An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions
This paper proposes an improved epsilon constraint-handling mechanism and combines it with a decomposition-based multi-objective evolutionary algorithm (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). The proposed constrained multi-objective evolutionary algorithm (CMOEA)...
Saved in:
| Published in: | Soft computing (Berlin, Germany) Vol. 23; no. 23; pp. 12491 - 12510 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2019
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1432-7643, 1433-7479 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper proposes an improved epsilon constraint-handling mechanism and combines it with a decomposition-based multi-objective evolutionary algorithm (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). The proposed constrained multi-objective evolutionary algorithm (CMOEA) is named MOEA/D-IEpsilon. It adjusts the epsilon level dynamically according to the ratio of feasible to total solutions in the current population. In order to evaluate the performance of MOEA/D-IEpsilon, a new set of CMOPs with two and three objectives is designed, having large infeasible regions (relative to the feasible regions), and they are called LIR-CMOPs. Then, the 14 benchmarks, including LIR-CMOP1-14, are used to test MOEA/D-IEpsilon and four other decomposition-based CMOEAs, including MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP and CMOEA/D. The experimental results indicate that MOEA/D-IEpsilon is significantly better than the other four CMOEAs on all of the test instances, which shows that MOEA/D-IEpsilon is more suitable for solving CMOPs with large infeasible regions. Furthermore, a real-world problem, namely the robot gripper optimization problem, is used to test the five CMOEAs. The experimental results demonstrate that MOEA/D-IEpsilon also outperforms the other four CMOEAs on this problem. |
|---|---|
| AbstractList | This paper proposes an improved epsilon constraint-handling mechanism and combines it with a decomposition-based multi-objective evolutionary algorithm (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). The proposed constrained multi-objective evolutionary algorithm (CMOEA) is named MOEA/D-IEpsilon. It adjusts the epsilon level dynamically according to the ratio of feasible to total solutions in the current population. In order to evaluate the performance of MOEA/D-IEpsilon, a new set of CMOPs with two and three objectives is designed, having large infeasible regions (relative to the feasible regions), and they are called LIR-CMOPs. Then, the 14 benchmarks, including LIR-CMOP1-14, are used to test MOEA/D-IEpsilon and four other decomposition-based CMOEAs, including MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP and CMOEA/D. The experimental results indicate that MOEA/D-IEpsilon is significantly better than the other four CMOEAs on all of the test instances, which shows that MOEA/D-IEpsilon is more suitable for solving CMOPs with large infeasible regions. Furthermore, a real-world problem, namely the robot gripper optimization problem, is used to test the five CMOEAs. The experimental results demonstrate that MOEA/D-IEpsilon also outperforms the other four CMOEAs on this problem. |
| Author | Mo, Jiajie Cai, Xinye Goodman, Erik Fan, Zhun Huang, Han You, Yugen Wei, Caimin Fang, Yi Li, Wenji |
| Author_xml | – sequence: 1 givenname: Zhun surname: Fan fullname: Fan, Zhun organization: Department of Electronic Engineering, Shantou University – sequence: 2 givenname: Wenji surname: Li fullname: Li, Wenji organization: Department of Electronic Engineering, Shantou University – sequence: 3 givenname: Xinye surname: Cai fullname: Cai, Xinye email: Xinye@nuaa.edu.cn organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics – sequence: 4 givenname: Han surname: Huang fullname: Huang, Han organization: School of Software Engineering, South China University of Technology – sequence: 5 givenname: Yi surname: Fang fullname: Fang, Yi organization: Department of Electronic Engineering, Shantou University – sequence: 6 givenname: Yugen surname: You fullname: You, Yugen organization: Department of Electronic Engineering, Shantou University – sequence: 7 givenname: Jiajie surname: Mo fullname: Mo, Jiajie organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics – sequence: 8 givenname: Caimin surname: Wei fullname: Wei, Caimin organization: Department of Mathematics, Shantou University – sequence: 9 givenname: Erik surname: Goodman fullname: Goodman, Erik organization: BEACON Center for the Study of Evolution in Action, Michigan State University |
| BookMark | eNp9kMtOwzAQRS1UJNrCD7CyxNrUjyROllUpD6moLGBtnMROXaVOsV0of4_bICGx6GpGmntm7twRGNjOKgCuCb4lGPOJxzjFGGFSIMx4kaD9GRiShDHEE14Mjj1FPEvYBRh5v8aYEp6yIXifWmg2W9d9qhqqrTdtZ2HVWR-cNDaglbR1a2wDNyqsuhoaC5-X8-nkDurOwdnz8sXDLxNWsJWuUXGslfSmbBV0qjFxzyU417L16uq3jsHb_fx19ogWy4en2XSBKpZmARGWaVwRqlSpJY_WWEpzUuOUl2lZaJ1zWiilo2udylwSwhlPylxnWdRXZcXG4KbfG3_52CkfxLrbORtPCloQXrA8ozSqaK-qXOe9U1psndlI9y0IFockRZ-kiEmKY5JiH6H8H1SZIEP87hBSexplPerjHdso9-fqBPUDWjmLDg |
