genre | Journal Article Review |
| GroupedDBID | --- 0R~ 29G 4.4 53G 5GY 7X7 88E 8AO 8FI 8FJ AAGSP AAHJP AANCX AAOUU AAYXX ABEIZ ABIVO ABJNI ABJXJ ABKMU ABLKL ABUWG ABXYU ACFRI ACGFS ACLQP ADBBV ADTKB AECIN AENEX AEOZL AESAV AFFHD AFKRA AFRVT AGDLA AGMLL AHMBA AIJEM AIRBT AIYSM AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU AZQEC BENPR BLEHA BPHCQ BVXVI CBZEQ CCCUG CCPQU CITATION CS3 DDEWX DGYZD DWQXO EBS EJD EMOBN F5P FYUFA GNUQQ H13 HMCUK HZ~ IAO IEA IGS IHR IPY ITC KSSTO KYCEM LJTGL M1P M2M MV1 O9- OVD PHGZM PHGZT PJZUB PPXIY PQQKQ PROAC PSQYO PSYQQ RNANH SJN TASJS TBQAZ TCNNB TDBHL TEORI TFL TFW TUROJ UKHRP ALIPV NPM 7X8 AQTUD |
| ID | FETCH-LOGICAL-c356t-1c15fa1d2f00569040d09c827ad0d6a9dff0edea1d42e163dd6642cbe27f082e3 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001144506100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1473-7175 1744-8360 |
| IngestDate | Sun Nov 09 11:46:08 EST 2025 Thu Apr 03 07:08:54 EDT 2025 Tue Nov 18 20:49:38 EST 2025 Sat Nov 29 02:44:27 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Multiple sclerosis brain atrophy progression independent of relapse neurodegeneration compartmentalized inflammation disability progression PIRA chronic inflammation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c356t-1c15fa1d2f00569040d09c827ad0d6a9dff0edea1d42e163dd6642cbe27f082e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-0403-916X 0000-0003-3076-2682 0000-0003-4360-8991 |
| OpenAccessLink | https://www.tandfonline.com/doi/pdf/10.1080/14737175.2024.2304116?needAccess=true |
| PMID | 38235594 |
| PQID | 2916409614 |
| PQPubID | 23479 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2916409614 pubmed_primary_38235594 crossref_citationtrail_10_1080_14737175_2024_2304116 crossref_primary_10_1080_14737175_2024_2304116 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Expert review of neurotherapeutics |
| PublicationTitleAlternate | Expert Rev Neurother |
| PublicationYear | 2024 |
| References | e_1_3_4_3_1 e_1_3_4_175_1 e_1_3_4_152_1 e_1_3_4_114_1 e_1_3_4_198_1 e_1_3_4_61_1 e_1_3_4_84_1 e_1_3_4_212_1 e_1_3_4_235_1 e_1_3_4_137_1 e_1_3_4_23_1 e_1_3_4_46_1 e_1_3_4_69_1 e_1_3_4_250_1 e_1_3_4_258_1 e_1_3_4_140_1 e_1_3_4_163_1 e_1_3_4_208_1 e_1_3_4_102_1 e_1_3_4_125_1 e_1_3_4_72_1 e_1_3_4_223_1 e_1_3_4_148_1 e_1_3_4_200_1 e_1_3_4_34_1 e_1_3_4_11_1 e_1_3_4_57_1 e_1_3_4_246_1 e_1_3_4_19_1 e_1_3_4_151_1 e_1_3_4_174_1 e_1_3_4_219_1 e_1_3_4_113_1 e_1_3_4_136_1 e_1_3_4_197_1 e_1_3_4_62_1 e_1_3_4_234_1 e_1_3_4_159_1 e_1_3_4_85_1 e_1_3_4_211_1 e_1_3_4_24_1 e_1_3_4_47_1 e_1_3_4_257_1 e_1_3_4_207_1 e_1_3_4_162_1 e_1_3_4_101_1 e_1_3_4_147_1 e_1_3_4_185_1 e_1_3_4_124_1 e_1_3_4_73_1 e_1_3_4_222_1 e_1_3_4_96_1 e_1_3_4_109_1 e_1_3_4_50_1 e_1_3_4_12_1 e_1_3_4_35_1 e_1_3_4_58_1 e_1_3_4_245_1 e_1_3_4_150_1 e_1_3_4_154_1 