An update on the role of magnetic resonance imaging in predicting and monitoring multiple sclerosis progression

While magnetic resonance imaging (MRI) is established in diagnosing and monitoring disease activity in multiple sclerosis (MS), its utility in predicting and monitoring disease progression is less clear. The authors consider changing concepts in the phenotypic classification of MS, including progres...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert review of neurotherapeutics Ročník 24; číslo 2; s. 201 - 216
Hlavní autoři: Ananthavarathan, Piriyankan, Sahi, Nitin, Chard, Declan T
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 01.02.2024
Témata:
ISSN:1473-7175, 1744-8360, 1744-8360
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract While magnetic resonance imaging (MRI) is established in diagnosing and monitoring disease activity in multiple sclerosis (MS), its utility in predicting and monitoring disease progression is less clear. The authors consider changing concepts in the phenotypic classification of MS, including progression independent of relapses; pathological processes underpinning progression; advances in MRI measures to assess them; how well MRI features explain and predict clinical outcomes, including models that assess disease effects on neural networks, and the potential role for machine learning. Relapsing-remitting and progressive MS have evolved from being viewed as mutually exclusive to having considerable overlap. Progression is likely the consequence of several pathological elements, each important in building more holistic prognostic models beyond conventional phenotypes. MRI is well placed to assess pathogenic processes underpinning progression, but we need to bridge the gap between MRI measures and clinical outcomes. Mapping pathological effects on specific neural networks may help and machine learning methods may be able to optimize predictive markers while identifying new, or previously overlooked, clinically relevant features. The ever-increasing ability to measure features on MRI raises the dilemma of what to measure and when, and the challenge of translating research methods into clinically useable tools.
AbstractList While magnetic resonance imaging (MRI) is established in diagnosing and monitoring disease activity in multiple sclerosis (MS), its utility in predicting and monitoring disease progression is less clear. The authors consider changing concepts in the phenotypic classification of MS, including progression independent of relapses; pathological processes underpinning progression; advances in MRI measures to assess them; how well MRI features explain and predict clinical outcomes, including models that assess disease effects on neural networks, and the potential role for machine learning. Relapsing-remitting and progressive MS have evolved from being viewed as mutually exclusive to having considerable overlap. Progression is likely the consequence of several pathological elements, each important in building more holistic prognostic models beyond conventional phenotypes. MRI is well placed to assess pathogenic processes underpinning progression, but we need to bridge the gap between MRI measures and clinical outcomes. Mapping pathological effects on specific neural networks may help and machine learning methods may be able to optimize predictive markers while identifying new, or previously overlooked, clinically relevant features. The ever-increasing ability to measure features on MRI raises the dilemma of what to measure and when, and the challenge of translating research methods into clinically useable tools.
While magnetic resonance imaging (MRI) is established in diagnosing and monitoring disease activity in multiple sclerosis (MS), its utility in predicting and monitoring disease progression is less clear.INTRODUCTIONWhile magnetic resonance imaging (MRI) is established in diagnosing and monitoring disease activity in multiple sclerosis (MS), its utility in predicting and monitoring disease progression is less clear.The authors consider changing concepts in the phenotypic classification of MS, including progression independent of relapses; pathological processes underpinning progression; advances in MRI measures to assess them; how well MRI features explain and predict clinical outcomes, including models that assess disease effects on neural networks, and the potential role for machine learning.AREAS COVEREDThe authors consider changing concepts in the phenotypic classification of MS, including progression independent of relapses; pathological processes underpinning progression; advances in MRI measures to assess them; how well MRI features explain and predict clinical outcomes, including models that assess disease effects on neural networks, and the potential role for machine learning.Relapsing-remitting and progressive MS have evolved from being viewed as mutually exclusive to having considerable overlap. Progression is likely the consequence of several pathological elements, each important in building more holistic prognostic models beyond conventional phenotypes. MRI is well placed to assess pathogenic processes underpinning progression, but we need to bridge the gap between MRI measures and clinical outcomes. Mapping pathological effects on specific neural networks may help and machine learning methods may be able to optimize predictive markers while identifying new, or previously overlooked, clinically relevant features. The ever-increasing ability to measure features on MRI raises the dilemma of what to measure and when, and the challenge of translating research methods into clinically useable tools.EXPERT OPINIONRelapsing-remitting and progressive MS have evolved from being viewed as mutually exclusive to having considerable overlap. Progression is likely the consequence of several pathological elements, each important in building more holistic prognostic models beyond conventional phenotypes. MRI is well placed to assess pathogenic processes underpinning progression, but we need to bridge the gap between MRI measures and clinical outcomes. Mapping pathological effects on specific neural networks may help and machine learning methods may be able to optimize predictive markers while identifying new, or previously overlooked, clinically relevant features. The ever-increasing ability to measure features on MRI raises the dilemma of what to measure and when, and the challenge of translating research methods into clinically useable tools.