| CitedBy_id | crossref_primary_10_1007_s10489_022_03421_7 crossref_primary_10_1016_j_eswa_2023_121707 crossref_primary_10_1016_j_swevo_2021_100940 crossref_primary_10_1109_TEVC_2022_3186667 crossref_primary_10_1109_TSUSC_2024_3401003 crossref_primary_10_1016_j_swevo_2025_101912 crossref_primary_10_1007_s40747_024_01418_y crossref_primary_10_1016_j_asoc_2024_111800 crossref_primary_10_1109_TSMC_2024_3427864 crossref_primary_10_1109_JAS_2023_123336 crossref_primary_10_1007_s11465_022_0706_2 crossref_primary_10_1016_j_eswa_2023_122492 crossref_primary_10_1016_j_swevo_2023_101372 crossref_primary_10_1109_TEVC_2023_3281666 crossref_primary_10_1007_s40747_025_01819_7 crossref_primary_10_1016_j_knosys_2024_111998 crossref_primary_10_1007_s40747_023_01042_2 crossref_primary_10_1109_TNNLS_2023_3234629 crossref_primary_10_1016_j_eswa_2023_121718 crossref_primary_10_1007_s40747_025_01846_4 crossref_primary_10_1016_j_swevo_2020_100651 crossref_primary_10_1109_TCYB_2022_3151974 crossref_primary_10_1007_s10586_024_04859_9 crossref_primary_10_1080_1573062X_2024_2329095 crossref_primary_10_1016_j_cie_2025_111198 crossref_primary_10_1016_j_swevo_2024_101504 crossref_primary_10_1016_j_swevo_2024_101746 crossref_primary_10_1016_j_swevo_2025_101925 crossref_primary_10_1016_j_asoc_2023_110446 crossref_primary_10_1109_TETCI_2024_3393368 crossref_primary_10_1109_TCYB_2022_3189684 crossref_primary_10_3390_math10234459 crossref_primary_10_1016_j_swevo_2023_101247 crossref_primary_10_1007_s40747_024_01542_9 crossref_primary_10_1109_TCYB_2021_3056176 crossref_primary_10_1016_j_eswa_2024_126229 crossref_primary_10_1016_j_fub_2025_100034 crossref_primary_10_1109_MCI_2023_3245719 crossref_primary_10_1016_j_asoc_2024_112560 crossref_primary_10_1016_j_swevo_2024_101732 crossref_primary_10_1109_TEVC_2024_3366659 crossref_primary_10_1016_j_eswa_2025_128810 crossref_primary_10_1007_s10489_022_03990_7 crossref_primary_10_1016_j_ins_2020_05_082 crossref_primary_10_1016_j_swevo_2024_101728 crossref_primary_10_1016_j_swevo_2021_100932 crossref_primary_10_1016_j_eswa_2023_122119 crossref_primary_10_1080_01605682_2025_2479136 crossref_primary_10_1109_TSMC_2023_3324797 crossref_primary_10_1109_TSE_2022_3223875 crossref_primary_10_1016_j_swevo_2024_101727 crossref_primary_10_1016_j_ins_2025_121985 crossref_primary_10_1109_TCYB_2021_3089633 crossref_primary_10_1016_j_swevo_2023_101386 crossref_primary_10_1007_s10489_020_02174_5 crossref_primary_10_1109_TEVC_2022_3194729 crossref_primary_10_1109_TAI_2024_3391230 crossref_primary_10_1007_s40747_024_01379_2 crossref_primary_10_1007_s44196_025_00830_7 crossref_primary_10_1016_j_swevo_2023_101389 crossref_primary_10_1109_JAS_2023_123687 crossref_primary_10_1109_TEVC_2022_3199775 crossref_primary_10_1007_s00500_021_05880_5 crossref_primary_10_1016_j_swevo_2024_101717 crossref_primary_10_1016_j_swevo_2024_101714 crossref_primary_10_1016_j_eswa_2025_129359 crossref_primary_10_1016_j_ins_2024_121812 crossref_primary_10_1109_JAS_2023_123792 crossref_primary_10_1016_j_ins_2021_08_038 crossref_primary_10_1109_TCYB_2020_3042853 crossref_primary_10_1016_j_eswa_2022_118055 crossref_primary_10_1109_TEVC_2023_3260306 crossref_primary_10_1016_j_engappai_2024_109546 crossref_primary_10_1109_ACCESS_2020_3040647 crossref_primary_10_1016_j_asoc_2024_111674 crossref_primary_10_3390_app15094847 crossref_primary_10_1016_j_asoc_2025_112825 crossref_primary_10_1016_j_jksuci_2022_08_032 crossref_primary_10_1007_s00521_024_09787_8 crossref_primary_10_1007_s10462_021_10042_y crossref_primary_10_1016_j_ins_2023_119572 crossref_primary_10_1007_s13369_025_10149_2 crossref_primary_10_1016_j_eswa_2025_128830 crossref_primary_10_1016_j_ins_2022_05_106 crossref_primary_10_1016_j_ins_2023_119547 crossref_primary_10_1016_j_ins_2021_11_062 crossref_primary_10_1016_j_swevo_2019_100598 crossref_primary_10_1109_TEVC_2023_3300181 crossref_primary_10_1109_TSMC_2019_2954491 crossref_primary_10_1016_j_ins_2023_03_023 crossref_primary_10_3390_math13050688 crossref_primary_10_1016_j_eswa_2022_119258 crossref_primary_10_1016_j_jobe_2023_107260 crossref_primary_10_1109_TEVC_2023_3270483 crossref_primary_10_1109_TEVC_2020_3004012 crossref_primary_10_1016_j_swevo_2024_101819 crossref_primary_10_1109_TEVC_2023_3243109 crossref_primary_10_1109_TCYB_2020_3021138 crossref_primary_10_4018_IJCINI_355766 crossref_primary_10_1016_j_swevo_2024_101496 crossref_primary_10_1109_TNNLS_2023_3297624 crossref_primary_10_1109_TEVC_2024_3358854 crossref_primary_10_3390_ijerph17238768 crossref_primary_10_1016_j_swevo_2025_102087 crossref_primary_10_1109_TETCI_2022_3221940 crossref_primary_10_1109_ACCESS_2020_3008278 crossref_primary_10_1109_TEVC_2021_3089155 crossref_primary_10_1038_s41524_024_01274_x crossref_primary_10_1109_JIOT_2021_3067732 crossref_primary_10_3390_pr13082484 crossref_primary_10_1007_s10586_024_04944_z crossref_primary_10_1016_j_asoc_2025_113216 crossref_primary_10_1016_j_swevo_2021_100978 crossref_primary_10_1080_0305215X_2022_2147518 crossref_primary_10_1016_j_swevo_2022_101209 crossref_primary_10_1016_j_swevo_2021_101020 crossref_primary_10_1017_S0263574725000396 crossref_primary_10_1016_j_swevo_2020_100799 crossref_primary_10_1016_j_swevo_2024_101488 crossref_primary_10_1016_j_swevo_2025_102055 crossref_primary_10_1016_j_aei_2025_103173 