e_1_3_4_131_1 e_1_3_4_214_1 e_1_3_4_237_1 e_1_3_4_177_1 e_1_3_4_116_1 e_1_3_4_63_1 e_1_3_4_86_1 e_1_3_4_9_1 e_1_3_4_139_1 e_1_3_4_40_1 e_1_3_4_252_1 e_1_3_4_25_1 e_1_3_4_48_1 e_1_3_4_180_1 e_1_3_4_142_1 e_1_3_4_165_1 e_1_3_4_188_1 e_1_3_4_225_1 e_1_3_4_104_1 e_1_3_4_127_1 e_1_3_4_202_1 e_1_3_4_74_1 e_1_3_4_97_1 e_1_3_4_51_1 e_1_3_4_13_1 e_1_3_4_59_1 e_1_3_4_240_1 e_1_3_4_36_1 e_1_3_4_191_1 e_1_3_4_248_1 e_1_3_4_130_1 e_1_3_4_153_1 e_1_3_4_176_1 e_1_3_4_199_1 e_1_3_4_236_1 e_1_3_4_115_1 e_1_3_4_138_1 e_1_3_4_213_1 e_1_3_4_64_1 e_1_3_4_8_1 e_1_3_4_41_1 e_1_3_4_251_1 e_1_3_4_49_1 e_1_3_4_87_1 e_1_3_4_26_1 e_1_3_4_259_1 e_1_3_4_209_1 e_1_3_4_164_1 e_1_3_4_141_1 e_1_3_4_103_1 e_1_3_4_187_1 e_1_3_4_201_1 e_1_3_4_224_1 e_1_3_4_126_1 e_1_3_4_75_1 e_1_3_4_149_1 e_1_3_4_52_1 e_1_3_4_90_1 e_1_3_4_98_1 e_1_3_4_14_1 e_1_3_4_37_1 e_1_3_4_247_1 e_1_3_4_190_1 e_1_3_4_110_1 e_1_3_4_239_1 e_1_3_4_133_1 e_1_3_4_179_1 e_1_3_4_216_1 e_1_3_4_156_1 Geurts JJ (e_1_3_4_95_1) 2005; 26 e_1_3_4_118_1 e_1_3_4_42_1 e_1_3_4_80_1 e_1_3_4_231_1 e_1_3_4_7_1 e_1_3_4_27_1 e_1_3_4_65_1 e_1_3_4_88_1 e_1_3_4_254_1 e_1_3_4_182_1 e_1_3_4_121_1 e_1_3_4_227_1 e_1_3_4_167_1 e_1_3_4_204_1 e_1_3_4_106_1 e_1_3_4_129_1 e_1_3_4_53_1 e_1_3_4_91_1 e_1_3_4_30_1 e_1_3_4_242_1 e_1_3_4_76_1 e_1_3_4_99_1 e_1_3_4_38_1 e_1_3_4_15_1 e_1_3_4_193_1 e_1_3_4_170_1 e_1_3_4_132_1 e_1_3_4_238_1 e_1_3_4_155_1 e_1_3_4_178_1 e_1_3_4_215_1 e_1_3_4_117_1 e_1_3_4_20_1 e_1_3_4_230_1 e_1_3_4_6_1 e_1_3_4_81_1 e_1_3_4_43_1 e_1_3_4_253_1 e_1_3_4_28_1 e_1_3_4_66_1 e_1_3_4_89_1 e_1_3_4_181_1 e_1_3_4_143_1 e_1_3_4_189_1 e_1_3_4_120_1 e_1_3_4_203_1 e_1_3_4_226_1 e_1_3_4_166_1 e_1_3_4_105_1 e_1_3_4_128_1 e_1_3_4_31_1 e_1_3_4_92_1 e_1_3_4_241_1 e_1_3_4_54_1 e_1_3_4_16_1 e_1_3_4_39_1 e_1_3_4_77_1 e_1_3_4_192_1 e_1_3_4_249_1 Drayer B (e_1_3_4_186_1) 1987; 8 e_1_3_4_173_1 e_1_3_4_218_1 e_1_3_4_112_1 e_1_3_4_158_1 Zivadinov R (e_1_3_4_171_1) 2019; 40 e_1_3_4_196_1 e_1_3_4_135_1 e_1_3_4_210_1 e_1_3_4_233_1 e_1_3_4_82_1 e_1_3_4_5_1 e_1_3_4_21_1 e_1_3_4_44_1 e_1_3_4_67_1 e_1_3_4_256_1 e_1_3_4_29_1 e_1_3_4_161_1 e_1_3_4_229_1 e_1_3_4_100_1 e_1_3_4_123_1 e_1_3_4_146_1 e_1_3_4_169_1 e_1_3_4_184_1 e_1_3_4_206_1 e_1_3_4_221_1 e_1_3_4_108_1 e_1_3_4_70_1 e_1_3_4_93_1 e_1_3_4_55_1 e_1_3_4_32_1 e_1_3_4_17_1 e_1_3_4_78_1 Ghione E (e_1_3_4_144_1) 2020; 41 e_1_3_4_172_1 e_1_3_4_4_1 e_1_3_4_111_1 e_1_3_4_134_1 e_1_3_4_157_1 e_1_3_4_195_1 e_1_3_4_217_1 van Waesberghe JH (e_1_3_4_244_1) 1998; 19 e_1_3_4_83_1 e_1_3_4_232_1 e_1_3_4_119_1 e_1_3_4_60_1 e_1_3_4_45_1 e_1_3_4_22_1 e_1_3_4_255_1 e_1_3_4_68_1 e_1_3_4_183_1 e_1_3_4_160_1 e_1_3_4_205_1 e_1_3_4_228_1 e_1_3_4_122_1 e_1_3_4_168_1 e_1_3_4_145_1 e_1_3_4_94_1 e_1_3_4_107_1 e_1_3_4_220_1 e_1_3_4_71_1 e_1_3_4_10_1 e_1_3_4_33_1 e_1_3_4_243_1 e_1_3_4_56_1 e_1_3_4_79_1 e_1_3_4_18_1 e_1_3_4_194_1 |