Author Ananthavarathan, Piriyankan
Chard, Declan T
Sahi, Nitin
Author_xml – sequence: 1
  givenname: Piriyankan
  orcidid: 0000-0003-4360-8991
  surname: Ananthavarathan
  fullname: Ananthavarathan, Piriyankan
  organization: Department of Neuroinflammation, University College London Queen Square Multiple Sclerosis Centre, London, UK
– sequence: 2
  givenname: Nitin
  orcidid: 0000-0002-0403-916X
  surname: Sahi
  fullname: Sahi, Nitin
  organization: Department of Neuroinflammation, University College London Queen Square Multiple Sclerosis Centre, London, UK
– sequence: 3
  givenname: Declan T
  orcidid: 0000-0003-3076-2682
  surname: Chard
  fullname: Chard, Declan T
  organization: Clinical Research Associate & Consultant Neurologist, Institute of Neurology - Queen Square Multiple Sclerosis Centre, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38235594$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P3DAQhi1ExVf7E1r52EuW8UecRD0hRAsSEhd6tow9WYwSe2s7B_59He3uhQMnz4yed0av30tyGmJAQr4z2DDo4ZrJTnSsazccuNxwAZIxdUIuWCdl0wsFp7WuTLNC5-Qy5zcAIYdWnpFz0XPRtoO8IPEm0GXnTEEaAy2vSFOcaj3S2WwDFm9pwhyDCRaprzMfttQHukvovC1rZ4Kjcwy-xLS28zIVv6s7sp0wxexzheO2bsk-hq_ky2imjN8O7xX5-_vu-fa-eXz683B789hY0arSMMva0TDHR4BWDSDBwWB73hkHTpnBjSOgw0pIjkwJ55SS3L4g70boOYor8nO_t97-t2AuevbZ4jSZgHHJmg9MSRgUkxX9cUCXlxmd3qXqM73r4ydV4NcesNVOTjhq64sp1U1Jxk-agV4j0cdI9BqJPkRS1e0H9fHA57r_bOaPyg
CitedBy_id crossref_primary_10_1016_j_compbiomed_2025_110078
crossref_primary_10_1016_j_compbiomed_2024_108728
crossref_primary_10_3390_jcm14124114
crossref_primary_10_1038_s41582_024_01006_1
crossref_primary_10_3390_ijms26030884
crossref_primary_10_1016_j_autrev_2025_103741
crossref_primary_10_1016_j_compbiomed_2024_108416
crossref_primary_10_1177_13524585241289277
crossref_primary_10_1016_j_procs_2024_09_577
crossref_primary_10_3389_fcell_2025_1517369
Cites_doi 10.1111/jon.12527
10.1016/j.nicl.2018.05.003
10.1007/s00415-019-09421-x
10.1002/jmri.28727
10.1093/brain/awab033
10.1097/01.jnen.0000235119.52311.16
10.1007/s00415-015-7793-5
10.1093/brain/awh641
10.1007/s00401-018-1818-y
10.1016/j.msard.2019.03.027
10.1001/archneur.61.2.217
10.1093/brain/aww037
10.1177/1352458518814117
10.1016/j.nicl.2019.102104
10.1016/j.msard.2022.104094
10.1093/brain/awg081
10.1136/jnnp-2012-302541
10.1002/ana.21906
10.1093/brain/awp334
10.1016/j.neuroimage.2018.06.007
10.1016/j.nicl.2022.103009
10.1016/j.neuroimage.2017.10.063
10.1038/s41572-018-0041-4
10.1007/s00415-016-8341-7
10.1111/ene.15697
10.1111/bpa.12643
10.1111/j.1552-6569.2008.00296.x
10.1038/nrneurol.2012.168
10.1177/1352458516675039
10.1016/j.neuroimage.2006.12.010
10.1093/jnen/62.7.723
10.3389/fimmu.2018.03116
10.1016/S0002-9440(10)64537-3
10.1056/NEJM199801293380502
10.1177/1352458519852093
10.1148/radiol.2361040450
10.1002/ana.1255
10.1056/NEJM200011163432001
10.1093/brain/awv011
10.1093/brain/awx250
10.1016/j.neuroimage.2011.11.070
10.1097/00001756-200001170-00004
10.1212/01.wnl.0000435551.90824.d0
10.1111/j.1750-3639.2004.tb00049.x
10.1016/j.jns.2017.06.003
10.1136/jnnp-2016-313979
10.1016/j.parkreldis.2021.06.004
10.3389/fneur.2021.662855
10.1002/hbm.22196
10.1007/s00415-021-10400-4
10.1007/s00415-019-09643-z
10.1097/WCO.0000000000001067
10.1093/brain/awl208
10.1093/brain/awab029
10.1177/1352458514522537
10.1177/13524585211008743
10.1007/s00500-022-07503-z
10.1038/s41467-021-22265-2
10.3174/ajnr.A2340
10.1016/j.nicl.2022.103099
10.1177/1352458515609430
10.1212/WNL.0b013e31826c1b1c
10.1016/0022-510X(79)90142-4
10.1136/jnnp-2012-303023
10.1093/brain/awu171
10.1136/jnnp-2015-311102
10.1093/brain/awac016
10.1093/brain/120.11.2059
10.1002/ana.1123
10.1002/ana.22230
10.3174/ajnr.A5442
10.1093/brain/awm038
10.1148/radiol.2019181719
10.1093/brain/awm329
10.1093/brain/aww296
10.1177/1352458515586085
10.1007/s10334-013-0396-1
10.1007/s40263-017-0412-5
10.1002/ana.24497
10.1001/archneurol.2010.148
10.1177/1352458520932804
10.1038/s41746-023-00940-6
10.1016/j.jneuroim.2003.10.056
10.1002/mrm.25174
10.1002/brb3.955
10.1212/01.wnl.0000237354.10144.ec
10.1038/s41598-020-79925-4
10.1093/brain/awv065
10.1016/j.neuroimage.2011.08.052
10.1016/j.jns.2010.07.014
10.1177/1352458510365586
10.1002/ana.25463
10.1371/journal.pone.0137715
10.1016/j.msard.2021.102752
10.1177/1352458513494490
10.1097/RLI.0000000000000256
10.1212/WNL.0000000000005292
10.1177/1352458507076411
10.3389/fneur.2020.00606
10.1002/hbm.23168
10.1136/jnnp-2014-307712
10.1148/radiol.2016152843
10.1177/1352458519841810