crossref_primary_10_1007_s12293_025_00471_5 crossref_primary_10_1109_TEVC_2022_3140265 crossref_primary_10_1109_TEVC_2023_3345470 crossref_primary_10_1016_j_asoc_2025_113792 crossref_primary_10_1109_TVT_2024_3490704 crossref_primary_10_1007_s00158_024_03859_y crossref_primary_10_1016_j_engappai_2024_108673 crossref_primary_10_1109_TAI_2024_3454025 crossref_primary_10_1016_j_jer_2023_08_021 crossref_primary_10_1007_s11590_023_01993_y crossref_primary_10_1109_JAS_2024_124545 crossref_primary_10_1016_j_swevo_2025_101892 crossref_primary_10_1016_j_istruc_2025_109674 crossref_primary_10_3390_math13091441 crossref_primary_10_1016_j_swevo_2023_101404 crossref_primary_10_1016_j_asoc_2023_110169 crossref_primary_10_3390_math8010007 crossref_primary_10_1007_s10489_020_01733_0 crossref_primary_10_1109_TEVC_2021_3131124 crossref_primary_10_1016_j_asoc_2023_110845 crossref_primary_10_1109_TEVC_2022_3155533 crossref_primary_10_1016_j_swevo_2022_101104 crossref_primary_10_1016_j_swevo_2023_101402 crossref_primary_10_1016_j_swevo_2023_101401 crossref_primary_10_1016_j_ejor_2025_07_002 crossref_primary_10_1016_j_swevo_2024_101581 crossref_primary_10_1016_j_swevo_2025_102030 crossref_primary_10_1016_j_ins_2023_119467 crossref_primary_10_1016_j_knosys_2021_107263 crossref_primary_10_1007_s10489_022_03874_w crossref_primary_10_1016_j_eswa_2025_126908 crossref_primary_10_1109_TEVC_2024_3376729 crossref_primary_10_1016_j_swevo_2023_101417 crossref_primary_10_1016_j_asoc_2024_112157 crossref_primary_10_1007_s12065_024_00912_z crossref_primary_10_1109_TEVC_2022_3208595 crossref_primary_10_1016_j_ins_2021_12_067 crossref_primary_10_1109_TETCI_2023_3313412 crossref_primary_10_1109_TSMC_2021_3061698 crossref_primary_10_1016_j_ins_2024_121836 crossref_primary_10_1016_j_swevo_2025_102044 crossref_primary_10_1038_s41598_025_94245_1 crossref_primary_10_1007_s44336_024_00006_5 crossref_primary_10_1016_j_asoc_2025_113658 crossref_primary_10_3390_machines11030337 crossref_primary_10_1007_s40747_022_00761_2 crossref_primary_10_1016_j_swevo_2025_101989 crossref_primary_10_1109_TEVC_2022_3190401 crossref_primary_10_3390_sym14010116 crossref_primary_10_1016_j_swevo_2024_101683 crossref_primary_10_1016_j_ins_2025_122559 crossref_primary_10_1016_j_swevo_2024_101685 crossref_primary_10_1002_tee_24200 crossref_primary_10_1016_j_engappai_2023_107817 crossref_primary_10_1016_j_eswa_2024_125555 crossref_primary_10_1016_j_swevo_2022_101162 crossref_primary_10_1109_TEVC_2022_3230822 crossref_primary_10_1016_j_asoc_2024_111290 crossref_primary_10_1109_TCYB_2022_3163759 crossref_primary_10_1016_j_swevo_2022_101161 crossref_primary_10_3390_math12193075 crossref_primary_10_1109_TCYB_2025_3548414 crossref_primary_10_1016_j_asoc_2023_110874 crossref_primary_10_1109_TEVC_2021_3055538 crossref_primary_10_1016_j_ins_2024_121774 crossref_primary_10_1016_j_swevo_2023_101432 crossref_primary_10_1016_j_swevo_2025_101954 crossref_primary_10_1109_TCYB_2021_3108563 crossref_primary_10_1007_s40747_022_00851_1 crossref_primary_10_1155_2022_4967775 crossref_primary_10_1007_s11047_020_09806_2 crossref_primary_10_1016_j_swevo_2023_101313 crossref_primary_10_1016_j_swevo_2025_102021 crossref_primary_10_1016_j_ins_2022_03_030 crossref_primary_10_1109_TEVC_2022_3145582 crossref_primary_10_1016_j_swevo_2025_102020 crossref_primary_10_3390_math12243926 crossref_primary_10_12677_orf_2025_152086 crossref_primary_10_1145_3654444 crossref_primary_10_1109_TCYB_2021_3069814 crossref_primary_10_1016_j_knosys_2021_107693 crossref_primary_10_1109_TCYB_2020_2998038 crossref_primary_10_1109_TETCI_2023_3236633 crossref_primary_10_1016_j_ins_2021_07_078 crossref_primary_10_1109_ACCESS_2021_3107284 crossref_primary_10_1016_j_eswa_2024_126073 crossref_primary_10_1016_j_knosys_2022_110112 crossref_primary_10_1016_j_swevo_2025_102137 crossref_primary_10_1016_j_swevo_2025_102017 crossref_primary_10_1016_j_eswa_2025_129761 crossref_primary_10_1016_j_ins_2021_01_029 crossref_primary_10_1016_j_swevo_2024_101784 crossref_primary_10_1016_j_ins_2024_120339 crossref_primary_10_1109_TSMC_2025_3547618 crossref_primary_10_1016_j_swevo_2025_102111 crossref_primary_10_1016_j_asoc_2025_113051 crossref_primary_10_3390_biomimetics10010019 crossref_primary_10_1109_TEVC_2022_3175065 crossref_primary_10_1109_TCYB_2022_3151793 crossref_primary_10_1007_s12065_024_00932_9 crossref_primary_10_1016_j_asoc_2025_112873 crossref_primary_10_1016_j_ins_2022_10_050 crossref_primary_10_1016_j_swevo_2025_101937 crossref_primary_10_1016_j_asoc_2024_111703 crossref_primary_10_1016_j_swevo_2022_101178 crossref_primary_10_1109_TETCI_2024_3359517 crossref_primary_10_1016_j_asoc_2024_111827 crossref_primary_10_1016_j_engappai_2025_111419 crossref_primary_10_1016_j_swevo_2022_101055 crossref_primary_10_1016_j_swevo_2024_101657 crossref_primary_10_1109_TEVC_2022_3224600 crossref_primary_10_1109_TSMC_2022_3219407 crossref_primary_10_3390_math13071191 crossref_primary_10_1016_j_swevo_2024_101531 crossref_primary_10_1016_j_eswa_2025_127008 crossref_primary_10_1360_SSI_2024_0025 crossref_primary_10_1109_TEVC_2022_3202723 crossref_primary_10_3390_jmse11071351 crossref_primary_10_1016_j_ins_2024_121081 crossref_primary_10_1145_3764597 crossref_primary_10_1016_j_asoc_2024_112226 crossref_primary_10_1016_j_swevo_2025_101949 crossref_primary_10_1016_j_asoc_2020_107042 crossref_primary_10_1016_j_swevo_2022_101166 crossref_primary_10_1016_j_ins_2022_10_046 crossref_primary_10_1016_j_ins_2024_121648 |