| References_xml | – ident: e_1_3_4_168_1 doi: 10.1111/jon.12527 – ident: e_1_3_4_166_1 doi: 10.1016/j.nicl.2018.05.003 – ident: e_1_3_4_249_1 doi: 10.1007/s00415-019-09421-x – ident: e_1_3_4_183_1 doi: 10.1002/jmri.28727 – ident: e_1_3_4_50_1 doi: 10.1093/brain/awab033 – ident: e_1_3_4_56_1 doi: 10.1097/01.jnen.0000235119.52311.16 – ident: e_1_3_4_207_1 doi: 10.1007/s00415-015-7793-5 – ident: e_1_3_4_87_1 doi: 10.1093/brain/awh641 – ident: e_1_3_4_38_1 doi: 10.1007/s00401-018-1818-y – ident: e_1_3_4_229_1 doi: 10.1016/j.msard.2019.03.027 – ident: e_1_3_4_80_1 doi: 10.1001/archneur.61.2.217 – ident: e_1_3_4_102_1 doi: 10.1093/brain/aww037 – ident: e_1_3_4_92_1 doi: 10.1177/1352458518814117 – ident: e_1_3_4_252_1 doi: 10.1016/j.nicl.2019.102104 – ident: e_1_3_4_132_1 doi: 10.1016/j.msard.2022.104094 – ident: e_1_3_4_26_1 doi: 10.1093/brain/awg081 – ident: e_1_3_4_202_1 doi: 10.1136/jnnp-2012-302541 – ident: e_1_3_4_48_1 doi: 10.1002/ana.21906 – ident: e_1_3_4_238_1 doi: 10.1093/brain/awp334 – ident: e_1_3_4_197_1 doi: 10.1016/j.neuroimage.2018.06.007 – ident: e_1_3_4_227_1 doi: 10.1016/j.nicl.2022.103009 – ident: e_1_3_4_201_1 doi: 10.1016/j.neuroimage.2017.10.063 – ident: e_1_3_4_3_1 doi: 10.1038/s41572-018-0041-4 – ident: e_1_3_4_250_1 doi: 10.1007/s00415-016-8341-7 – ident: e_1_3_4_114_1 doi: 10.1111/ene.15697 – ident: e_1_3_4_89_1 doi: 10.1111/bpa.12643 – ident: e_1_3_4_195_1 doi: 10.1111/j.1552-6569.2008.00296.x – ident: e_1_3_4_8_1 doi: 10.1038/nrneurol.2012.168 – ident: e_1_3_4_32_1 doi: 10.1177/1352458516675039 – ident: e_1_3_4_176_1 doi: 10.1016/j.neuroimage.2006.12.010 – volume: 40 start-page: 446 issue: 3 year: 2019 ident: e_1_3_4_171_1 article-title: A serial 10-year follow-up study of atrophied brain lesion volume and disability progression in patients with relapsing-remitting MS publication-title: AJNR Am J Neuroradiol – ident: e_1_3_4_44_1 doi: 10.1093/jnen/62.7.723 – ident: e_1_3_4_17_1 doi: 10.3389/fimmu.2018.03116 – ident: e_1_3_4_36_1 doi: 10.1016/S0002-9440(10)64537-3 – volume: 8 start-page: 413 issue: 3 year: 1987 ident: e_1_3_4_186_1 article-title: Reduced Signal Intensity on MR images of thalamus and putamen in multiple sclerosis: increased iron content? publication-title: Am J Neuroradiol – ident: e_1_3_4_35_1 doi: 10.1056/NEJM199801293380502 – ident: e_1_3_4_233_1 doi: 10.1177/1352458519852093 – ident: e_1_3_4_97_1 doi: 10.1148/radiol.2361040450 – ident: e_1_3_4_52_1 doi: 10.1002/ana.1255 – ident: e_1_3_4_7_1 doi: 10.1056/NEJM200011163432001 – ident: e_1_3_4_230_1 doi: 10.1093/brain/awv011 – ident: e_1_3_4_180_1 doi: 10.1093/brain/awx250 – ident: e_1_3_4_174_1 doi: 10.1016/j.neuroimage.2011.11.070 – ident: e_1_3_4_191_1 doi: 10.1097/00001756-200001170-00004 – ident: e_1_3_4_210_1 doi: 10.1212/01.wnl.0000435551.90824.d0 – ident: e_1_3_4_63_1 