10.1097/NEN.0000000000000189
10.1212/01.wnl.0000341935.41852.82
10.2214/AJR.16.16851
10.1016/j.msard.2020.102653
10.3174/ajnr.A5150
10.1002/ana.24791
10.1177/1352458514540358
10.1155/2017/8652463
10.12688/f1000research.11932.1
10.1111/jon.12444
10.1111/ene.14859
10.1093/brain/awv337
10.1136/jnnp.59.3.306
10.1002/ana.24620
10.1093/brain/awab454
10.1001/jamaneurol.2015.1241
10.1148/radiol.12112680
10.1177/1352458514562440
10.1038/s41582-020-00439-8
10.1016/j.nicl.2022.103108
10.1002/jmri.25682
10.1001/archneur.64.10.1416
10.1371/journal.pone.0256845
10.1002/hbm.22596
10.1001/jamaneurol.2019.2399
10.1148/radiol.10100326
10.1093/brain/aws012
10.1016/j.tins.2019.03.009
10.1016/j.neuroimage.2020.117561
10.1093/brain/awab025
10.1002/ana.21302
10.1212/WNL.0b013e3181c1e44f
10.1007/s00415-023-11969-8
10.1136/jnnp-2020-325610
10.1093/brain/awz212
10.1007/s00401-016-1636-z
10.1093/brain/awq058
10.1136/jnnp-2012-304333
10.1007/s11064-015-1581-6
10.1093/brain/awn171
10.1212/NXI.0000000000001066
10.1038/s41582-021-00581-x
10.1093/braincomms/fcab134
10.1177/1352458516638941
10.1212/WNL.0b013e31824528a0
10.1212/NXI.0000000000001139
10.3174/ajnr.A5563
10.1212/NXI.0000000000200064
10.1177/1756286419838673
10.1016/j.nicl.2022.103244
10.1136/jnnp-2017-317606
10.1148/radiol.221425
10.1001/jamaneurol.2022.4655
10.1016/j.jneuroim.2013.06.014
10.4161/pri.23499
10.1016/S1474-4422(17)30470-2
10.1016/j.msard.2019.01.027
10.1191/135248506ms1301oa
10.1016/S1474-4422(18)30451-4
10.1212/WNL.0000000000011242
10.1212/WNL.38.12.1822
10.3174/ajnr.A6547
10.1001/archneurol.2009.174
10.1056/NEJMoa1100648
10.1093/brain/awaa233
10.1177/1352458516628657
10.3390/jcm8030344
10.1093/brain/aww258
10.1016/S1474-4422(15)00393-2
10.1038/s41582-023-00801-6
10.1016/j.msard.2023.104934
10.1007/s11604-017-0617-z
10.1177/1352458512465135
10.1212/NXI.0000000000000502
10.1016/S0140-6736(02)08220-X
10.1093/brain/awv354
10.1177/1352458519831400
10.1016/j.mri.2023.09.010
10.1002/ana.25145
10.1007/s00415-009-0110-4
10.1016/S0022-510X(01)00477-4
10.1007/s00234-016-1711-0
10.3389/fneur.2019.00459
10.1371/journal.pone.0057573
10.1016/j.nicl.2017.11.002
10.1136/jnnp-2020-325421
10.1093/brain/awx228
10.1136/jnnp.74.11.1551
10.1093/brain/awy202
10.1177/1352458517723717
10.1001/jamaneurol.2020.1568
10.1371/journal.pone.0185626
10.1001/archneur.65.11.1454
10.1002/ana.23974
10.3174/ajnr.A5796
10.1001/jama.2018.20588
10.1093/brain/aws189
10.1016/j.nicl.2021.102847
10.1586/14737175.2016.1134323
10.1097/WCO.0000000000001045
10.1136/jnnp-2013-305450
10.1212/WNL.38.2.180
10.1177/1352458516678083
10.3174/ajnr.A5876
10.1212/WNL.0000000000001587
10.1016/j.neuroimage.2022.119787
10.1172/JCI86198
10.11138/FNeur/2017.32.2.097
10.1016/j.jns.2008.08.022
10.1097/WCO.0000000000000818
10.1177/1352458511435930
10.1001/archneur.59.1.62
10.1148/radiol.2018180136
10.1093/brain/awp070
10.1093/brain/awr182
10.1016/j.nicl.2015.09.003
10.1212/WNL.0000000000009636
10.1093/brain/awt149
10.1016/j.msard.2019.02.013
10.1007/s004150050442
10.1177/1352458507085129
10.1111/jon.12679
10.1007/s00401-012-1023-3
10.1016/j.neuroimage.2021.117744
10.1007/s00415-002-0686-4
10.1177/13524585211010128
10.1212/WNL.0b013e3181b64bf7
10.1038/s41582-021-00537-1
10.3390/brainsci13020198
10.1093/brain/aws260
10.1016/S1474-4422(14)70256-X
10.1177/1352458509103611
10.1186/1742-2094-9-156
10.1001/archneur.62.9.1371
10.1212/WNL.0000000000012323
10.1002/hbm.20713
10.1148/radiol.2019190306
10.1016/j.nrl.2020.10.017
10.1002/ana.25637
10.1016/j.expneurol.2009.10.009
10.1093/brain/awaa145
10.1016/j.mri.2020.03.010
10.1093/brain/awx247
10.1038/s41582-020-0314-x
10.1177/1352458517751650
10.1177/1352458520974357
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1080/14737175.2024.2304116
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1744-8360
EndPage 216
ExternalDocumentID 38235594
10_1080_14737175_2024_2304116
Genre Journal Article
Review
GroupedDBID ---
0R~
29G
4.4
53G
5GY
7X7
88E
8AO
8FI
8FJ
AAGSP
AAHJP
AANCX
AAOUU
AAYXX
ABEIZ
ABIVO
ABJNI
ABJXJ
ABKMU
ABLKL
ABUWG
ABXYU
ACFRI
ACGFS
ACLQP
ADBBV
ADTKB
AECIN
AENEX
AEOZL
AESAV
AFFHD
AFKRA
AFRVT
AGDLA
AGMLL
AHMBA
AIJEM
AIRBT
AIYSM
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AZQEC
BENPR
BLEHA
BPHCQ
BVXVI
CBZEQ
CCCUG
CCPQU
CITATION
CS3
DDEWX
DGYZD
DWQXO
EBS
EJD
EMOBN
F5P
FYUFA
GNUQQ
H13
HMCUK
HZ~
IAO
IEA
IGS
IHR
IPY
ITC
KSSTO
KYCEM
LJTGL
M1P
M2M
MV1
O9-
OVD
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PSYQQ
RNANH
SJN
TASJS
TBQAZ
TCNNB