| Cites_doi | 10.1109/4235.996017 10.1109/TEVC.2003.810761 10.1016/S0045-7825(01)00323-1 10.1109/TEVC.2007.892759 10.1109/TCYB.2016.2586191 10.1109/TEVC.2005.861417 10.1109/TEVC.2013.2281533 10.1109/CEC.2012.6252868 10.1109/4235.873238 10.1016/j.swevo.2011.02.002 10.1016/j.ejor.2006.08.008 10.1109/TSMCC.2004.841906 10.1016/j.jspi.2007.04.032 10.1080/01621459.1961.10482090 10.1145/2001576.2001823 10.2307/2531823 10.1016/j.swevo.2011.10.001 10.1093/biomet/77.3.663 10.1145/2480741.2480752 10.1016/j.asoc.2008.04.001 10.1109/4235.797969 10.1145/2598394.2610012 10.1007/978-3-540-30217-9_84 10.1093/biomet/75.2.383 10.1007/s00500-013-1028-4 10.1109/TCYB.2014.2367526 10.1093/biomet/75.4.800 10.1109/TEVC.2013.2281535 10.1080/01621459.1993.10476358 10.1109/TEVC.2008.925798 10.1109/TEVC.2014.2350995 10.1162/EVCO_a_00009 10.1007/s00500-013-1183-7 10.1016/j.asoc.2012.07.027 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00500-019-03794-x |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1433-7479 |
| EndPage | 12510 |
| ExternalDocumentID | 10_1007_s00500_019_03794_x |
| GrantInformation_xml | – fundername: Department of Education of Guangdong Province grantid: 2014GKXM044 – fundername: Project of International as well as Hong Kong, Macao & Taiwan Science and Technology Cooperation Innovation Platform in Universities in Guangdong Province grantid: 2015KGJH2014 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20130808 funderid: http://dx.doi.org/10.13039/501100004608 – fundername: China Postdoctoral Science Foundation grantid: 2015M571751 funderid: http://dx.doi.org/10.13039/501100002858 – fundername: Scientific Startup Research Foundation of Shantou University grantid: NTF12024 – fundername: National Natural Science Foundation of China grantid: 61300159 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c356t-136f0c12eebfa775335281d057b5b9ff8729eef217f5a8a117374b8f66bfacbc3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 299 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000495070400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1432-7643 |
| IngestDate | Wed Nov 05 08:08:16 EST 2025 Sat Nov 29 03:35:53 EST 2025 Tue Nov 18 21:56:24 EST 2025 Fri Feb 21 02:33:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | Constrained multi-objective optimization Robot gripper optimization Constrained multi-objective evolutionary algorithms Epsilon constraint handling |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c356t-136f0c12eebfa775335281d057b5b9ff8729eef217f5a8a117374b8f66bfacbc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2917938622 |
| PQPubID | 2043697 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2917938622 crossref_primary_10_1007_s00500_019_03794_x crossref_citationtrail_10_1007_s00500_019_03794_x springer_journals_10_1007_s00500_019_03794_x |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-01 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationTitleAbbrev | Soft Comput |
| PublicationYear | 2019 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Coello CoelloCATheoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the artComput Methods Appl Mech Eng200219111–1212451287187768410.1016/S0045-7825(01)00323-1 LiJDA two-step rejection procedure for testing multiple hypothesesJ Stat Plann Inference2008138615211527242728710.1016/j.jspi.2007.04.032 Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report 103 CaiXHuZFanZA novel memetic algorithm based on invasive weed optimization and differential evolution for constrained optimizationSoft Comput201317101893191010.1007/s00500-013-1028-4 JiangSZhangJOngYSZhangANTanPSA simple and fast hypervolume indicator-based multiobjective evolutionary algorithmIEEE Trans Cybern201545102202221310.1109/TCYB.2014.2367526 Takahama T, Sakai S (2006) Constrained optimization by the ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} constrained differential evolution with gradient-based mutation and feasible elites. In: 2006 IEEE international conference on evolutionary computation. IEEE, pp 1–8 DebKMulti-objective optimization using evolutionary algorithms2001LondonWiley0970.90091 DerracJGarcíaSMolinaDHerreraFA practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithmsSwarm Evol Comput20111131810.1016/j.swevo.2011.02.002 RunarssonTPYaoXStochastic ranking for constrained evolutionary optimizationIEEE Trans Evol Comput20004328429410.1109/4235.873238 HolmSA simple sequentially rejective multiple test procedureScand J Stat1979665705385970402.62058 Corne DW, Jerram NR, Knowles JD, Oates MJ (2001) PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the 3rd annual conference on genetic and evolutionary computation. Morgan Kaufmann, pp 283–290 ZhangQLiHMOEA/D: a multiobjective evolutionary algorithm based on decompositionIEEE Trans Evol Comput200711671273110.1109/TEVC.2007.892759 RomDMA sequentially rejective test procedure based on a modified Bonferroni inequalityBiometrika1990773663665108786010.1093/biomet/77.3.663 CaiXYangZFanZZhangQDecomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimizationIEEE Trans Cybern20174792824283710.1109/TCYB.2016.2586191 Yang Z, Cai X, Fan Z (2014) Epsilon constrained method for constrained multiobjective optimization problems: some preliminary results. In: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, ACM, pp 1181–1186 BeumeNNaujoksBEmmerichMSMS-EMOA: multiobjective selection based on dominated hypervolumeEur J Oper Res200718131653166910.1016/j.ejor.2006.08.008 Datta R, Deb K (2011) Multi-objective design and analysis of robot gripper configurations using an evolutionary-classical approach. In: Conference on genetic and evolutionary computation, pp 1843–1850 Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: International conference on parallel problem solving from nature. Springer, pp 832–842 Fan Z, Li W, Cai X, Li H, Hu K, Zhang Q, Deb K, Goodman ED (2016) Difficulty adjustable and scalable constrained multi-objective test problem toolkit. arXiv preprint arXiv:1612.07603 BaderJZitzlerEHypE: an algorithm for fast hypervolume-based many-objective optimizationEvol Comput2011191457610.1162/EVCO_a_00009 ZitzlerEThieleLMultiobjective evolutionary algorithms: a comparative case study and the strength Pareto approachIEEE Trans Evol Comput19993425727110.1109/4235.797969 JanMAKhanumRAA study of two penalty-parameterless constraint handling techniques in the framework of MOEA/DAppl Soft Comput201313112814810.1016/j.asoc.2012.07.027 FinnerHOn a monotonicity problem in step-down multiple test proceduresJ Am Stat Assoc199388423920923124294210.1080/01621459.1993.10476358 HollandBSCopenhaverMDAn improved sequentially rejective Bonferroni test procedureBiometrics19874341742389741010.2307/2531823 Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang Technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, Technical report 264 LiuHLGuFZhangQDecomposition of a multiobjective optimization problem into a number of simple multiobjective subproblemsIEEE Trans Evol Comput201418345045510.1109/TEVC.2013.2281533 DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017 RunarssonTPYaoXSearch biases in constrained evolutionary optimizationIEEE Trans Syst Man Cybern Part C Appl Rev200535223324310.1109/TSMCC.2004.841906 DunnOJMultiple comparisons among meansJ Am Stat Assoc196156293526412495210.1080/01621459.1961.10482090 LiHZhangQMultiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-IIIEEE Trans Evol Comput200913228430210.1109/TEVC.2008.925798 CaiXLiYFanZZhangQAn external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimizationIEEE Trans Evol Comput201519450852310.1109/TEVC.2014.2350995 ČrepinšekMLiuSHMernikMExploration and exploitation in evolutionary algorithms: a surveyACM Comput Surv20134533510.1145/2480741.2480752 Asafuddoula M, Ray T, Sarker R, Alam K (2012) An adaptive constraint handling approach embedded MOEA/D. In: 2012 IEEE Congress on Evolutionary Computation. IEEE, pp 1–8 Mezura-MontesECoello CoelloCAConstraint-handling in nature-inspired numerical optimization: past, present and futureSwarm Evol Comput20111417319410.1016/j.swevo.2011.10.001 MiettinenKNonlinear multiobjective optimization1999BerlinSpringer0949.90082 BosmanPAThierensDThe balance between proximity and diversity in multiobjective evolutionary algorithmsIEEE Trans Evol Comput20037217418810.1109/TEVC.2003.810761 HochbergYA sharper Bonferroni procedure for multiple tests of significanceBiometrika198875480080299512610.1093/biomet/75.4.800 HommelGA stagewise rejective multiple test procedure based on a modified Bonferroni testBiometrika198875238338610.1093/biomet/75.2.383 HuZCaiXFanZAn improved memetic algorithm using ring neighborhood topology for constrained optimizationSoft Comput201318102023204110.1007/s00500-013-1183-7 HubandSHingstonPBaroneLWhileLA review of multiobjective test problems and a scalable test problem toolkitIEEE Trans Evol Comput200610547750610.1109/TEVC.2005.861417 DebKJainHAn evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraintsIEEE Trans Evol Comput201418457760110.1109/TEVC.2013.2281535 SaravananRRamabalanSEbenezerNGRDharmarajaCEvolutionary multi criteria design optimization of robot grippersAppl Soft Comput20099115917210.1016/j.asoc.2008.04.001 J Derrac (3794_CR15) 2011; 1 S Huband (3794_CR24) 2006; 10 S Jiang (3794_CR26) 2015; 45 S Holm (3794_CR21) 1979; 6 X Cai (3794_CR6) 2015; 19 CA Coello Coello (3794_CR8) 2002; 191 X Cai (3794_CR5) 2013; 17 OJ Dunn (3794_CR16) 1961; 56 3794_CR17 Y Hochberg (3794_CR19) 1988; 75 3794_CR39 3794_CR36 3794_CR37 MA Jan (3794_CR25) 2013; 13 K Miettinen (3794_CR31) 1999 PA Bosman (3794_CR4) 2003; 7 3794_CR11 E Zitzler (3794_CR41) 1999; 3 H Li (3794_CR28) 2009; 13 M Črepinšek (3794_CR10) 2013; 45 BS Holland (3794_CR20) 1987; 43 G Hommel (3794_CR22) 1988; 75 R Saravanan (3794_CR35) 2009; 9 X Cai (3794_CR7) 2017; 47 Z Hu (3794_CR23) 2013; 18 J Bader (3794_CR2) 2011; 19 K Deb (3794_CR14) 2002; 6 H Finner (3794_CR18) 1993; 88 TP Runarsson (3794_CR33) 2000; 4 HL Liu (3794_CR29) 2014; 18 3794_CR42 K Deb (3794_CR13) 2014; 18 Q Zhang (3794_CR38) 2007; 11 N Beume (3794_CR3) 2007; 181 E Mezura-Montes (3794_CR30) 2011; 1 3794_CR9 K Deb (3794_CR12) 2001 JD Li (3794_CR27) 2008; 138 3794_CR40 TP Runarsson (3794_CR34) 2005; 35 3794_CR1 DM Rom (3794_CR32) 1990; 77 |