doi: 10.1111/j.1750-3639.2004.tb00049.x – ident: e_1_3_4_237_1 doi: 10.1016/j.jns.2017.06.003 – ident: e_1_3_4_225_1 doi: 10.1136/jnnp-2016-313979 – ident: e_1_3_4_67_1 doi: 10.1016/j.parkreldis.2021.06.004 – ident: e_1_3_4_185_1 doi: 10.3389/fneur.2021.662855 – ident: e_1_3_4_108_1 doi: 10.1002/ana.21906 – ident: e_1_3_4_177_1 doi: 10.1002/hbm.22196 – ident: e_1_3_4_110_1 doi: 10.1007/s00415-021-10400-4 – ident: e_1_3_4_169_1 doi: 10.1007/s00415-019-09643-z – ident: e_1_3_4_28_1 doi: 10.1097/WCO.0000000000001067 – ident: e_1_3_4_213_1 doi: 10.1093/brain/awl208 – ident: e_1_3_4_173_1 doi: 10.1093/brain/awab029 – ident: e_1_3_4_226_1 doi: 10.1177/1352458514522537 – ident: e_1_3_4_148_1 doi: 10.1177/13524585211008743 – ident: e_1_3_4_258_1 doi: 10.1007/s00500-022-07503-z – ident: e_1_3_4_259_1 doi: 10.1038/s41467-021-22265-2 – ident: e_1_3_4_109_1 doi: 10.3174/ajnr.A2340 – ident: e_1_3_4_167_1 doi: 10.1016/j.nicl.2022.103099 – ident: e_1_3_4_235_1 doi: 10.1177/1352458515609430 – ident: e_1_3_4_117_1 doi: 10.1212/WNL.0b013e31826c1b1c – ident: e_1_3_4_172_1 doi: 10.1016/0022-510X(79)90142-4 – ident: e_1_3_4_43_1 doi: 10.1136/jnnp-2012-303023 – ident: e_1_3_4_232_1 doi: 10.1093/brain/awu171 – ident: e_1_3_4_106_1 doi: 10.1136/jnnp-2015-311102 – ident: e_1_3_4_19_1 doi: 10.1093/brain/awac016 – ident: e_1_3_4_75_1 doi: 10.1093/brain/120.11.2059 – ident: e_1_3_4_116_1 doi: 10.1002/ana.1123 – ident: e_1_3_4_46_1 doi: 10.1002/ana.22230 – ident: e_1_3_4_145_1 doi: 10.3174/ajnr.A5442 – ident: e_1_3_4_57_1 doi: 10.1093/brain/awm038 – ident: e_1_3_4_107_1 doi: 10.1148/radiol.2019181719 – ident: e_1_3_4_79_1 doi: 10.1093/brain/awm329 – ident: e_1_3_4_224_1 doi: 10.1093/brain/aww296 – ident: e_1_3_4_209_1 doi: 10.1177/1352458515586085 – ident: e_1_3_4_241_1 doi: 10.1007/s10334-013-0396-1 – ident: e_1_3_4_20_1 doi: 10.1007/s40263-017-0412-5 – ident: e_1_3_4_37_1 doi: 10.1002/ana.24497 – ident: e_1_3_4_118_1 doi: 10.1001/archneurol.2010.148 – ident: e_1_3_4_152_1 doi: 10.1177/1352458520932804 – ident: e_1_3_4_257_1 doi: 10.1038/s41746-023-00940-6 – ident: e_1_3_4_58_1 doi: 10.1016/j.jneuroim.2003.10.056 – ident: e_1_3_4_215_1 doi: 10.1002/mrm.25174 – ident: e_1_3_4_112_1 doi: 10.1002/brb3.955 – ident: e_1_3_4_78_1 doi: 10.1212/01.wnl.0000237354.10144.ec – ident: e_1_3_4_253_1 doi: 10.1038/s41598-020-79925-4 – ident: e_1_3_4_223_1 doi: 10.1093/brain/awv065 – ident: e_1_3_4_218_1 doi: 10.1016/j.neuroimage.2011.08.052 – ident: e_1_3_4_194_1 doi: 10.1016/j.jns.2010.07.014 – ident: e_1_3_4_220_1 doi: 10.1177/1352458510365586 – ident: e_1_3_4_142_1 doi: 10.1002/ana.25463 – ident: e_1_3_4_222_1 doi: 10.1371/journal.pone.0137715 – ident: e_1_3_4_234_1 doi: 10.1016/j.msard.2021.102752 – ident: e_1_3_4_77_1 doi: 10.1177/1352458513494490 – ident: e_1_3_4_100_1 doi: 10.1097/RLI.0000000000000256 – ident: e_1_3_4_151_1 doi: 10.1212/WNL.0000000000005292 – ident: e_1_3_4_190_1 doi: 10.1177/1352458507076411 – ident: e_1_3_4_149_1 doi: 10.3389/fneur.2020.00606 – ident: e_1_3_4_140_1 doi: 10.1002/hbm.23168 – ident: e_1_3_4_71_1 doi: 10.1136/jnnp-2014-307712 – ident: e_1_3_4_159_1 doi: 10.1148/radiol.2016152843 – ident: e_1_3_4_231_1 doi: 10.1177/1352458519841810 – ident: e_1_3_4_139_1 doi: 10.1097/NEN.0000000000000189 – ident: e_1_3_4_81_1 doi: 10.1212/01.wnl.0000341935.41852.82 – ident: e_1_3_4_203_1 doi: 10.2214/AJR.16.16851 – ident: e_1_3_4_103_1 doi: 10.1001/archneurol.2010.148 – ident: e_1_3_4_129_1 doi: 10.1016/j.msard.2020.102653 – ident: e_1_3_4_119_1 doi: 10.3174/ajnr.A5150 – ident: e_1_3_4_121_1 doi: 10.1002/ana.24791 – ident: e_1_3_4_136_1 doi: 10.1177/1352458514540358 – ident: e_1_3_4_126_1 doi: 10.1155/2017/8652463 – ident: e_1_3_4_82_1 doi: 10.12688/f1000research.11932.1 – ident: e_1_3_4_125_1 doi: 10.1111/jon.12444 – ident: e_1_3_4_115_1 doi: 10.1111/ene.14859 – ident: e_1_3_4_153_1 doi: 10.1093/brain/awv337 – ident: e_1_3_4_187_1 doi: 10.1136/jnnp.59.3.306 – ident: e_1_3_4_246_1 doi: 10.1002/ana.24620 – ident: e_1_3_4_68_1 doi: 10.1093/brain/awab454 – ident: e_1_3_4_104_1 doi: 10.1001/jamaneurol.2015.1241 – ident: e_1_3_4_239_1 doi: 10.1148/radiol.12112680 – ident: e_1_3_4_138_1 doi: 10.1177/1352458514562440 – ident: e_1_3_4_156_1 doi: 10.1038/s41582-020-00439-8 – ident: e_1_3_4_165_1 doi: 10.1016/j.nicl.2022.103108 – ident: e_1_3_4_199_1 doi: 10.1002/jmri.25682 – ident: e_1_3_4_42_1 doi: 10.1001/archneur.64.10.1416 – ident: e_1_3_4_84_1 doi: 10.1371/journal.pone.0256845 – ident: e_1_3_4_161_1 doi: 10.1002/hbm.22596 – ident: e_1_3_4_91_1 doi: 10.1001/jamaneurol.2019.2399 – ident: e_1_3_4_147_1 doi: 10.1148/radiol.10100326 – ident: e_1_3_4_122_1 doi: 10.1093/brain/aws012 – ident: e_1_3_4_204_1 doi: 10.1016/j.tins.2019.03.009 – ident: e_1_3_4_206_1 doi: 10.1016/j.neuroimage.2020.117561 – ident: e_1_3_4_55_1 doi: 10.1093/brain/awab025 – ident: e_1_3_4_245_1 doi: 10.1002/ana.21302 – ident: e_1_3_4_27_1 doi: 10.1212/WNL.0b013e3181c1e44f – ident: e_1_3_4_33_1 doi: 10.1007/s00415-023-11969-8 – ident: e_1_3_4_154_1 doi: 10.1136/jnnp-2020-325610 – volume: 41 start-page: 1577 issue: 9 year: 2020 ident: e_1_3_4_144_1 article-title: Disability improvement is associated with less brain atrophy development in multiple sclerosis publication-title: AJNR Am J Neuroradiol – ident: e_1_3_4_88_1 doi: 10.1093/brain/awz212 – ident: e_1_3_4_85_1 doi: 10.1007/s00401-016-1636-z – ident: e_1_3_4_157_1 doi: 10.1093/brain/awq058 – ident: e_1_3_4_10_1 doi: 10.1136/jnnp-2012-304333 – ident: e_1_3_4_65_1 doi: 10.1007/s11064-015-1581-6 – ident: e_1_3_4_135_1 doi: 10.1093/brain/awn171 – ident: e_1_3_4_247_1 doi: 10.1212/NXI.0000000000001066 – volume: 26 