TDBHL
TEORI
TFL
TFW
TUROJ
UKHRP
ALIPV
NPM
7X8
AQTUD
ID FETCH-LOGICAL-c356t-1c15fa1d2f00569040d09c827ad0d6a9dff0edea1d42e163dd6642cbe27f082e3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001144506100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1473-7175
1744-8360
IngestDate Sun Nov 09 11:46:08 EST 2025
Thu Apr 03 07:08:54 EDT 2025
Tue Nov 18 20:49:38 EST 2025
Sat Nov 29 02:44:27 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Multiple sclerosis
brain atrophy
progression independent of relapse
neurodegeneration
compartmentalized inflammation
disability progression
PIRA
chronic inflammation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c356t-1c15fa1d2f00569040d09c827ad0d6a9dff0edea1d42e163dd6642cbe27f082e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0403-916X
0000-0003-3076-2682
0000-0003-4360-8991
OpenAccessLink https://www.tandfonline.com/doi/pdf/10.1080/14737175.2024.2304116?needAccess=true
PMID 38235594
PQID 2916409614
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2916409614
pubmed_primary_38235594
crossref_citationtrail_10_1080_14737175_2024_2304116
crossref_primary_10_1080_14737175_2024_2304116
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Expert review of neurotherapeutics
PublicationTitleAlternate Expert Rev Neurother
PublicationYear 2024
References e_1_3_4_3_1
e_1_3_4_175_1
e_1_3_4_152_1
e_1_3_4_114_1
e_1_3_4_198_1
e_1_3_4_61_1
e_1_3_4_84_1
e_1_3_4_212_1
e_1_3_4_235_1
e_1_3_4_137_1
e_1_3_4_23_1
e_1_3_4_46_1
e_1_3_4_69_1
e_1_3_4_250_1
e_1_3_4_258_1
e_1_3_4_140_1
e_1_3_4_163_1
e_1_3_4_208_1
e_1_3_4_102_1
e_1_3_4_125_1
e_1_3_4_72_1
e_1_3_4_223_1
e_1_3_4_148_1
e_1_3_4_200_1
e_1_3_4_34_1
e_1_3_4_11_1
e_1_3_4_57_1
e_1_3_4_246_1
e_1_3_4_19_1
e_1_3_4_151_1
e_1_3_4_174_1
e_1_3_4_219_1
e_1_3_4_113_1
e_1_3_4_136_1
e_1_3_4_197_1
e_1_3_4_62_1
e_1_3_4_234_1
e_1_3_4_159_1
e_1_3_4_85_1
e_1_3_4_211_1
e_1_3_4_24_1
e_1_3_4_47_1
e_1_3_4_257_1
e_1_3_4_207_1
e_1_3_4_162_1
e_1_3_4_101_1
e_1_3_4_147_1
e_1_3_4_185_1
e_1_3_4_124_1
e_1_3_4_73_1
e_1_3_4_222_1
e_1_3_4_96_1
e_1_3_4_109_1
e_1_3_4_50_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_58_1
e_1_3_4_245_1
e_1_3_4_150_1
e_1_3_4_154_1
e_1_3_4_131_1
e_1_3_4_214_1
e_1_3_4_237_1
e_1_3_4_177_1
e_1_3_4_116_1
e_1_3_4_63_1
e_1_3_4_86_1
e_1_3_4_9_1
e_1_3_4_139_1
e_1_3_4_40_1
e_1_3_4_252_1
e_1_3_4_25_1
e_1_3_4_48_1
e_1_3_4_180_1
e_1_3_4_142_1
e_1_3_4_165_1
e_1_3_4_188_1
e_1_3_4_225_1
e_1_3_4_104_1
e_1_3_4_127_1
e_1_3_4_202_1
e_1_3_4_74_1
e_1_3_4_97_1
e_1_3_4_51_1
e_1_3_4_13_1
e_1_3_4_59_1
e_1_3_4_240_1
e_1_3_4_36_1
e_1_3_4_191_1
e_1_3_4_248_1
e_1_3_4_130_1
e_1_3_4_153_1
e_1_3_4_176_1
e_1_3_4_199_1
e_1_3_4_236_1
e_1_3_4_115_1
e_1_3_4_138_1
e_1_3_4_213_1
e_1_3_4_64_1
e_1_3_4_8_1
e_1_3_4_41_1
e_1_3_4_251_1
e_1_3_4_49_1
e_1_3_4_87_1
e_1_3_4_26_1
e_1_3_4_259_1
e_1_3_4_209_1
e_1_3_4_164_1
e_1_3_4_141_1
e_1_3_4_103_1
e_1_3_4_187_1
e_1_3_4_201_1
e_1_3_4_224_1
e_1_3_4_126_1
e_1_3_4_75_1
e_1_3_4_149_1
e_1_3_4_52_1
e_1_3_4_90_1
e_1_3_4_98_1
e_1_3_4_14_1
e_1_3_4_37_1
e_1_3_4_247_1
e_1_3_4_190_1
e_1_3_4_110_1
e_1_3_4_239_1
e_1_3_4_133_1
e_1_3_4_179_1
e_1_3_4_216_1
e_1_3_4_156_1
Geurts JJ (e_1_3_4_95_1) 2005; 26
e_1_3_4_118_1
e_1_3_4_42_1
e_1_3_4_80_1
e_1_3_4_231_1
e_1_3_4_7_1
e_1_3_4_27_1
e_1_3_4_65_1
e_1_3_4_88_1
e_1_3_4_254_1
e_1_3_4_182_1
e_1_3_4_121_1
e_1_3_4_227_1
e_1_3_4_167_1
e_1_3_4_204_1
e_1_3_4_106_1
e_1_3_4_129_1
e_1_3_4_53_1
e_1_3_4_91_1
e_1_3_4_30_1
e_1_3_4_242_1
e_1_3_4_76_1
e_1_3_4_99_1
e_1_3_4_38_1
e_1_3_4_15_1
e_1_3_4_193_1
e_1_3_4_170_1
e_1_3_4_132_1
e_1_3_4_238_1
e_1_3_4_155_1
e_1_3_4_178_1
e_1_3_4_215_1
e_1_3_4_117_1
e_1_3_4_20_1
e_1_3_4_230_1
e_1_3_4_6_1
e_1_3_4_81_1
e_1_3_4_43_1
e_1_3_4_253_1
e_1_3_4_28_1
e_1_3_4_66_1
e_1_3_4_89_1
e_1_3_4_181_1
e_1_3_4_143_1
e_1_3_4_189_1
e_1_3_4_120_1
e_1_3_4_203_1
e_1_3_4_226_1
e_1_3_4_166_1
e_1_3_4_105_1
e_1_3_4_128_1
e_1_3_4_31_1
e_1_3_4_92_1
e_1_3_4_241_1
e_1_3_4_54_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_77_1
e_1_3_4_192_1
e_1_3_4_249_1
Drayer B (e_1_3_4_186_1) 1987; 8
e_1_3_4_173_1
e_1_3_4_218_1
e_1_3_4_112_1
e_1_3_4_158_1
Zivadinov R (e_1_3_4_171_1) 2019; 40
e_1_3_4_196_1
e_1_3_4_135_1
e_1_3_4_210_1
e_1_3_4_233_1
e_1_3_4_82_1
e_1_3_4_5_1
e_1_3_4_21_1
e_1_3_4_44_1
e_1_3_4_67_1
e_1_3_4_256_1
e_1_3_4_29_1
e_1_3_4_161_1
e_1_3_4_229_1
e_1_3_4_100_1
e_1_3_4_123_1
e_1_3_4_146_1
e_1_3_4_169_1
e_1_3_4_184_1
e_1_3_4_206_1
e_1_3_4_221_1
e_1_3_4_108_1
e_1_3_4_70_1
e_1_3_4_93_1
e_1_3_4_55_1
e_1_3_4_32_1
e_1_3_4_17_1
e_1_3_4_78_1
Ghione E (e_1_3_4_144_1) 2020; 41
e_1_3_4_172_1
e_1_3_4_4_1
e_1_3_4_111_1
e_1_3_4_134_1
e_1_3_4_157_1
e_1_3_4_195_1
e_1_3_4_217_1
van Waesberghe JH (e_1_3_4_244_1) 1998; 19
e_1_3_4_83_1
e_1_3_4_232_1
e_1_3_4_119_1
e_1_3_4_60_1
e_1_3_4_45_1
e_1_3_4_22_1
e_1_3_4_255_1
e_1_3_4_68_1
e_1_3_4_183_1
e_1_3_4_160_1
e_1_3_4_205_1
e_1_3_4_228_1
e_1_3_4_122_1
e_1_3_4_168_1
e_1_3_4_145_1
e_1_3_4_94_1
e_1_3_4_107_1
e_1_3_4_220_1
e_1_3_4_71_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_243_1
e_1_3_4_56_1
e_1_3_4_79_1
e_1_3_4_18_1
e_1_3_4_194_1
References_xml – ident: e_1_3_4_168_1
  doi: 10.1111/jon.12527
– ident: e_1_3_4_166_1
  doi: 10.1016/j.nicl.2018.05.003
– ident: e_1_3_4_249_1
  doi: 10.1007/s00415-019-09421-x
– ident: e_1_3_4_183_1
  doi: 10.1002/jmri.28727
– ident: e_1_3_4_50_1
  doi: 10.1093/brain/awab033
– ident: e_1_3_4_56_1
  doi: 10.1097/01.jnen.0000235119.52311.16
– ident: e_1_3_4_207_1
  doi: 10.1007/s00415-015-7793-5
– ident: e_1_3_4_87_1
  doi: 10.1093/brain/awh641
– ident: e_1_3_4_38_1
  doi: 10.1007/s00401-018-1818-y
– ident: e_1_3_4_229_1
  doi: 10.1016/j.msard.2019.03.027
– ident: e_1_3_4_80_1
  doi: 10.1001/archneur.61.2.217
– ident: e_1_3_4_102_1
  doi: 10.1093/brain/aww037
– ident: e_1_3_4_92_1
  doi: 10.1177/1352458518814117
– ident: e_1_3_4_252_1
  doi: 10.1016/j.nicl.2019.102104
– ident: e_1_3_4_132_1
  doi: 10.1016/j.msard.2022.104094
– ident: e_1_3_4_26_1
  doi: 10.1093/brain/awg081
– ident: e_1_3_4_202_1
  doi: 10.1136/jnnp-2012-302541
– ident: e_1_3_4_48_1
  doi: 10.1002/ana.21906
– ident: e_1_3_4_238_1
  doi: 10.1093/brain/awp334
– ident: e_1_3_4_197_1
  doi: 10.1016/j.neuroimage.2018.06.007
– ident: e_1_3_4_227_1
  doi: 10.1016/j.nicl.2022.103009
– ident: e_1_3_4_201_1
  doi: 10.1016/j.neuroimage.2017.10.063
– ident: e_1_3_4_3_1
  doi: 10.1038/s41572-018-0041-4
– ident: e_1_3_4_250_1
  doi: 10.1007/s00415-016-8341-7
– ident: e_1_3_4_114_1
  doi: 10.1111/ene.15697
– ident: e_1_3_4_89_1
  doi: 10.1111/bpa.12643
– ident: e_1_3_4_195_1
  doi: 10.1111/j.1552-6569.2008.00296.x
– ident: e_1_3_4_8_1
  doi: 10.1038/nrneurol.2012.168
– ident: e_1_3_4_32_1
  doi: 10.1177/1352458516675039
– ident: e_1_3_4_176_1
  doi: 10.1016/j.neuroimage.2006.12.010
– volume: 40
  start-page: 446
  issue: 3
  year: 2019
  ident: e_1_3_4_171_1
  article-title: A serial 10-year follow-up study of atrophied brain lesion volume and disability progression in patients with relapsing-remitting MS
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_3_4_44_1
  doi: 10.1093/jnen/62.7.723
– ident: e_1_3_4_17_1
  doi: 10.3389/fimmu.2018.03116
– ident: e_1_3_4_36_1
  doi: 10.1016/S0002-9440(10)64537-3
– volume: 8
  start-page: 413
  issue: 3
  year: 1987
  ident: e_1_3_4_186_1
  article-title: Reduced Signal Intensity on MR images of thalamus and putamen in multiple sclerosis: increased iron content?
  publication-title: Am J Neuroradiol
– ident: e_1_3_4_35_1
  doi: 10.1056/NEJM199801293380502
– ident: e_1_3_4_233_1
  doi: 10.1177/1352458519852093
– ident: e_1_3_4_97_1
  doi: 10.1148/radiol.2361040450
– ident: e_1_3_4_52_1
  doi: 10.1002/ana.1255
– ident: e_1_3_4_7_1
  doi: 10.1056/NEJM200011163432001
– ident: e_1_3_4_230_1
  doi: 10.1093/brain/awv011
– ident: e_1_3_4_180_1
  doi: 10.1093/brain/awx250
– ident: e_1_3_4_174_1
  doi: 10.1016/j.neuroimage.2011.11.070
– ident: e_1_3_4_191_1
  doi: 10.1097/00001756-200001170-00004
– ident: e_1_3_4_210_1
  doi: 10.1212/01.wnl.0000435551.90824.d0
– ident: e_1_3_4_63_1
  doi: 10.1111/j.1750-3639.2004.tb00049.x
– ident: e_1_3_4_237_1
  doi: 10.1016/j.jns.2017.06.003
– ident: e_1_3_4_225_1
  doi: 10.1136/jnnp-2016-313979
– ident: e_1_3_4_67_1
  doi: 10.1016/j.parkreldis.2021.06.004
– ident: e_1_3_4_185_1
  doi: 10.3389/fneur.2021.662855
– ident: e_1_3_4_108_1
  doi: 10.1002/ana.21906
– ident: e_1_3_4_177_1
  doi: 10.1002/hbm.22196
– ident: e_1_3_4_110_1
  doi: 10.1007/s00415-021-10400-4
– ident: e_1_3_4_169_1
  doi: 10.1007/s00415-019-09643-z
– ident: e_1_3_4_28_1
  doi: 10.1097/WCO.0000000000001067
– ident: e_1_3_4_213_1
  doi: 10.1093/brain/awl208
– ident: e_1_3_4_173_1
  doi: 10.1093/brain/awab029
– ident: e_1_3_4_226_1
  doi: 10.1177/1352458514522537
– ident: e_1_3_4_148_1
  doi: 10.1177/13524585211008743
– ident: e_1_3_4_258_1
  doi: 10.1007/s00500-022-07503-z
– ident: e_1_3_4_259_1
  doi: 10.1038/s41467-021-22265-2
– ident: e_1_3_4_109_1
  doi: 10.3174/ajnr.A2340
– ident: e_1_3_4_167_1
  doi: 10.1016/j.nicl.2022.103099
– ident: e_1_3_4_235_1
  doi: 10.1177/1352458515609430
– ident: e_1_3_4_117_1
  doi: 10.1212/WNL.0b013e31826c1b1c
– ident: e_1_3_4_172_1
  doi: 10.1016/0022-510X(79)90142-4
– ident: e_1_3_4_43_1
  doi: 10.1136/jnnp-2012-303023
– ident: e_1_3_4_232_1
  doi: 10.1093/brain/awu171
– ident: e_1_3_4_106_1
  doi: 10.1136/jnnp-2015-311102
– ident: e_1_3_4_19_1
  doi: 10.1093/brain/awac016
– ident: e_1_3_4_75_1
  doi: 10.1093/brain/120.11.2059
– ident: e_1_3_4_116_1
  doi: 10.1002/ana.1123
– ident: e_1_3_4_46_1
  doi: 10.1002/ana.22230
– ident: e_1_3_4_145_1
  doi: 10.3174/ajnr.A5442
– ident: e_1_3_4_57_1
  doi: 10.1093/brain/awm038
– ident: e_1_3_4_107_1
  doi: 10.1148/radiol.2019181719
– ident: e_1_3_4_79_1
  doi: 10.1093/brain/awm329
– ident: e_1_3_4_224_1
  doi: 10.1093/brain/aww296
– ident: e_1_3_4_209_1
  doi: 10.1177/1352458515586085
– ident: e_1_3_4_241_1
  doi: 10.1007/s10334-013-0396-1
– ident: e_1_3_4_20_1
  doi: 10.1007/s40263-017-0412-5
– ident: e_1_3_4_37_1
  doi: 10.1002/ana.24497
– ident: e_1_3_4_118_1
  doi: 10.1001/archneurol.2010.148
– ident: e_1_3_4_152_1
  doi: 10.1177/1352458520932804
– ident: e_1_3_4_257_1
  doi: 10.1038/s41746-023-00940-6
– ident: e_1_3_4_58_1
  doi: 10.1016/j.jneuroim.2003.10.056
– ident: e_1_3_4_215_1
  doi: 10.1002/mrm.25174
– ident: e_1_3_4_112_1
  doi: 10.1002/brb3.955
– ident: e_1_3_4_78_1
  doi: 10.1212/01.wnl.0000237354.10144.ec
– ident: e_1_3_4_253_1
  doi: 10.1038/s41598-020-79925-4
– ident: e_1_3_4_223_1
  doi: 10.1093/brain/awv065
– ident: e_1_3_4_218_1
  doi: 10.1016/j.neuroimage.2011.08.052
– ident: e_1_3_4_194_1
  doi: 10.1016/j.jns.2010.07.014
– ident: e_1_3_4_220_1
  doi: 10.1177/1352458510365586
– ident: e_1_3_4_142_1
  doi: 10.1002/ana.25463
– ident: e_1_3_4_222_1
  doi: 10.1371/journal.pone.0137715
– ident: e_1_3_4_234_1
  doi: 10.1016/j.msard.2021.102752
– ident: e_1_3_4_77_1
  doi: 10.1177/1352458513494490
– ident: e_1_3_4_100_1
  doi: 10.1097/RLI.0000000000000256
– ident: e_1_3_4_151_1
  doi: 10.1212/WNL.0000000000005292
– ident: e_1_3_4_190_1
  doi: 10.1177/1352458507076411
– ident: e_1_3_4_149_1
  doi: 10.3389/fneur.2020.00606
– ident: e_1_3_4_140_1
  doi: 10.1002/hbm.23168
– ident: e_1_3_4_71_1
  doi: 10.1136/jnnp-2014-307712
– ident: e_1_3_4_159_1
  doi: 10.1148/radiol.2016152843
– ident: e_1_3_4_231_1
  doi: 10.1177/1352458519841810
– ident: e_1_3_4_139_1
  doi: 10.1097/NEN.0000000000000189
– ident: e_1_3_4_81_1
  doi: 10.1212/01.wnl.0000341935.41852.82
– ident: e_1_3_4_203_1
  doi: 10.2214/AJR.16.16851
– ident: e_1_3_4_103_1
  doi: 10.1001/archneurol.2010.148
– ident: e_1_3_4_129_1
  doi: 10.1016/j.msard.2020.102653
– ident: e_1_3_4_119_1
  doi: 10.3174/ajnr.A5150
– ident: e_1_3_4_121_1
  doi: 10.1002/ana.24791
– ident: e_1_3_4_136_1
  doi: 10.1177/1352458514540358
– ident: e_1_3_4_126_1
  doi: 10.1155/2017/8652463
– ident: e_1_3_4_82_1
  doi: 10.12688/f1000research.11932.1
– ident: e_1_3_4_125_1
  doi: 10.1111/jon.12444
– ident: e_1_3_4_115_1
  doi: 10.1111/ene.14859
– ident: e_1_3_4_153_1
  doi: 10.1093/brain/awv337
– ident: e_1_3_4_187_1
  doi: 10.1136/jnnp.59.3.306
– ident: e_1_3_4_246_1
  doi: 10.1002/ana.24620
– ident: e_1_3_4_68_1
  doi: 10.1093/brain/awab454
– ident: e_1_3_4_104_1
  doi: 10.1001/jamaneurol.2015.1241
– ident: e_1_3_4_239_1
  doi: 10.1148/radiol.12112680
– ident: e_1_3_4_138_1
  doi: 10.1177/1352458514562440
– ident: e_1_3_4_156_1
  doi: 10.1038/s41582-020-00439-8
– ident: e_1_3_4_165_1
  doi: 10.1016/j.nicl.2022.103108
– ident: e_1_3_4_199_1
  doi: 10.1002/jmri.25682
– ident: e_1_3_4_42_1
  doi: 10.1001/archneur.64.10.1416
– ident: e_1_3_4_84_1
  doi: 10.1371/journal.pone.0256845
– ident: e_1_3_4_161_1
  doi: 10.1002/hbm.22596
– ident: e_1_3_4_91_1
  doi: 10.1001/jamaneurol.2019.2399
– ident: e_1_3_4_147_1
  doi: 10.1148/radiol.10100326
– ident: e_1_3_4_122_1
  doi: 10.1093/brain/aws012
– ident: e_1_3_4_204_1
  doi: 10.1016/j.tins.2019.03.009
– ident: e_1_3_4_206_1
  doi: 10.1016/j.neuroimage.2020.117561
– ident: e_1_3_4_55_1
  doi: 10.1093/brain/awab025
– ident: e_1_3_4_245_1
  doi: 10.1002/ana.21302
– ident: e_1_3_4_27_1
  doi: 10.1212/WNL.0b013e3181c1e44f
– ident: e_1_3_4_33_1
  doi: 10.1007/s00415-023-11969-8
– ident: e_1_3_4_154_1
  doi: 10.1136/jnnp-2020-325610
– volume: 41
  start-page: 1577
  issue: 9
  year: 2020
  ident: e_1_3_4_144_1
  article-title: Disability improvement is associated with less brain atrophy development in multiple sclerosis
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_3_4_88_1
  doi: 10.1093/brain/awz212
– ident: e_1_3_4_85_1
  doi: 10.1007/s00401-016-1636-z
– ident: e_1_3_4_157_1
  doi: 10.1093/brain/awq058
– ident: e_1_3_4_10_1
  doi: 10.1136/jnnp-2012-304333
– ident: e_1_3_4_65_1
  doi: 10.1007/s11064-015-1581-6
– ident: e_1_3_4_135_1
  doi: 10.1093/brain/awn171
– ident: e_1_3_4_247_1
  doi: 10.1212/NXI.0000000000001066
– volume: 26
  start-page: 572
  issue: 3
  year: 2005
  ident: e_1_3_4_95_1
  article-title: Cortical lesions in multiple sclerosis: combined postmortem MR imaging and histopathology
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_3_4_51_1
  doi: 10.1038/s41582-021-00581-x
– ident: e_1_3_4_113_1
  doi: 10.1093/braincomms/fcab134
– ident: e_1_3_4_6_1
– ident: e_1_3_4_21_1
  doi: 10.1177/1352458516638941
– ident: e_1_3_4_99_1
  doi: 10.1212/WNL.0b013e31824528a0
– ident: e_1_3_4_93_1
  doi: 10.1212/NXI.0000000000001139
– ident: e_1_3_4_216_1
  doi: 10.3174/ajnr.A5563
– ident: e_1_3_4_11_1
  doi: 10.1212/NXI.0000000000200064
– ident: e_1_3_4_163_1
  doi: 10.1177/1756286419838673
– ident: e_1_3_4_15_1
  doi: 10.1016/j.nicl.2022.103244
– ident: e_1_3_4_178_1
  doi: 10.1136/jnnp-2017-317606
– ident: e_1_3_4_256_1
  doi: 10.1148/radiol.221425
– ident: e_1_3_4_12_1
  doi: 10.1001/jamaneurol.2022.4655
– ident: e_1_3_4_60_1
  doi: 10.1016/j.jneuroim.2013.06.014
– ident: e_1_3_4_96_1
  doi: 10.4161/pri.23499
– ident: e_1_3_4_13_1
  doi: 10.1016/S1474-4422(17)30470-2
– ident: e_1_3_4_236_1
  doi: 10.1016/j.msard.2019.01.027
– ident: e_1_3_4_193_1
  doi: 10.1191/135248506ms1301oa
– ident: e_1_3_4_47_1
  doi: 10.1016/S1474-4422(18)30451-4
– ident: e_1_3_4_29_1
  doi: 10.1212/WNL.0000000000011242
– ident: e_1_3_4_74_1
  doi: 10.1212/WNL.38.12.1822
– ident: e_1_3_4_83_1
  doi: 10.3174/ajnr.A6547
– ident: e_1_3_4_111_1
  doi: 10.1001/archneurol.2009.174
– ident: e_1_3_4_62_1
  doi: 10.1056/NEJMoa1100648
– ident: e_1_3_4_98_1
  doi: 10.1093/brain/awaa233
– ident: e_1_3_4_160_1
  doi: 10.1177/1352458516628657
– ident: e_1_3_4_130_1
  doi: 10.3390/jcm8030344
– ident: e_1_3_4_16_1
  doi: 10.1093/brain/aww258
– ident: e_1_3_4_72_1
  doi: 10.1016/S1474-4422(15)00393-2
– ident: e_1_3_4_248_1
  doi: 10.1038/s41582-023-00801-6
– ident: e_1_3_4_69_1
  doi: 10.1016/j.msard.2023.104934
– ident: e_1_3_4_66_1
  doi: 10.1007/s11604-017-0617-z
– ident: e_1_3_4_198_1
  doi: 10.1177/1352458512465135
– ident: e_1_3_4_184_1
  doi: 10.1212/NXI.0000000000000502
– ident: e_1_3_4_4_1
  doi: 10.1016/S0140-6736(02)08220-X
– ident: e_1_3_4_49_1
  doi: 10.1093/brain/awv354
– ident: e_1_3_4_164_1
  doi: 10.1177/1352458519831400
– ident: e_1_3_4_182_1
  doi: 10.1016/j.mri.2023.09.010
– ident: e_1_3_4_146_1
  doi: 10.1002/ana.25145
– ident: e_1_3_4_211_1
  doi: 10.1007/s00415-009-0110-4
– ident: e_1_3_4_188_1
  doi: 10.1016/S0022-510X(01)00477-4
– ident: e_1_3_4_134_1
  doi: 10.1007/s00234-016-1711-0
– ident: e_1_3_4_150_1
  doi: 10.3389/fneur.2019.00459
– ident: e_1_3_4_90_1
  doi: 10.1371/journal.pone.0057573
– ident: e_1_3_4_155_1
  doi: 10.1016/j.nicl.2017.11.002
– ident: e_1_3_4_25_1
  doi: 10.1136/jnnp-2020-325421
– ident: e_1_3_4_124_1
  doi: 10.1093/brain/awx228
– ident: e_1_3_4_40_1
  doi: 10.1136/jnnp.74.11.1551
– ident: e_1_3_4_179_1
  doi: 10.1093/brain/awy202
– ident: e_1_3_4_221_1
  doi: 10.1177/1352458517723717
– ident: e_1_3_4_22_1
  doi: 10.1001/jamaneurol.2020.1568
– ident: e_1_3_4_133_1
  doi: 10.1371/journal.pone.0185626
– ident: e_1_3_4_214_1
  doi: 10.1001/archneur.65.11.1454
– ident: e_1_3_4_70_1
  doi: 10.1002/ana.23974
– ident: e_1_3_4_128_1
  doi: 10.3174/ajnr.A5796
– ident: e_1_3_4_30_1
  doi: 10.1001/jama.2018.20588
– ident: e_1_3_4_64_1
  doi: 10.1093/brain/aws189
– ident: e_1_3_4_101_1
  doi: 10.1016/j.nicl.2021.102847
– ident: e_1_3_4_14_1
  doi: 10.1586/14737175.2016.1134323
– ident: e_1_3_4_123_1
  doi: 10.1097/WCO.0000000000001045
– ident: e_1_3_4_5_1
  doi: 10.1136/jnnp-2013-305450
– ident: e_1_3_4_73_1
  doi: 10.1212/WNL.38.2.180
– ident: e_1_3_4_127_1
  doi: 10.1177/1352458516678083
– ident: e_1_3_4_143_1
  doi: 10.3174/ajnr.A5876
– ident: e_1_3_4_61_1
  doi: 10.1212/WNL.0000000000001587
– ident: e_1_3_4_254_1
  doi: 10.1016/j.neuroimage.2022.119787
– ident: e_1_3_4_86_1
  doi: 10.1172/JCI86198
– ident: e_1_3_4_181_1
  doi: 10.11138/FNeur/2017.32.2.097
– ident: e_1_3_4_243_1
  doi: 10.1016/j.jns.2008.08.022
– ident: e_1_3_4_137_1
  doi: 10.1097/WCO.0000000000000818
– ident: e_1_3_4_158_1
  doi: 10.1177/1352458511435930
– ident: e_1_3_4_189_1
  doi: 10.1001/archneur.59.1.62
– ident: e_1_3_4_200_1
  doi: 10.1148/radiol.2018180136
– ident: e_1_3_4_39_1
  doi: 10.1093/brain/awp070
– ident: e_1_3_4_54_1
  doi: 10.1093/brain/awr182
– ident: e_1_3_4_242_1
  doi: 10.1016/j.nicl.2015.09.003
– ident: e_1_3_4_18_1
  doi: 10.1212/WNL.0000000000009636
– ident: e_1_3_4_240_1
  doi: 10.1093/brain/awt149
– ident: e_1_3_4_131_1
  doi: 10.1016/j.msard.2019.02.013
– ident: e_1_3_4_76_1
  doi: 10.1007/s004150050442
– ident: e_1_3_4_212_1
  doi: 10.1177/1352458507085129
– ident: e_1_3_4_219_1
  doi: 10.1111/jon.12679
– ident: e_1_3_4_59_1
  doi: 10.1007/s00401-012-1023-3
– ident: e_1_3_4_205_1
  doi: 10.1016/j.neuroimage.2021.117744
– ident: e_1_3_4_208_1
  doi: 10.1007/s00415-002-0686-4
– ident: e_1_3_4_31_1
  doi: 10.1177/13524585211010128
– ident: e_1_3_4_228_1
  doi: 10.1212/WNL.0b013e3181b64bf7
– ident: e_1_3_4_120_1
  doi: 10.1038/s41582-021-00537-1
– ident: e_1_3_4_255_1
  doi: 10.3390/brainsci13020198
– ident: e_1_3_4_41_1
  doi: 10.1093/brain/aws260
– ident: e_1_3_4_34_1
  doi: 10.1016/S1474-4422(14)70256-X
– ident: e_1_3_4_192_1
  doi: 10.1177/1352458509103611
– ident: e_1_3_4_53_1
  doi: 10.1186/1742-2094-9-156
– ident: e_1_3_4_196_1
  doi: 10.1001/archneur.62.9.1371
– ident: e_1_3_4_9_1
  doi: 10.1212/WNL.0000000000012323
– ident: e_1_3_4_175_1
  doi: 10.1002/hbm.20713
– ident: e_1_3_4_170_1
  doi: 10.1148/radiol.2019190306
– ident: e_1_3_4_251_1
  doi: 10.1016/j.nrl.2020.10.017
– ident: e_1_3_4_24_1
  doi: 10.1002/ana.25637
– ident: e_1_3_4_45_1
  doi: 10.1016/j.expneurol.2009.10.009
– volume: 19
  start-page: 675
  issue: 4
  year: 1998
  ident: e_1_3_4_244_1
  article-title: Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization transfer MR
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_3_4_23_1
  doi: 10.1093/brain/awaa145
– ident: e_1_3_4_217_1
  doi: 10.1016/j.mri.2020.03.010
– ident: e_1_3_4_105_1
  doi: 10.1093/brain/awx247
– ident: e_1_3_4_141_1
  doi: 10.1038/s41582-020-0314-x
– ident: e_1_3_4_162_1
  doi: 10.1177/1352458517751650
– ident: e_1_3_4_94_1
  doi: 10.1177/1352458520974357
SSID ssj0034954
Score 2.440627
SecondaryResourceType review_article
Snippet While magnetic resonance imaging (MRI) is established in diagnosing and monitoring disease activity in multiple sclerosis (MS), its utility in predicting and...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 201
Title An update on the role of magnetic resonance imaging in predicting and monitoring multiple sclerosis progression
URI https://www.ncbi.nlm.nih.gov/pubmed/38235594
https://www.proquest.com/docview/2916409614
Volume 24
WOSCitedRecordID wos001144506100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1744-8360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034954
  issn: 1473-7175
  databaseCode: TFW
  dateStart: 20010901
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6CwcuiDflsTIS2gubJQ8nTo4VYsVpVYkgeoucxGEjWqfqS9v_xo9jJraTLCqPPXCJKqux087n8Uz8zWdC3nI_jyLmVY5b5YXDZFQ5IhRYxtVyFvMiFvqwCX55Gc9myXQ0-mFrYXZzrlR8fZ0s_6upoQ2MjaWztzB31yk0wGcwOlzB7HD9J8NP1LvtEvN4sw_QEQgX4puSWrIZ42-c0fVCH1KEVPIVbtlsbM3iop3rLTmv4xyuYSRYVOu1ZnVpRY8br_ZRN3kzKIdp1TIHJV5dAD9B_s2V2KHw-JV-BzutV_VeqO89XD-L9sRhQKvVB9c8BMPGl8UcnFM6fG_hM0t17lwt44EDyaTe05a6jTPmYFnJ0D_rGmuDQ3_obE130rje6OCSoDmUOBoOdo6Pgux35nkHJLh_WRo7wqJnlFRtNxl2k5lujsgdn4cJ-tT04quNAwJIPVtOg_2dtn4sdt8ffJqbkdFv0p027EkfkPsmX6ETjbOHZCTVI3I61YLn-zOaDox7Rk_ptJdC3z8mzURRDUbaKApAoAhG2lTUgpF2YKQGjLRWtAcjBTDSHozUgpF2YKQDMD4hXy4-ph8-OeaID6cIwmjjeIUXVsIr_Qo1aRNYUUo3KWKfi9ItI5GUVeXKUsI3mC8hdShL8Cx-kUufVxC8yuApOVaNks8JTQTEYkkOFxExAXlPEgY8cfMw56ipGYwJs39vVhj9ezyGZZ790bhjct7dttQCMH-74Y21XQauGvffhJLNdp35kIoxPGKJjckzbdSuS9yOh-SevbjtcC_JvX52vSLHm9VWviZ3i92mXq9OyBGfxSctLn8CQQ685Q
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+update+on+the+role+of+magnetic+resonance+imaging+in+predicting+and+monitoring+multiple+sclerosis+progression&rft.jtitle=Expert+review+of+neurotherapeutics&rft.au=Ananthavarathan%2C+Piriyankan&rft.au=Sahi%2C+Nitin&rft.au=Chard%2C+Declan+T&rft.date=2024-02-01&rft.issn=1473-7175&rft.eissn=1744-8360&rft.volume=24&rft.issue=2&rft.spage=201&rft.epage=216&rft_id=info:doi/10.1080%2F14737175.2024.2304116&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_14737175_2024_2304116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1473-7175&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1473-7175&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1473-7175&client=summon