| References_xml | – reference: BeumeNNaujoksBEmmerichMSMS-EMOA: multiobjective selection based on dominated hypervolumeEur J Oper Res200718131653166910.1016/j.ejor.2006.08.008 – reference: Fan Z, Li W, Cai X, Li H, Hu K, Zhang Q, Deb K, Goodman ED (2016) Difficulty adjustable and scalable constrained multi-objective test problem toolkit. arXiv preprint arXiv:1612.07603 – reference: JiangSZhangJOngYSZhangANTanPSA simple and fast hypervolume indicator-based multiobjective evolutionary algorithmIEEE Trans Cybern201545102202221310.1109/TCYB.2014.2367526 – reference: DerracJGarcíaSMolinaDHerreraFA practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithmsSwarm Evol Comput20111131810.1016/j.swevo.2011.02.002 – reference: FinnerHOn a monotonicity problem in step-down multiple test proceduresJ Am Stat Assoc199388423920923124294210.1080/01621459.1993.10476358 – reference: Corne DW, Jerram NR, Knowles JD, Oates MJ (2001) PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the 3rd annual conference on genetic and evolutionary computation. Morgan Kaufmann, pp 283–290 – reference: Asafuddoula M, Ray T, Sarker R, Alam K (2012) An adaptive constraint handling approach embedded MOEA/D. In: 2012 IEEE Congress on Evolutionary Computation. IEEE, pp 1–8 – reference: DebKMulti-objective optimization using evolutionary algorithms2001LondonWiley0970.90091 – reference: Yang Z, Cai X, Fan Z (2014) Epsilon constrained method for constrained multiobjective optimization problems: some preliminary results. In: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, ACM, pp 1181–1186 – reference: Coello CoelloCATheoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the artComput Methods Appl Mech Eng200219111–1212451287187768410.1016/S0045-7825(01)00323-1 – reference: BaderJZitzlerEHypE: an algorithm for fast hypervolume-based many-objective optimizationEvol Comput2011191457610.1162/EVCO_a_00009 – reference: JanMAKhanumRAA study of two penalty-parameterless constraint handling techniques in the framework of MOEA/DAppl Soft Comput201313112814810.1016/j.asoc.2012.07.027 – reference: RunarssonTPYaoXSearch biases in constrained evolutionary optimizationIEEE Trans Syst Man Cybern Part C Appl Rev200535223324310.1109/TSMCC.2004.841906 – reference: HollandBSCopenhaverMDAn improved sequentially rejective Bonferroni test procedureBiometrics19874341742389741010.2307/2531823 – reference: CaiXYangZFanZZhangQDecomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimizationIEEE Trans Cybern20174792824283710.1109/TCYB.2016.2586191 – reference: BosmanPAThierensDThe balance between proximity and diversity in multiobjective evolutionary algorithmsIEEE Trans Evol Comput20037217418810.1109/TEVC.2003.810761 – reference: ČrepinšekMLiuSHMernikMExploration and exploitation in evolutionary algorithms: a surveyACM Comput Surv20134533510.1145/2480741.2480752 – reference: ZitzlerEThieleLMultiobjective evolutionary algorithms: a comparative case study and the strength Pareto approachIEEE Trans Evol Comput19993425727110.1109/4235.797969 – reference: CaiXLiYFanZZhangQAn external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimizationIEEE Trans Evol Comput201519450852310.1109/TEVC.2014.2350995 – reference: LiuHLGuFZhangQDecomposition of a multiobjective optimization problem into a number of simple multiobjective subproblemsIEEE Trans Evol Comput201418345045510.1109/TEVC.2013.2281533 – reference: RunarssonTPYaoXStochastic ranking for constrained evolutionary optimizationIEEE Trans Evol Comput20004328429410.1109/4235.873238 – reference: DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017 – reference: RomDMA sequentially rejective test procedure based on a modified Bonferroni inequalityBiometrika1990773663665108786010.1093/biomet/77.3.663 – reference: HubandSHingstonPBaroneLWhileLA review of multiobjective test problems and a scalable test problem toolkitIEEE Trans Evol Comput200610547750610.1109/TEVC.2005.861417 – reference: LiJDA two-step rejection procedure for testing multiple hypothesesJ Stat Plann Inference2008138615211527242728710.1016/j.jspi.2007.04.032 – reference: MiettinenKNonlinear multiobjective optimization1999BerlinSpringer0949.90082 – reference: Takahama T, Sakai S (2006) Constrained optimization by the ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} constrained differential evolution with gradient-based mutation and feasible elites. In: 2006 IEEE international conference on evolutionary computation. IEEE, pp 1–8 – reference: DebKJainHAn evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraintsIEEE Trans Evol Comput201418457760110.1109/TEVC.2013.2281535 – reference: CaiXHuZFanZA novel memetic algorithm based on invasive weed optimization and differential evolution for constrained optimizationSoft Comput201317101893191010.1007/s00500-013-1028-4 – reference: DunnOJMultiple comparisons among meansJ Am Stat Assoc196156293526412495210.1080/01621459.1961.10482090 – reference: Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: International conference on parallel problem solving from nature. Springer, pp 832–842 – reference: ZhangQLiHMOEA/D: a