start-page: 572 issue: 3 year: 2005 ident: e_1_3_4_95_1 article-title: Cortical lesions in multiple sclerosis: combined postmortem MR imaging and histopathology publication-title: AJNR Am J Neuroradiol – ident: e_1_3_4_51_1 doi: 10.1038/s41582-021-00581-x – ident: e_1_3_4_113_1 doi: 10.1093/braincomms/fcab134 – ident: e_1_3_4_6_1 – ident: e_1_3_4_21_1 doi: 10.1177/1352458516638941 – ident: e_1_3_4_99_1 doi: 10.1212/WNL.0b013e31824528a0 – ident: e_1_3_4_93_1 doi: 10.1212/NXI.0000000000001139 – ident: e_1_3_4_216_1 doi: 10.3174/ajnr.A5563 – ident: e_1_3_4_11_1 doi: 10.1212/NXI.0000000000200064 – ident: e_1_3_4_163_1 doi: 10.1177/1756286419838673 – ident: e_1_3_4_15_1 doi: 10.1016/j.nicl.2022.103244 – ident: e_1_3_4_178_1 doi: 10.1136/jnnp-2017-317606 – ident: e_1_3_4_256_1 doi: 10.1148/radiol.221425 – ident: e_1_3_4_12_1 doi: 10.1001/jamaneurol.2022.4655 – ident: e_1_3_4_60_1 doi: 10.1016/j.jneuroim.2013.06.014 – ident: e_1_3_4_96_1 doi: 10.4161/pri.23499 – ident: e_1_3_4_13_1 doi: 10.1016/S1474-4422(17)30470-2 – ident: e_1_3_4_236_1 doi: 10.1016/j.msard.2019.01.027 – ident: e_1_3_4_193_1 doi: 10.1191/135248506ms1301oa – ident: e_1_3_4_47_1 doi: 10.1016/S1474-4422(18)30451-4 – ident: e_1_3_4_29_1 doi: 10.1212/WNL.0000000000011242 – ident: e_1_3_4_74_1 doi: 10.1212/WNL.38.12.1822 – ident: e_1_3_4_83_1 doi: 10.3174/ajnr.A6547 – ident: e_1_3_4_111_1 doi: 10.1001/archneurol.2009.174 – ident: e_1_3_4_62_1 doi: 10.1056/NEJMoa1100648 – ident: e_1_3_4_98_1 doi: 10.1093/brain/awaa233 – ident: e_1_3_4_160_1 doi: 10.1177/1352458516628657 – ident: e_1_3_4_130_1 doi: 10.3390/jcm8030344 – ident: e_1_3_4_16_1 doi: 10.1093/brain/aww258 – ident: e_1_3_4_72_1 doi: 10.1016/S1474-4422(15)00393-2 – ident: e_1_3_4_248_1 doi: 10.1038/s41582-023-00801-6 – ident: e_1_3_4_69_1 doi: 10.1016/j.msard.2023.104934 – ident: e_1_3_4_66_1 doi: 10.1007/s11604-017-0617-z – ident: e_1_3_4_198_1 doi: 10.1177/1352458512465135 – ident: e_1_3_4_184_1 doi: 10.1212/NXI.0000000000000502 – ident: e_1_3_4_4_1 doi: 10.1016/S0140-6736(02)08220-X – ident: e_1_3_4_49_1 doi: 10.1093/brain/awv354 – ident: e_1_3_4_164_1 doi: 10.1177/1352458519831400 – ident: e_1_3_4_182_1 doi: 10.1016/j.mri.2023.09.010 – ident: e_1_3_4_146_1 doi: 10.1002/ana.25145 – ident: e_1_3_4_211_1 doi: 10.1007/s00415-009-0110-4 – ident: e_1_3_4_188_1 doi: 10.1016/S0022-510X(01)00477-4 – ident: e_1_3_4_134_1 doi: 10.1007/s00234-016-1711-0 – ident: e_1_3_4_150_1 doi: 10.3389/fneur.2019.00459 – ident: e_1_3_4_90_1 doi: 10.1371/journal.pone.0057573 – ident: e_1_3_4_155_1 doi: 10.1016/j.nicl.2017.11.002 – ident: e_1_3_4_25_1 doi: 10.1136/jnnp-2020-325421 – ident: e_1_3_4_124_1 doi: 10.1093/brain/awx228 – ident: e_1_3_4_40_1 doi: 10.1136/jnnp.74.11.1551 – ident: e_1_3_4_179_1 doi: 10.1093/brain/awy202 – ident: e_1_3_4_221_1 doi: 10.1177/1352458517723717 – ident: e_1_3_4_22_1 doi: 10.1001/jamaneurol.2020.1568 – ident: e_1_3_4_133_1 doi: 10.1371/journal.pone.0185626 – ident: e_1_3_4_214_1 doi: 10.1001/archneur.65.11.1454 – ident: e_1_3_4_70_1 doi: 10.1002/ana.23974 – ident: e_1_3_4_128_1 doi: 10.3174/ajnr.A5796 – ident: e_1_3_4_30_1 doi: 10.1001/jama.2018.20588 – ident: e_1_3_4_64_1 doi: 10.1093/brain/aws189 – ident: e_1_3_4_101_1 doi: 10.1016/j.nicl.2021.102847 – ident: e_1_3_4_14_1 doi: 10.1586/14737175.2016.1134323 – ident: e_1_3_4_123_1 doi: 10.1097/WCO.0000000000001045 – ident: e_1_3_4_5_1 doi: 10.1136/jnnp-2013-305450 – ident: e_1_3_4_73_1 doi: 10.1212/WNL.38.2.180 – ident: e_1_3_4_127_1 doi: 10.1177/1352458516678083 – ident: e_1_3_4_143_1 doi: 10.3174/ajnr.A5876 – ident: e_1_3_4_61_1 doi: 10.1212/WNL.0000000000001587 – ident: e_1_3_4_254_1 doi: 10.1016/j.neuroimage.2022.119787 – ident: e_1_3_4_86_1 doi: 10.1172/JCI86198 – ident: e_1_3_4_181_1 doi: 10.11138/FNeur/2017.32.2.097 – ident: e_1_3_4_243_1 doi: 10.1016/j.jns.2008.08.022 – ident: e_1_3_4_137_1 doi: 10.1097/WCO.0000000000000818 – ident: e_1_3_4_158_1 doi: 10.1177/1352458511435930 – ident: e_1_3_4_189_1 doi: 10.1001/archneur.59.1.62 – ident: e_1_3_4_200_1 doi: 10.1148/radiol.2018180136 – ident: e_1_3_4_39_1 doi: 10.1093/brain/awp070 – ident: e_1_3_4_54_1 doi: 10.1093/brain/awr182 – ident: e_1_3_4_242_1 doi: 10.1016/j.nicl.2015.09.003 – ident: e_1_3_4_18_1 doi: 10.1212/WNL.0000000000009636 – ident: e_1_3_4_240_1 doi: 10.1093/brain/awt149 – ident: e_1_3_4_131_1 doi: 10.1016/j.msard.2019.02.013 – ident: e_1_3_4_76_1 doi: 10.1007/s004150050442 – ident: e_1_3_4_212_1 doi: 10.1177/1352458507085129 – ident: e_1_3_4_219_1 doi: 10.1111/jon.12679 – ident: e_1_3_4_59_1 doi: 10.1007/s00401-012-1023-3 – ident: e_1_3_4_205_1 doi: 10.1016/j.neuroimage.2021.117744 – ident: e_1_3_4_208_1 doi: 10.1007/s00415-002-0686-4 – ident: e_1_3_4_31_1 doi: 10.1177/13524585211010128 – ident: e_1_3_4_228_1 doi: 10.1212/WNL.0b013e3181b64bf7 – ident: e_1_3_4_120_1 doi: 10.1038/s41582-021-00537-1 – ident: e_1_3_4_255_1 doi: 10.3390/brainsci13020198 – ident: e_1_3_4_41_1 doi: 10.1093/brain/aws260 – ident: e_1_3_4_34_1 doi: 10.1016/S1474-4422(14)70256-X – ident: e_1_3_4_192_1 doi: 10.1177/1352458509103611 – ident: e_1_3_4_53_1 doi: 10.1186/1742-2094-9-156 – ident: e_1_3_4_196_1 doi: 10.1001/archneur.62.9.1371 – ident: e_1_3_4_9_1 doi: 10.1212/WNL.0000000000012323 – ident: e_1_3_4_175_1 doi: 10.1002/hbm.20713 – ident: e_1_3_4_170_1 doi: 10.1148/radiol.2019190306 – ident: e_1_3_4_251_1 doi: 10.1016/j.nrl.2020.10.017 – ident: e_1_3_4_24_1 doi: 10.1002/ana.25637 – ident: e_1_3_4_45_1 doi: 10.1016/j.expneurol.2009.10.009 – volume: 19 start-page: 675 issue: 4 year: 1998 ident: e_1_3_4_244_1 article-title: Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization transfer MR publication-title: AJNR Am J Neuroradiol – ident: e_1_3_4_23_1 doi: 10.1093/brain/awaa145 – ident: e_1_3_4_217_1 doi: 10.1016/j.mri.2020.03.010 – ident: e_1_3_4_105_1 doi: 10.1093/brain/awx247 – ident: e_1_3_4_141_1 doi: 10.1038/s41582-020-0314-x – ident: e_1_3_4_162_1 doi: 10.1177/1352458517751650 – ident: e_1_3_4_94_1 doi: 10.1177/1352458520974357 |