multiobjective evolutionary algorithm based on decompositionIEEE Trans Evol Comput200711671273110.1109/TEVC.2007.892759 – reference: HommelGA stagewise rejective multiple test procedure based on a modified Bonferroni testBiometrika198875238338610.1093/biomet/75.2.383 – reference: LiHZhangQMultiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-IIIEEE Trans Evol Comput200913228430210.1109/TEVC.2008.925798 – reference: SaravananRRamabalanSEbenezerNGRDharmarajaCEvolutionary multi criteria design optimization of robot grippersAppl Soft Comput20099115917210.1016/j.asoc.2008.04.001 – reference: Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang Technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, Technical report 264 – reference: HuZCaiXFanZAn improved memetic algorithm using ring neighborhood topology for constrained optimizationSoft Comput201318102023204110.1007/s00500-013-1183-7 – reference: Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report 103 – reference: HochbergYA sharper Bonferroni procedure for multiple tests of significanceBiometrika198875480080299512610.1093/biomet/75.4.800 – reference: Mezura-MontesECoello CoelloCAConstraint-handling in nature-inspired numerical optimization: past, present and futureSwarm Evol Comput20111417319410.1016/j.swevo.2011.10.001 – reference: Datta R, Deb K (2011) Multi-objective design and analysis of robot gripper configurations using an evolutionary-classical approach. In: Conference on genetic and evolutionary computation, pp 1843–1850 – reference: HolmSA simple sequentially rejective multiple test procedureScand J Stat1979665705385970402.62058 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 3794_CR14 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume-title: Nonlinear multiobjective optimization year: 1999 ident: 3794_CR31 – volume: 7 start-page: 174 issue: 2 year: 2003 ident: 3794_CR4 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2003.810761 – volume: 191 start-page: 1245 issue: 11–12 year: 2002 ident: 3794_CR8 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(01)00323-1 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 3794_CR38 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2007.892759 – volume: 47 start-page: 2824 issue: 9 year: 2017 ident: 3794_CR7 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2016.2586191 – volume: 10 start-page: 477 issue: 5 year: 2006 ident: 3794_CR24 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2005.861417 – volume: 18 start-page: 450 issue: 3 year: 2014 ident: 3794_CR29 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2013.2281533 – ident: 3794_CR36 – ident: 3794_CR1 doi: 10.1109/CEC.2012.6252868 – volume: 4 start-page: 284 issue: 3 year: 2000 ident: 3794_CR33 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.873238 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 3794_CR15 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2011.02.002 – ident: 3794_CR17 – ident: 3794_CR42 – volume: 181 start-page: 1653 issue: 3 year: 2007 ident: 3794_CR3 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2006.08.008 – volume: 35 start-page: 233 issue: 2 year: 2005 ident: 3794_CR34 publication-title: IEEE Trans Syst Man Cybern Part C Appl Rev doi: 10.1109/TSMCC.2004.841906 – volume: 138 start-page: 1521 issue: 6 year: 2008 ident: 3794_CR27 publication-title: J Stat Plann Inference doi: 10.1016/j.jspi.2007.04.032 – volume: 56 start-page: 52 issue: 293 year: 1961 ident: 3794_CR16 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1961.10482090 – ident: 3794_CR11 doi: 10.1145/2001576.2001823 – volume-title: Multi-objective optimization using evolutionary algorithms year: 2001 ident: 3794_CR12 – volume: 43 start-page: 417 year: 1987 ident: 3794_CR20 publication-title: Biometrics doi: 10.2307/2531823 – volume: 1 start-page: 173 issue: 4 year: 2011 ident: 3794_CR30 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2011.10.001 – volume: 77 start-page: 663 issue: 3 year: 1990 ident: 3794_CR32 publication-title: Biometrika doi: 10.1093/biomet/77.3.663 – volume: 45 start-page: 35 issue: 3 year: 2013 ident: 3794_CR10 publication-title: ACM Comput Surv doi: 10.1145/2480741.2480752 – volume: 9 start-page: 159 issue: 1 year: 2009 ident: 3794_CR35 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2008.04.001 – volume: 3 start-page: 257 issue: 4 year: 1999 ident: 3794_CR41 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.797969 – ident: 3794_CR37 doi: 10.1145/2598394.2610012 – ident: 3794_CR40 doi: 10.1007/978-3-540-30217-9_84 – volume: 75 start-page: 383 issue: 2 year: 1988 ident: 3794_CR22 publication-title: Biometrika doi: 10.1093/biomet/75.2.383 – volume: 17 start-page: 1893 issue: 10 year: 2013 ident: 3794_CR5 publication-title: Soft Comput doi: 10.1007/s00500-013-1028-4 – volume: 45 start-page: 2202 issue: 10 year: 2015 ident: 3794_CR26 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2014.2367526 – volume: 75 start-page: 800 issue: 4 year: 1988 ident: 3794_CR19 publication-title: Biometrika doi: 10.1093/biomet/75.4.800 – volume: 18 start-page: 577 issue: 4 year: 2014 ident: 3794_CR13 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2013.2281535 – ident: 3794_CR39 – volume: 88 start-page: 