| SSID | ssj0034954 |
| Score | 2.440627 |
| SecondaryResourceType | review_article |
| Snippet | While magnetic resonance imaging (MRI) is established in diagnosing and monitoring disease activity in multiple sclerosis (MS), its utility in predicting and... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 201 |
| Title | An update on the role of magnetic resonance imaging in predicting and monitoring multiple sclerosis progression |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38235594 https://www.proquest.com/docview/2916409614 |
| Volume | 24 |
| WOSCitedRecordID | wos001144506100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1744-8360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034954 issn: 1473-7175 databaseCode: TFW dateStart: 20010901 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6CwcuiDdlYWUktBc2Sx7O61ghVhzQqhIBeotS22EjWrdq02r73_bHMRPbSRaVxx64RJXV2Enm89hjf_OZkDcRDAHTMImctAxKh0VSOgnzpROUPo8KAU6zOQ7o66f44iKZTNLxYHBtc2G2s1ip5OoqXf5XU0MZGBtTZ29h7rZSKIDfYHS4gtnh-k-GH6m3myXG8WYfoCUQzovvSmrJZpx_Y4-u5vqQIqSSr3DLprY5i_OmrzfkvJZzuIaWYFCt1prVpRU9bizto25y3UuHadQyeyle7QR-hPyby2KLwuOXeg12XK2qXaF-dHD9XDQnDgNarT645iEYNr7kM3BOWX_dwmeW6ty6WhYHDgSTek9b6rKYMQfTSvr-WedYGxz6fWdrqpPG9UZ7hwTNocTWsLEzfBRkvzPP2yPB_cvQ2BIWPaOkaqvJsZrcVHNA7vhxmKJPzc6_2XlAAKFnw2mw72nzxxL33d6nuTkz-k2400x7sgfkvolX6Ejj7CEZSPWInIy14PnulGY9457SEzrupNB3j8lipKgGI10oCkCgCEa6KKkFI23BSA0YaaVoB0YKYKQdGKkFI23BSHtgfEK-nH_I3n90zBEfDg_CqHY87oVl4Qm_RE3aFEYU4aY88eNCuCIqUlGWrhQS_gEOBEIHISIImPlU-nEJk1cZPCWHaqHkc0IT-IqcczdJuWCh4FMGfsZNRBqD8ymYPyTMft6cG_17PIZllv_RuENy1t621AIwf7vhtbVdDq4a998KJRebde5DKMbwiCU2JM-0UdsqcTsegnv24rbNHZF7Xe96SQ7r1Ua-Inf5tq7Wq2NyEE-S4waXPwGo0r1O |
| linkProvider | Taylor & Francis |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+update+on+the+role+of+magnetic+resonance+imaging+in+predicting+and+monitoring+multiple+sclerosis+progression&rft.jtitle=Expert+review+of+neurotherapeutics&rft.au=Ananthavarathan%2C+Piriyankan&rft.au=Sahi%2C+Nitin&rft.au=Chard%2C+Declan+T&rft.date=2024-02-01&rft.issn=1473-7175&rft.eissn=1744-8360&rft.volume=24&rft.issue=2&rft.spage=201&rft.epage=216&rft_id=info:doi/10.1080%2F14737175.2024.2304116&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_14737175_2024_2304116 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1473-7175&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1473-7175&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1473-7175&client=summon |