920 issue: 423 year: 1993 ident: 3794_CR18 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1993.10476358 – volume: 13 start-page: 284 issue: 2 year: 2009 ident: 3794_CR28 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2008.925798 – volume: 19 start-page: 508 issue: 4 year: 2015 ident: 3794_CR6 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2014.2350995 – volume: 6 start-page: 65 year: 1979 ident: 3794_CR21 publication-title: Scand J Stat – volume: 19 start-page: 45 issue: 1 year: 2011 ident: 3794_CR2 publication-title: Evol Comput doi: 10.1162/EVCO_a_00009 – ident: 3794_CR9 – volume: 18 start-page: 2023 issue: 10 year: 2013 ident: 3794_CR23 publication-title: Soft Comput doi: 10.1007/s00500-013-1183-7 – volume: 13 start-page: 128 issue: 1 year: 2013 ident: 3794_CR25 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.07.027 |
| SSID | ssj0021753 |
| Score | 2.6428607 |
| Snippet | This paper proposes an improved epsilon constraint-handling mechanism and combines it with a decomposition-based multi-objective evolutionary algorithm... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 12491 |
| SubjectTerms | Artificial Intelligence Collaboration Computational Intelligence Constraints Control Decomposition Engineering Evolutionary algorithms Mathematical Logic and Foundations Mechatronics Methodologies and Application Methods Multiple objective analysis Optimization Performance evaluation Robotics Violations |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7Q4AAHBgPEYKAcuEFE26xtepzGJi57iJd2K02aSJOqbloH4ufjZGkHCJDgXDdqHTv-nDifEbpQMkooIBHiJaEgbZkywlXYJonwXcnBphhLTbOJcDhkk0k0tpfCirLavTySNCt1ddlNU5XoIqqIOBSsiABy3IRwx7Q73t0_VWmW5Z4EIADYEQKuvSrz_Rifw9EaY345FjXRpl__33fuoV2LLnFnZQ77aEPmDVQvOzdg68gNtPOBhvAAPXdyPDWbCzLFcl5Ms1mOhQaOun_EkhgmBpDEq3bTeJrjwajXub7BgHhxdzAaF1jv5-JMl5VjXd-VgKdlEuu2DzDOIXrs9x66t8R2XiCC-oHuTx8oR7ielFwlIehTc8C4KWA77vNIKQaQXEoFqlZ-whLXDWnY5kwFAcgLLugRquWzXB4jnITMlxQCpYDcR8MT6nAnDSgNFROQmjeRW05ALCwtuf67LK4IlY1CY1BobBQavzXRZfXOfEXK8at0q5zX2DpoEXuRXpkgnfOa6Kqcx_Xjn0c7-Zv4Kdr2tCmYApgWqi0XL_IMbYnX5bRYnBvDfQcBiOcx priority: 102 providerName: Springer Nature |
| Title | An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions |
| URI | https://link.springer.com/article/10.1007/s00500-019-03794-x https://www.proquest.com/docview/2917938622 |
| Volume | 23 |
| WOSCitedRecordID | wos000495070400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-7479 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1433-7479 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-7479 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: RSV dateStart: 19970401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6Vx4ELtDxESop86I1aya6za-8JpWlQpYokSlsUcVl2vbYUKdoENkX8fGYcbyKQ4NKLL2tbXs_Y83k8ng_gqzVJJhCJ8DCTmndMoXhuZYdnOgpMjjqlVOHIJuRgoCaTZOQdbpUPq6z3RLdRF3NNPvJWmJAqIf4OLxf3nFij6HbVU2hswU4QhgHp-S_J1wcun4USIQGiSDS9_tGMezpHiU8oJCvhbYE6yZ9eGqYN2nx1QersztXB_474I-x7xMm6KxX5BB9MeQgHNZsD84v7CO66JZs6F4MpmFlU09m8ZJrgI7FILLnLx4BDZCvSaTYt2fWw3239YIh7We96OKoYeXXZjILLGUV5ZbjeZoYR-QP2cwx_r_p_ej-551_gWkQxsdTHtq2D0JjcZhLnkjLBBAUivDzKE2sVAnNjLE6zjTKVBYEUspMrG8dYX-danMB2OS_NKbBMqsgINJcaT0AEUkQ7bxexENIqjQf0BgT15KfaJyenv5ul67TKTmApCix1AkufGnCxbrNYpeZ4t3azllLql2mVbkTUgG-1nDef3-7t8_u9ncFeSKrlwl6asL18-Ge-wK5-XE6rh3PY-d4fjMbnTlmxHEW3WI5_3zwDAELvZQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT-MwEB2xgLRcgOVDdJdlfYATWCRxEzuH1ariQ6DSwgEkbiFxbKlSlZamsPCn-I3MuEkrVlpuHDjHsWT7efxsj98D2LUmTgUyER6kUvOmyRXPrGzyVIe-yRBTSuXObEJ2u-r2Nr6ag5f6LQylVdYx0QXqfKDpjPwwiAlKyL-DP8N7Tq5RdLtaW2hMYNE2z39xy1b-Pj_G8d0LgtOT66MzXrkKcC3CiLzXI-tpPzAms6lEtk76Jn6OvCULs9hahXTTGItU3YapSn1fCtnMlI0iLK8zLbDeL7DQFEqSVn9b8ukGr1K9RAqCrBWX-uqRjnuqR0IrlAIWc0_gHOBPbxfCGbv950LWrXOnK5-th1ZhuWLUrDWZAt9gzhRrsFK7VbAqeK3DXatgPXeEYnJmhmWvPyiYJnpMLhlj7vQmsEvYxFSb9QrWuTxpHR4z5PXsqHN5VTI6tWZ9Sp5nlMWWYjzpG0bmFljPBtx8SDs3Yb4YFGYLWCpVaATSAY07PCJhwsu8PBJCWqWj2GuAXw92oivxdWpdP5nKRjuAJAiQxAEkeWrA_vSf4UR65N3S2zUqkioMlckMEg04qHE1-_z_2r6_X9sv-Hp23blILs677R-wFBCsXYrPNsyPRw_mJyzqx3GvHO24CcLg7qPx9gq5kUmm |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED5ERfTB-ROnU_Pgm4atzdqmj2NzKOoc-APfapsmMBjd2Kb453uXtXOKCuJzr6G9XJrvmrvvAzgxOowFIhHuxoHidZ1KnpigzmPlOTrBmJIytWITQacjn57C7lwXv612L44kpz0NxNKUTarD1FRnjW9EW0IFVSGvCYwojihyqU6iQZSv3z3OUq6chxJBAeJI3Hzztpnvx_i8NX3gzS9HpHbnaZf-_8wbsJ6jTtaYhskmLOhsC0qFogPLF_gWrM3RE27DcyNjPfvTQadMD8e9_iBjigAl6UpMuGVoQEs2laFmvYzd3J43qi2GSJg1b267Y0b_eVmfys0Z1X3FuAL7mpEcBI6zAw_t8_vmBc8VGbgSnk-69b6pKcfVOjFxgL4lbhgnRcyXeElojESorrVBtxsvlrHjBCKoJ9L4PtqrRIldWMwGmd4DFgfS0wI3UIU5EcEWUUtqqS9EYKTClL0MTjEZkcrpyunt-tGMaNk6NEKHRtah0VsZTmf3DKdkHb9aV4o5jvKFO47ckL5YmOa5ZTgr5vTj8s-j7f_N_BhWuq12dH3ZuTqAVZeiwtbIVGBxMnrRh7CsXie98ejIxvM7ZOHy-Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+epsilon+constraint-handling+method+in+MOEA%2FD+for+CMOPs+with+large+infeasible+regions&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Fan%2C+Zhun&rft.au=Li%2C+Wenji&rft.au=Cai%2C+Xinye&rft.au=Huang%2C+Han&rft.date=2019-12-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=23&rft.issue=23&rft.spage=12491&rft.epage=12510&rft_id=info:doi/10.1007%2Fs00500-019-03794-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_019_03794_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |