An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions

This paper proposes an improved epsilon constraint-handling mechanism and combines it with a decomposition-based multi-objective evolutionary algorithm (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). The proposed constrained multi-objective evolutionary algorithm (CMOEA)...

Full description

Saved in:
Bibliographic Details
Published in:Soft computing (Berlin, Germany) Vol. 23; no. 23; pp. 12491 - 12510
Main Authors: Fan, Zhun, Li, Wenji, Cai, Xinye, Huang, Han, Fang, Yi, You, Yugen, Mo, Jiajie, Wei, Caimin, Goodman, Erik
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2019
Springer Nature B.V
Subjects:
ISSN:1432-7643, 1433-7479
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes an improved epsilon constraint-handling mechanism and combines it with a decomposition-based multi-objective evolutionary algorithm (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). The proposed constrained multi-objective evolutionary algorithm (CMOEA) is named MOEA/D-IEpsilon. It adjusts the epsilon level dynamically according to the ratio of feasible to total solutions in the current population. In order to evaluate the performance of MOEA/D-IEpsilon, a new set of CMOPs with two and three objectives is designed, having large infeasible regions (relative to the feasible regions), and they are called LIR-CMOPs. Then, the 14 benchmarks, including LIR-CMOP1-14, are used to test MOEA/D-IEpsilon and four other decomposition-based CMOEAs, including MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP and CMOEA/D. The experimental results indicate that MOEA/D-IEpsilon is significantly better than the other four CMOEAs on all of the test instances, which shows that MOEA/D-IEpsilon is more suitable for solving CMOPs with large infeasible regions. Furthermore, a real-world problem, namely the robot gripper optimization problem, is used to test the five CMOEAs. The experimental results demonstrate that MOEA/D-IEpsilon also outperforms the other four CMOEAs on this problem.
AbstractList This paper proposes an improved epsilon constraint-handling mechanism and combines it with a decomposition-based multi-objective evolutionary algorithm (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). The proposed constrained multi-objective evolutionary algorithm (CMOEA) is named MOEA/D-IEpsilon. It adjusts the epsilon level dynamically according to the ratio of feasible to total solutions in the current population. In order to evaluate the performance of MOEA/D-IEpsilon, a new set of CMOPs with two and three objectives is designed, having large infeasible regions (relative to the feasible regions), and they are called LIR-CMOPs. Then, the 14 benchmarks, including LIR-CMOP1-14, are used to test MOEA/D-IEpsilon and four other decomposition-based CMOEAs, including MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP and CMOEA/D. The experimental results indicate that MOEA/D-IEpsilon is significantly better than the other four CMOEAs on all of the test instances, which shows that MOEA/D-IEpsilon is more suitable for solving CMOPs with large infeasible regions. Furthermore, a real-world problem, namely the robot gripper optimization problem, is used to test the five CMOEAs. The experimental results demonstrate that MOEA/D-IEpsilon also outperforms the other four CMOEAs on this problem.
Author Mo, Jiajie
Cai, Xinye
Goodman, Erik
Fan, Zhun
Huang, Han
You, Yugen
Wei, Caimin
Fang, Yi
Li, Wenji
Author_xml – sequence: 1
  givenname: Zhun
  surname: Fan
  fullname: Fan, Zhun
  organization: Department of Electronic Engineering, Shantou University
– sequence: 2
  givenname: Wenji
  surname: Li
  fullname: Li, Wenji
  organization: Department of Electronic Engineering, Shantou University
– sequence: 3
  givenname: Xinye
  surname: Cai
  fullname: Cai, Xinye
  email: Xinye@nuaa.edu.cn
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics
– sequence: 4
  givenname: Han
  surname: Huang
  fullname: Huang, Han
  organization: School of Software Engineering, South China University of Technology
– sequence: 5
  givenname: Yi
  surname: Fang
  fullname: Fang, Yi
  organization: Department of Electronic Engineering, Shantou University
– sequence: 6
  givenname: Yugen
  surname: You
  fullname: You, Yugen
  organization: Department of Electronic Engineering, Shantou University
– sequence: 7
  givenname: Jiajie
  surname: Mo
  fullname: Mo, Jiajie
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics
– sequence: 8
  givenname: Caimin
  surname: Wei
  fullname: Wei, Caimin
  organization: Department of Mathematics, Shantou University
– sequence: 9
  givenname: Erik
  surname: Goodman
  fullname: Goodman, Erik
  organization: BEACON Center for the Study of Evolution in Action, Michigan State University
BookMark eNp9kMtOwzAQRS1UJNrCD7CyxNrUjyROllUpD6moLGBtnMROXaVOsV0of4_bICGx6GpGmntm7twRGNjOKgCuCb4lGPOJxzjFGGFSIMx4kaD9GRiShDHEE14Mjj1FPEvYBRh5v8aYEp6yIXifWmg2W9d9qhqqrTdtZ2HVWR-cNDaglbR1a2wDNyqsuhoaC5-X8-nkDurOwdnz8sXDLxNWsJWuUXGslfSmbBV0qjFxzyU417L16uq3jsHb_fx19ogWy4en2XSBKpZmARGWaVwRqlSpJY_WWEpzUuOUl2lZaJ1zWiilo2udylwSwhlPylxnWdRXZcXG4KbfG3_52CkfxLrbORtPCloQXrA8ozSqaK-qXOe9U1psndlI9y0IFockRZ-kiEmKY5JiH6H8H1SZIEP87hBSexplPerjHdso9-fqBPUDWjmLDg
CitedBy_id crossref_primary_10_1007_s10489_022_03421_7
crossref_primary_10_1016_j_eswa_2023_121707
crossref_primary_10_1016_j_swevo_2021_100940
crossref_primary_10_1109_TEVC_2022_3186667
crossref_primary_10_1109_TSUSC_2024_3401003
crossref_primary_10_1016_j_swevo_2025_101912
crossref_primary_10_1007_s40747_024_01418_y
crossref_primary_10_1016_j_asoc_2024_111800
crossref_primary_10_1109_TSMC_2024_3427864
crossref_primary_10_1109_JAS_2023_123336
crossref_primary_10_1007_s11465_022_0706_2
crossref_primary_10_1016_j_eswa_2023_122492
crossref_primary_10_1016_j_swevo_2023_101372
crossref_primary_10_1109_TEVC_2023_3281666
crossref_primary_10_1007_s40747_025_01819_7
crossref_primary_10_1016_j_knosys_2024_111998
crossref_primary_10_1007_s40747_023_01042_2
crossref_primary_10_1109_TNNLS_2023_3234629
crossref_primary_10_1016_j_eswa_2023_121718
crossref_primary_10_1007_s40747_025_01846_4
crossref_primary_10_1016_j_swevo_2020_100651
crossref_primary_10_1109_TCYB_2022_3151974
crossref_primary_10_1007_s10586_024_04859_9
crossref_primary_10_1080_1573062X_2024_2329095
crossref_primary_10_1016_j_cie_2025_111198
crossref_primary_10_1016_j_swevo_2024_101504
crossref_primary_10_1016_j_swevo_2024_101746
crossref_primary_10_1016_j_swevo_2025_101925
crossref_primary_10_1016_j_asoc_2023_110446
crossref_primary_10_1109_TETCI_2024_3393368
crossref_primary_10_1109_TCYB_2022_3189684
crossref_primary_10_3390_math10234459
crossref_primary_10_1016_j_swevo_2023_101247
crossref_primary_10_1007_s40747_024_01542_9
crossref_primary_10_1109_TCYB_2021_3056176
crossref_primary_10_1016_j_eswa_2024_126229
crossref_primary_10_1016_j_fub_2025_100034
crossref_primary_10_1109_MCI_2023_3245719
crossref_primary_10_1016_j_asoc_2024_112560
crossref_primary_10_1016_j_swevo_2024_101732
crossref_primary_10_1109_TEVC_2024_3366659
crossref_primary_10_1016_j_eswa_2025_128810
crossref_primary_10_1007_s10489_022_03990_7
crossref_primary_10_1016_j_ins_2020_05_082
crossref_primary_10_1016_j_swevo_2024_101728
crossref_primary_10_1016_j_swevo_2021_100932
crossref_primary_10_1016_j_eswa_2023_122119
crossref_primary_10_1080_01605682_2025_2479136
crossref_primary_10_1109_TSMC_2023_3324797
crossref_primary_10_1109_TSE_2022_3223875
crossref_primary_10_1016_j_swevo_2024_101727
crossref_primary_10_1016_j_ins_2025_121985
crossref_primary_10_1109_TCYB_2021_3089633
crossref_primary_10_1016_j_swevo_2023_101386
crossref_primary_10_1007_s10489_020_02174_5
crossref_primary_10_1109_TEVC_2022_3194729
crossref_primary_10_1109_TAI_2024_3391230
crossref_primary_10_1007_s40747_024_01379_2
crossref_primary_10_1007_s44196_025_00830_7
crossref_primary_10_1016_j_swevo_2023_101389
crossref_primary_10_1109_JAS_2023_123687
crossref_primary_10_1109_TEVC_2022_3199775
crossref_primary_10_1007_s00500_021_05880_5
crossref_primary_10_1016_j_swevo_2024_101717
crossref_primary_10_1016_j_swevo_2024_101714
crossref_primary_10_1016_j_eswa_2025_129359
crossref_primary_10_1016_j_ins_2024_121812
crossref_primary_10_1109_JAS_2023_123792
crossref_primary_10_1016_j_ins_2021_08_038
crossref_primary_10_1109_TCYB_2020_3042853
crossref_primary_10_1016_j_eswa_2022_118055
crossref_primary_10_1109_TEVC_2023_3260306
crossref_primary_10_1016_j_engappai_2024_109546
crossref_primary_10_1109_ACCESS_2020_3040647
crossref_primary_10_1016_j_asoc_2024_111674
crossref_primary_10_3390_app15094847
crossref_primary_10_1016_j_asoc_2025_112825
crossref_primary_10_1016_j_jksuci_2022_08_032
crossref_primary_10_1007_s00521_024_09787_8
crossref_primary_10_1007_s10462_021_10042_y
crossref_primary_10_1016_j_ins_2023_119572
crossref_primary_10_1007_s13369_025_10149_2
crossref_primary_10_1016_j_eswa_2025_128830
crossref_primary_10_1016_j_ins_2022_05_106
crossref_primary_10_1016_j_ins_2023_119547
crossref_primary_10_1016_j_ins_2021_11_062
crossref_primary_10_1016_j_swevo_2019_100598
crossref_primary_10_1109_TEVC_2023_3300181
crossref_primary_10_1109_TSMC_2019_2954491
crossref_primary_10_1016_j_ins_2023_03_023
crossref_primary_10_3390_math13050688
crossref_primary_10_1016_j_eswa_2022_119258
crossref_primary_10_1016_j_jobe_2023_107260
crossref_primary_10_1109_TEVC_2023_3270483
crossref_primary_10_1109_TEVC_2020_3004012
crossref_primary_10_1016_j_swevo_2024_101819
crossref_primary_10_1109_TEVC_2023_3243109
crossref_primary_10_1109_TCYB_2020_3021138
crossref_primary_10_4018_IJCINI_355766
crossref_primary_10_1016_j_swevo_2024_101496
crossref_primary_10_1109_TNNLS_2023_3297624
crossref_primary_10_1109_TEVC_2024_3358854
crossref_primary_10_3390_ijerph17238768
crossref_primary_10_1016_j_swevo_2025_102087
crossref_primary_10_1109_TETCI_2022_3221940
crossref_primary_10_1109_ACCESS_2020_3008278
crossref_primary_10_1109_TEVC_2021_3089155
crossref_primary_10_1038_s41524_024_01274_x
crossref_primary_10_1109_JIOT_2021_3067732
crossref_primary_10_3390_pr13082484
crossref_primary_10_1007_s10586_024_04944_z
crossref_primary_10_1016_j_asoc_2025_113216
crossref_primary_10_1016_j_swevo_2021_100978
crossref_primary_10_1080_0305215X_2022_2147518
crossref_primary_10_1016_j_swevo_2022_101209
crossref_primary_10_1016_j_swevo_2021_101020
crossref_primary_10_1017_S0263574725000396
crossref_primary_10_1016_j_swevo_2020_100799
crossref_primary_10_1016_j_swevo_2024_101488
crossref_primary_10_1016_j_swevo_2025_102055
crossref_primary_10_1016_j_aei_2025_103173
crossref_primary_10_1007_s12293_025_00471_5
crossref_primary_10_1109_TEVC_2022_3140265
crossref_primary_10_1109_TEVC_2023_3345470
crossref_primary_10_1016_j_asoc_2025_113792
crossref_primary_10_1109_TVT_2024_3490704
crossref_primary_10_1007_s00158_024_03859_y
crossref_primary_10_1016_j_engappai_2024_108673
crossref_primary_10_1109_TAI_2024_3454025
crossref_primary_10_1016_j_jer_2023_08_021
crossref_primary_10_1007_s11590_023_01993_y
crossref_primary_10_1109_JAS_2024_124545
crossref_primary_10_1016_j_swevo_2025_101892
crossref_primary_10_1016_j_istruc_2025_109674
crossref_primary_10_3390_math13091441
crossref_primary_10_1016_j_swevo_2023_101404
crossref_primary_10_1016_j_asoc_2023_110169
crossref_primary_10_3390_math8010007
crossref_primary_10_1007_s10489_020_01733_0
crossref_primary_10_1109_TEVC_2021_3131124
crossref_primary_10_1016_j_asoc_2023_110845
crossref_primary_10_1109_TEVC_2022_3155533
crossref_primary_10_1016_j_swevo_2022_101104
crossref_primary_10_1016_j_swevo_2023_101402
crossref_primary_10_1016_j_swevo_2023_101401
crossref_primary_10_1016_j_ejor_2025_07_002
crossref_primary_10_1016_j_swevo_2024_101581
crossref_primary_10_1016_j_swevo_2025_102030
crossref_primary_10_1016_j_ins_2023_119467
crossref_primary_10_1016_j_knosys_2021_107263
crossref_primary_10_1007_s10489_022_03874_w
crossref_primary_10_1016_j_eswa_2025_126908
crossref_primary_10_1109_TEVC_2024_3376729
crossref_primary_10_1016_j_swevo_2023_101417
crossref_primary_10_1016_j_asoc_2024_112157
crossref_primary_10_1007_s12065_024_00912_z
crossref_primary_10_1109_TEVC_2022_3208595
crossref_primary_10_1016_j_ins_2021_12_067
crossref_primary_10_1109_TETCI_2023_3313412
crossref_primary_10_1109_TSMC_2021_3061698
crossref_primary_10_1016_j_ins_2024_121836
crossref_primary_10_1016_j_swevo_2025_102044
crossref_primary_10_1038_s41598_025_94245_1
crossref_primary_10_1007_s44336_024_00006_5
crossref_primary_10_1016_j_asoc_2025_113658
crossref_primary_10_3390_machines11030337
crossref_primary_10_1007_s40747_022_00761_2
crossref_primary_10_1016_j_swevo_2025_101989
crossref_primary_10_1109_TEVC_2022_3190401
crossref_primary_10_3390_sym14010116
crossref_primary_10_1016_j_swevo_2024_101683
crossref_primary_10_1016_j_ins_2025_122559
crossref_primary_10_1016_j_swevo_2024_101685
crossref_primary_10_1002_tee_24200
crossref_primary_10_1016_j_engappai_2023_107817
crossref_primary_10_1016_j_eswa_2024_125555
crossref_primary_10_1016_j_swevo_2022_101162
crossref_primary_10_1109_TEVC_2022_3230822
crossref_primary_10_1016_j_asoc_2024_111290
crossref_primary_10_1109_TCYB_2022_3163759
crossref_primary_10_1016_j_swevo_2022_101161
crossref_primary_10_3390_math12193075
crossref_primary_10_1109_TCYB_2025_3548414
crossref_primary_10_1016_j_asoc_2023_110874
crossref_primary_10_1109_TEVC_2021_3055538
crossref_primary_10_1016_j_ins_2024_121774
crossref_primary_10_1016_j_swevo_2023_101432
crossref_primary_10_1016_j_swevo_2025_101954
crossref_primary_10_1109_TCYB_2021_3108563
crossref_primary_10_1007_s40747_022_00851_1
crossref_primary_10_1155_2022_4967775
crossref_primary_10_1007_s11047_020_09806_2
crossref_primary_10_1016_j_swevo_2023_101313
crossref_primary_10_1016_j_swevo_2025_102021
crossref_primary_10_1016_j_ins_2022_03_030
crossref_primary_10_1109_TEVC_2022_3145582
crossref_primary_10_1016_j_swevo_2025_102020
crossref_primary_10_3390_math12243926
crossref_primary_10_12677_orf_2025_152086
crossref_primary_10_1145_3654444
crossref_primary_10_1109_TCYB_2021_3069814
crossref_primary_10_1016_j_knosys_2021_107693
crossref_primary_10_1109_TCYB_2020_2998038
crossref_primary_10_1109_TETCI_2023_3236633
crossref_primary_10_1016_j_ins_2021_07_078
crossref_primary_10_1109_ACCESS_2021_3107284
crossref_primary_10_1016_j_eswa_2024_126073
crossref_primary_10_1016_j_knosys_2022_110112
crossref_primary_10_1016_j_swevo_2025_102137
crossref_primary_10_1016_j_swevo_2025_102017
crossref_primary_10_1016_j_eswa_2025_129761
crossref_primary_10_1016_j_ins_2021_01_029
crossref_primary_10_1016_j_swevo_2024_101784
crossref_primary_10_1016_j_ins_2024_120339
crossref_primary_10_1109_TSMC_2025_3547618
crossref_primary_10_1016_j_swevo_2025_102111
crossref_primary_10_1016_j_asoc_2025_113051
crossref_primary_10_3390_biomimetics10010019
crossref_primary_10_1109_TEVC_2022_3175065
crossref_primary_10_1109_TCYB_2022_3151793
crossref_primary_10_1007_s12065_024_00932_9
crossref_primary_10_1016_j_asoc_2025_112873
crossref_primary_10_1016_j_ins_2022_10_050
crossref_primary_10_1016_j_swevo_2025_101937
crossref_primary_10_1016_j_asoc_2024_111703
crossref_primary_10_1016_j_swevo_2022_101178
crossref_primary_10_1109_TETCI_2024_3359517
crossref_primary_10_1016_j_asoc_2024_111827
crossref_primary_10_1016_j_engappai_2025_111419
crossref_primary_10_1016_j_swevo_2022_101055
crossref_primary_10_1016_j_swevo_2024_101657
crossref_primary_10_1109_TEVC_2022_3224600
crossref_primary_10_1109_TSMC_2022_3219407
crossref_primary_10_3390_math13071191
crossref_primary_10_1016_j_swevo_2024_101531
crossref_primary_10_1016_j_eswa_2025_127008
crossref_primary_10_1360_SSI_2024_0025
crossref_primary_10_1109_TEVC_2022_3202723
crossref_primary_10_3390_jmse11071351
crossref_primary_10_1016_j_ins_2024_121081
crossref_primary_10_1145_3764597
crossref_primary_10_1016_j_asoc_2024_112226
crossref_primary_10_1016_j_swevo_2025_101949
crossref_primary_10_1016_j_asoc_2020_107042
crossref_primary_10_1016_j_swevo_2022_101166
crossref_primary_10_1016_j_ins_2022_10_046
crossref_primary_10_1016_j_ins_2024_121648
Cites_doi 10.1109/4235.996017
10.1109/TEVC.2003.810761
10.1016/S0045-7825(01)00323-1
10.1109/TEVC.2007.892759
10.1109/TCYB.2016.2586191
10.1109/TEVC.2005.861417
10.1109/TEVC.2013.2281533
10.1109/CEC.2012.6252868
10.1109/4235.873238
10.1016/j.swevo.2011.02.002
10.1016/j.ejor.2006.08.008
10.1109/TSMCC.2004.841906
10.1016/j.jspi.2007.04.032
10.1080/01621459.1961.10482090
10.1145/2001576.2001823
10.2307/2531823
10.1016/j.swevo.2011.10.001
10.1093/biomet/77.3.663
10.1145/2480741.2480752
10.1016/j.asoc.2008.04.001
10.1109/4235.797969
10.1145/2598394.2610012
10.1007/978-3-540-30217-9_84
10.1093/biomet/75.2.383
10.1007/s00500-013-1028-4
10.1109/TCYB.2014.2367526
10.1093/biomet/75.4.800
10.1109/TEVC.2013.2281535
10.1080/01621459.1993.10476358
10.1109/TEVC.2008.925798
10.1109/TEVC.2014.2350995
10.1162/EVCO_a_00009
10.1007/s00500-013-1183-7
10.1016/j.asoc.2012.07.027
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-019-03794-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 12510
ExternalDocumentID 10_1007_s00500_019_03794_x
GrantInformation_xml – fundername: Department of Education of Guangdong Province
  grantid: 2014GKXM044
– fundername: Project of International as well as Hong Kong, Macao & Taiwan Science and Technology Cooperation Innovation Platform in Universities in Guangdong Province
  grantid: 2015KGJH2014
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20130808
  funderid: http://dx.doi.org/10.13039/501100004608
– fundername: China Postdoctoral Science Foundation
  grantid: 2015M571751
  funderid: http://dx.doi.org/10.13039/501100002858
– fundername: Scientific Startup Research Foundation of Shantou University
  grantid: NTF12024
– fundername: National Natural Science Foundation of China
  grantid: 61300159
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c356t-136f0c12eebfa775335281d057b5b9ff8729eef217f5a8a117374b8f66bfacbc3
IEDL.DBID K7-
ISICitedReferencesCount 299
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000495070400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-7643
IngestDate Wed Nov 05 08:08:16 EST 2025
Sat Nov 29 03:35:53 EST 2025
Tue Nov 18 21:56:24 EST 2025
Fri Feb 21 02:33:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Constrained multi-objective optimization
Robot gripper optimization
Constrained multi-objective evolutionary algorithms
Epsilon constraint handling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-136f0c12eebfa775335281d057b5b9ff8729eef217f5a8a117374b8f66bfacbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2917938622
PQPubID 2043697
PageCount 20
ParticipantIDs proquest_journals_2917938622
crossref_primary_10_1007_s00500_019_03794_x
crossref_citationtrail_10_1007_s00500_019_03794_x
springer_journals_10_1007_s00500_019_03794_x
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Coello CoelloCATheoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the artComput Methods Appl Mech Eng200219111–1212451287187768410.1016/S0045-7825(01)00323-1
LiJDA two-step rejection procedure for testing multiple hypothesesJ Stat Plann Inference2008138615211527242728710.1016/j.jspi.2007.04.032
Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report 103
CaiXHuZFanZA novel memetic algorithm based on invasive weed optimization and differential evolution for constrained optimizationSoft Comput201317101893191010.1007/s00500-013-1028-4
JiangSZhangJOngYSZhangANTanPSA simple and fast hypervolume indicator-based multiobjective evolutionary algorithmIEEE Trans Cybern201545102202221310.1109/TCYB.2014.2367526
Takahama T, Sakai S (2006) Constrained optimization by the ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} constrained differential evolution with gradient-based mutation and feasible elites. In: 2006 IEEE international conference on evolutionary computation. IEEE, pp 1–8
DebKMulti-objective optimization using evolutionary algorithms2001LondonWiley0970.90091
DerracJGarcíaSMolinaDHerreraFA practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithmsSwarm Evol Comput20111131810.1016/j.swevo.2011.02.002
RunarssonTPYaoXStochastic ranking for constrained evolutionary optimizationIEEE Trans Evol Comput20004328429410.1109/4235.873238
HolmSA simple sequentially rejective multiple test procedureScand J Stat1979665705385970402.62058
Corne DW, Jerram NR, Knowles JD, Oates MJ (2001) PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the 3rd annual conference on genetic and evolutionary computation. Morgan Kaufmann, pp 283–290
ZhangQLiHMOEA/D: a multiobjective evolutionary algorithm based on decompositionIEEE Trans Evol Comput200711671273110.1109/TEVC.2007.892759
RomDMA sequentially rejective test procedure based on a modified Bonferroni inequalityBiometrika1990773663665108786010.1093/biomet/77.3.663
CaiXYangZFanZZhangQDecomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimizationIEEE Trans Cybern20174792824283710.1109/TCYB.2016.2586191
Yang Z, Cai X, Fan Z (2014) Epsilon constrained method for constrained multiobjective optimization problems: some preliminary results. In: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, ACM, pp 1181–1186
BeumeNNaujoksBEmmerichMSMS-EMOA: multiobjective selection based on dominated hypervolumeEur J Oper Res200718131653166910.1016/j.ejor.2006.08.008
Datta R, Deb K (2011) Multi-objective design and analysis of robot gripper configurations using an evolutionary-classical approach. In: Conference on genetic and evolutionary computation, pp 1843–1850
Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: International conference on parallel problem solving from nature. Springer, pp 832–842
Fan Z, Li W, Cai X, Li H, Hu K, Zhang Q, Deb K, Goodman ED (2016) Difficulty adjustable and scalable constrained multi-objective test problem toolkit. arXiv preprint arXiv:1612.07603
BaderJZitzlerEHypE: an algorithm for fast hypervolume-based many-objective optimizationEvol Comput2011191457610.1162/EVCO_a_00009
ZitzlerEThieleLMultiobjective evolutionary algorithms: a comparative case study and the strength Pareto approachIEEE Trans Evol Comput19993425727110.1109/4235.797969
JanMAKhanumRAA study of two penalty-parameterless constraint handling techniques in the framework of MOEA/DAppl Soft Comput201313112814810.1016/j.asoc.2012.07.027
FinnerHOn a monotonicity problem in step-down multiple test proceduresJ Am Stat Assoc199388423920923124294210.1080/01621459.1993.10476358
HollandBSCopenhaverMDAn improved sequentially rejective Bonferroni test procedureBiometrics19874341742389741010.2307/2531823
Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang Technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, Technical report 264
LiuHLGuFZhangQDecomposition of a multiobjective optimization problem into a number of simple multiobjective subproblemsIEEE Trans Evol Comput201418345045510.1109/TEVC.2013.2281533
DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017
RunarssonTPYaoXSearch biases in constrained evolutionary optimizationIEEE Trans Syst Man Cybern Part C Appl Rev200535223324310.1109/TSMCC.2004.841906
DunnOJMultiple comparisons among meansJ Am Stat Assoc196156293526412495210.1080/01621459.1961.10482090
LiHZhangQMultiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-IIIEEE Trans Evol Comput200913228430210.1109/TEVC.2008.925798
CaiXLiYFanZZhangQAn external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimizationIEEE Trans Evol Comput201519450852310.1109/TEVC.2014.2350995
ČrepinšekMLiuSHMernikMExploration and exploitation in evolutionary algorithms: a surveyACM Comput Surv20134533510.1145/2480741.2480752
Asafuddoula M, Ray T, Sarker R, Alam K (2012) An adaptive constraint handling approach embedded MOEA/D. In: 2012 IEEE Congress on Evolutionary Computation. IEEE, pp 1–8
Mezura-MontesECoello CoelloCAConstraint-handling in nature-inspired numerical optimization: past, present and futureSwarm Evol Comput20111417319410.1016/j.swevo.2011.10.001
MiettinenKNonlinear multiobjective optimization1999BerlinSpringer0949.90082
BosmanPAThierensDThe balance between proximity and diversity in multiobjective evolutionary algorithmsIEEE Trans Evol Comput20037217418810.1109/TEVC.2003.810761
HochbergYA sharper Bonferroni procedure for multiple tests of significanceBiometrika198875480080299512610.1093/biomet/75.4.800
HommelGA stagewise rejective multiple test procedure based on a modified Bonferroni testBiometrika198875238338610.1093/biomet/75.2.383
HuZCaiXFanZAn improved memetic algorithm using ring neighborhood topology for constrained optimizationSoft Comput201318102023204110.1007/s00500-013-1183-7
HubandSHingstonPBaroneLWhileLA review of multiobjective test problems and a scalable test problem toolkitIEEE Trans Evol Comput200610547750610.1109/TEVC.2005.861417
DebKJainHAn evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraintsIEEE Trans Evol Comput201418457760110.1109/TEVC.2013.2281535
SaravananRRamabalanSEbenezerNGRDharmarajaCEvolutionary multi criteria design optimization of robot grippersAppl Soft Comput20099115917210.1016/j.asoc.2008.04.001
J Derrac (3794_CR15) 2011; 1
S Huband (3794_CR24) 2006; 10
S Jiang (3794_CR26) 2015; 45
S Holm (3794_CR21) 1979; 6
X Cai (3794_CR6) 2015; 19
CA Coello Coello (3794_CR8) 2002; 191
X Cai (3794_CR5) 2013; 17
OJ Dunn (3794_CR16) 1961; 56
3794_CR17
Y Hochberg (3794_CR19) 1988; 75
3794_CR39
3794_CR36
3794_CR37
MA Jan (3794_CR25) 2013; 13
K Miettinen (3794_CR31) 1999
PA Bosman (3794_CR4) 2003; 7
3794_CR11
E Zitzler (3794_CR41) 1999; 3
H Li (3794_CR28) 2009; 13
M Črepinšek (3794_CR10) 2013; 45
BS Holland (3794_CR20) 1987; 43
G Hommel (3794_CR22) 1988; 75
R Saravanan (3794_CR35) 2009; 9
X Cai (3794_CR7) 2017; 47
Z Hu (3794_CR23) 2013; 18
J Bader (3794_CR2) 2011; 19
K Deb (3794_CR14) 2002; 6
H Finner (3794_CR18) 1993; 88
TP Runarsson (3794_CR33) 2000; 4
HL Liu (3794_CR29) 2014; 18
3794_CR42
K Deb (3794_CR13) 2014; 18
Q Zhang (3794_CR38) 2007; 11
N Beume (3794_CR3) 2007; 181
E Mezura-Montes (3794_CR30) 2011; 1
3794_CR9
K Deb (3794_CR12) 2001
JD Li (3794_CR27) 2008; 138
3794_CR40
TP Runarsson (3794_CR34) 2005; 35
3794_CR1
DM Rom (3794_CR32) 1990; 77
References_xml – reference: BeumeNNaujoksBEmmerichMSMS-EMOA: multiobjective selection based on dominated hypervolumeEur J Oper Res200718131653166910.1016/j.ejor.2006.08.008
– reference: Fan Z, Li W, Cai X, Li H, Hu K, Zhang Q, Deb K, Goodman ED (2016) Difficulty adjustable and scalable constrained multi-objective test problem toolkit. arXiv preprint arXiv:1612.07603
– reference: JiangSZhangJOngYSZhangANTanPSA simple and fast hypervolume indicator-based multiobjective evolutionary algorithmIEEE Trans Cybern201545102202221310.1109/TCYB.2014.2367526
– reference: DerracJGarcíaSMolinaDHerreraFA practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithmsSwarm Evol Comput20111131810.1016/j.swevo.2011.02.002
– reference: FinnerHOn a monotonicity problem in step-down multiple test proceduresJ Am Stat Assoc199388423920923124294210.1080/01621459.1993.10476358
– reference: Corne DW, Jerram NR, Knowles JD, Oates MJ (2001) PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the 3rd annual conference on genetic and evolutionary computation. Morgan Kaufmann, pp 283–290
– reference: Asafuddoula M, Ray T, Sarker R, Alam K (2012) An adaptive constraint handling approach embedded MOEA/D. In: 2012 IEEE Congress on Evolutionary Computation. IEEE, pp 1–8
– reference: DebKMulti-objective optimization using evolutionary algorithms2001LondonWiley0970.90091
– reference: Yang Z, Cai X, Fan Z (2014) Epsilon constrained method for constrained multiobjective optimization problems: some preliminary results. In: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, ACM, pp 1181–1186
– reference: Coello CoelloCATheoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the artComput Methods Appl Mech Eng200219111–1212451287187768410.1016/S0045-7825(01)00323-1
– reference: BaderJZitzlerEHypE: an algorithm for fast hypervolume-based many-objective optimizationEvol Comput2011191457610.1162/EVCO_a_00009
– reference: JanMAKhanumRAA study of two penalty-parameterless constraint handling techniques in the framework of MOEA/DAppl Soft Comput201313112814810.1016/j.asoc.2012.07.027
– reference: RunarssonTPYaoXSearch biases in constrained evolutionary optimizationIEEE Trans Syst Man Cybern Part C Appl Rev200535223324310.1109/TSMCC.2004.841906
– reference: HollandBSCopenhaverMDAn improved sequentially rejective Bonferroni test procedureBiometrics19874341742389741010.2307/2531823
– reference: CaiXYangZFanZZhangQDecomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimizationIEEE Trans Cybern20174792824283710.1109/TCYB.2016.2586191
– reference: BosmanPAThierensDThe balance between proximity and diversity in multiobjective evolutionary algorithmsIEEE Trans Evol Comput20037217418810.1109/TEVC.2003.810761
– reference: ČrepinšekMLiuSHMernikMExploration and exploitation in evolutionary algorithms: a surveyACM Comput Surv20134533510.1145/2480741.2480752
– reference: ZitzlerEThieleLMultiobjective evolutionary algorithms: a comparative case study and the strength Pareto approachIEEE Trans Evol Comput19993425727110.1109/4235.797969
– reference: CaiXLiYFanZZhangQAn external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimizationIEEE Trans Evol Comput201519450852310.1109/TEVC.2014.2350995
– reference: LiuHLGuFZhangQDecomposition of a multiobjective optimization problem into a number of simple multiobjective subproblemsIEEE Trans Evol Comput201418345045510.1109/TEVC.2013.2281533
– reference: RunarssonTPYaoXStochastic ranking for constrained evolutionary optimizationIEEE Trans Evol Comput20004328429410.1109/4235.873238
– reference: DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017
– reference: RomDMA sequentially rejective test procedure based on a modified Bonferroni inequalityBiometrika1990773663665108786010.1093/biomet/77.3.663
– reference: HubandSHingstonPBaroneLWhileLA review of multiobjective test problems and a scalable test problem toolkitIEEE Trans Evol Comput200610547750610.1109/TEVC.2005.861417
– reference: LiJDA two-step rejection procedure for testing multiple hypothesesJ Stat Plann Inference2008138615211527242728710.1016/j.jspi.2007.04.032
– reference: MiettinenKNonlinear multiobjective optimization1999BerlinSpringer0949.90082
– reference: Takahama T, Sakai S (2006) Constrained optimization by the ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} constrained differential evolution with gradient-based mutation and feasible elites. In: 2006 IEEE international conference on evolutionary computation. IEEE, pp 1–8
– reference: DebKJainHAn evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraintsIEEE Trans Evol Comput201418457760110.1109/TEVC.2013.2281535
– reference: CaiXHuZFanZA novel memetic algorithm based on invasive weed optimization and differential evolution for constrained optimizationSoft Comput201317101893191010.1007/s00500-013-1028-4
– reference: DunnOJMultiple comparisons among meansJ Am Stat Assoc196156293526412495210.1080/01621459.1961.10482090
– reference: Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: International conference on parallel problem solving from nature. Springer, pp 832–842
– reference: ZhangQLiHMOEA/D: a multiobjective evolutionary algorithm based on decompositionIEEE Trans Evol Comput200711671273110.1109/TEVC.2007.892759
– reference: HommelGA stagewise rejective multiple test procedure based on a modified Bonferroni testBiometrika198875238338610.1093/biomet/75.2.383
– reference: LiHZhangQMultiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-IIIEEE Trans Evol Comput200913228430210.1109/TEVC.2008.925798
– reference: SaravananRRamabalanSEbenezerNGRDharmarajaCEvolutionary multi criteria design optimization of robot grippersAppl Soft Comput20099115917210.1016/j.asoc.2008.04.001
– reference: Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang Technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, Technical report 264
– reference: HuZCaiXFanZAn improved memetic algorithm using ring neighborhood topology for constrained optimizationSoft Comput201318102023204110.1007/s00500-013-1183-7
– reference: Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report 103
– reference: HochbergYA sharper Bonferroni procedure for multiple tests of significanceBiometrika198875480080299512610.1093/biomet/75.4.800
– reference: Mezura-MontesECoello CoelloCAConstraint-handling in nature-inspired numerical optimization: past, present and futureSwarm Evol Comput20111417319410.1016/j.swevo.2011.10.001
– reference: Datta R, Deb K (2011) Multi-objective design and analysis of robot gripper configurations using an evolutionary-classical approach. In: Conference on genetic and evolutionary computation, pp 1843–1850
– reference: HolmSA simple sequentially rejective multiple test procedureScand J Stat1979665705385970402.62058
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 3794_CR14
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume-title: Nonlinear multiobjective optimization
  year: 1999
  ident: 3794_CR31
– volume: 7
  start-page: 174
  issue: 2
  year: 2003
  ident: 3794_CR4
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2003.810761
– volume: 191
  start-page: 1245
  issue: 11–12
  year: 2002
  ident: 3794_CR8
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(01)00323-1
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 3794_CR38
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.892759
– volume: 47
  start-page: 2824
  issue: 9
  year: 2017
  ident: 3794_CR7
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2016.2586191
– volume: 10
  start-page: 477
  issue: 5
  year: 2006
  ident: 3794_CR24
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2005.861417
– volume: 18
  start-page: 450
  issue: 3
  year: 2014
  ident: 3794_CR29
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2013.2281533
– ident: 3794_CR36
– ident: 3794_CR1
  doi: 10.1109/CEC.2012.6252868
– volume: 4
  start-page: 284
  issue: 3
  year: 2000
  ident: 3794_CR33
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.873238
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 3794_CR15
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.02.002
– ident: 3794_CR17
– ident: 3794_CR42
– volume: 181
  start-page: 1653
  issue: 3
  year: 2007
  ident: 3794_CR3
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2006.08.008
– volume: 35
  start-page: 233
  issue: 2
  year: 2005
  ident: 3794_CR34
  publication-title: IEEE Trans Syst Man Cybern Part C Appl Rev
  doi: 10.1109/TSMCC.2004.841906
– volume: 138
  start-page: 1521
  issue: 6
  year: 2008
  ident: 3794_CR27
  publication-title: J Stat Plann Inference
  doi: 10.1016/j.jspi.2007.04.032
– volume: 56
  start-page: 52
  issue: 293
  year: 1961
  ident: 3794_CR16
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1961.10482090
– ident: 3794_CR11
  doi: 10.1145/2001576.2001823
– volume-title: Multi-objective optimization using evolutionary algorithms
  year: 2001
  ident: 3794_CR12
– volume: 43
  start-page: 417
  year: 1987
  ident: 3794_CR20
  publication-title: Biometrics
  doi: 10.2307/2531823
– volume: 1
  start-page: 173
  issue: 4
  year: 2011
  ident: 3794_CR30
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.10.001
– volume: 77
  start-page: 663
  issue: 3
  year: 1990
  ident: 3794_CR32
  publication-title: Biometrika
  doi: 10.1093/biomet/77.3.663
– volume: 45
  start-page: 35
  issue: 3
  year: 2013
  ident: 3794_CR10
  publication-title: ACM Comput Surv
  doi: 10.1145/2480741.2480752
– volume: 9
  start-page: 159
  issue: 1
  year: 2009
  ident: 3794_CR35
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2008.04.001
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 3794_CR41
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.797969
– ident: 3794_CR37
  doi: 10.1145/2598394.2610012
– ident: 3794_CR40
  doi: 10.1007/978-3-540-30217-9_84
– volume: 75
  start-page: 383
  issue: 2
  year: 1988
  ident: 3794_CR22
  publication-title: Biometrika
  doi: 10.1093/biomet/75.2.383
– volume: 17
  start-page: 1893
  issue: 10
  year: 2013
  ident: 3794_CR5
  publication-title: Soft Comput
  doi: 10.1007/s00500-013-1028-4
– volume: 45
  start-page: 2202
  issue: 10
  year: 2015
  ident: 3794_CR26
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2367526
– volume: 75
  start-page: 800
  issue: 4
  year: 1988
  ident: 3794_CR19
  publication-title: Biometrika
  doi: 10.1093/biomet/75.4.800
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 3794_CR13
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2013.2281535
– ident: 3794_CR39
– volume: 88
  start-page: 920
  issue: 423
  year: 1993
  ident: 3794_CR18
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1993.10476358
– volume: 13
  start-page: 284
  issue: 2
  year: 2009
  ident: 3794_CR28
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2008.925798
– volume: 19
  start-page: 508
  issue: 4
  year: 2015
  ident: 3794_CR6
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2014.2350995
– volume: 6
  start-page: 65
  year: 1979
  ident: 3794_CR21
  publication-title: Scand J Stat
– volume: 19
  start-page: 45
  issue: 1
  year: 2011
  ident: 3794_CR2
  publication-title: Evol Comput
  doi: 10.1162/EVCO_a_00009
– ident: 3794_CR9
– volume: 18
  start-page: 2023
  issue: 10
  year: 2013
  ident: 3794_CR23
  publication-title: Soft Comput
  doi: 10.1007/s00500-013-1183-7
– volume: 13
  start-page: 128
  issue: 1
  year: 2013
  ident: 3794_CR25
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.07.027
SSID ssj0021753
Score 2.6428607
Snippet This paper proposes an improved epsilon constraint-handling mechanism and combines it with a decomposition-based multi-objective evolutionary algorithm...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12491
SubjectTerms Artificial Intelligence
Collaboration
Computational Intelligence
Constraints
Control
Decomposition
Engineering
Evolutionary algorithms
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Methods
Multiple objective analysis
Optimization
Performance evaluation
Robotics
Violations
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7Q4AAHBgPEYKAcuEFE26xtepzGJi57iJd2K02aSJOqbloH4ufjZGkHCJDgXDdqHTv-nDifEbpQMkooIBHiJaEgbZkywlXYJonwXcnBphhLTbOJcDhkk0k0tpfCirLavTySNCt1ddlNU5XoIqqIOBSsiABy3IRwx7Q73t0_VWmW5Z4EIADYEQKuvSrz_Rifw9EaY345FjXRpl__33fuoV2LLnFnZQ77aEPmDVQvOzdg68gNtPOBhvAAPXdyPDWbCzLFcl5Ms1mOhQaOun_EkhgmBpDEq3bTeJrjwajXub7BgHhxdzAaF1jv5-JMl5VjXd-VgKdlEuu2DzDOIXrs9x66t8R2XiCC-oHuTx8oR7ielFwlIehTc8C4KWA77vNIKQaQXEoFqlZ-whLXDWnY5kwFAcgLLugRquWzXB4jnITMlxQCpYDcR8MT6nAnDSgNFROQmjeRW05ALCwtuf67LK4IlY1CY1BobBQavzXRZfXOfEXK8at0q5zX2DpoEXuRXpkgnfOa6Kqcx_Xjn0c7-Zv4Kdr2tCmYApgWqi0XL_IMbYnX5bRYnBvDfQcBiOcx
  priority: 102
  providerName: Springer Nature
Title An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions
URI https://link.springer.com/article/10.1007/s00500-019-03794-x
https://www.proquest.com/docview/2917938622
Volume 23
WOSCitedRecordID wos000495070400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6Vx4ELtDxESop86I1aya6za-8JpWlQpYokSlsUcVl2vbYUKdoENkX8fGYcbyKQ4NKLL2tbXs_Y83k8ng_gqzVJJhCJ8DCTmndMoXhuZYdnOgpMjjqlVOHIJuRgoCaTZOQdbpUPq6z3RLdRF3NNPvJWmJAqIf4OLxf3nFij6HbVU2hswU4QhgHp-S_J1wcun4USIQGiSDS9_tGMezpHiU8oJCvhbYE6yZ9eGqYN2nx1QersztXB_474I-x7xMm6KxX5BB9MeQgHNZsD84v7CO66JZs6F4MpmFlU09m8ZJrgI7FILLnLx4BDZCvSaTYt2fWw3239YIh7We96OKoYeXXZjILLGUV5ZbjeZoYR-QP2cwx_r_p_ej-551_gWkQxsdTHtq2D0JjcZhLnkjLBBAUivDzKE2sVAnNjLE6zjTKVBYEUspMrG8dYX-danMB2OS_NKbBMqsgINJcaT0AEUkQ7bxexENIqjQf0BgT15KfaJyenv5ul67TKTmApCix1AkufGnCxbrNYpeZ4t3azllLql2mVbkTUgG-1nDef3-7t8_u9ncFeSKrlwl6asL18-Ge-wK5-XE6rh3PY-d4fjMbnTlmxHEW3WI5_3zwDAELvZQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT-MwEB2xgLRcgOVDdJdlfYATWCRxEzuH1ariQ6DSwgEkbiFxbKlSlZamsPCn-I3MuEkrVlpuHDjHsWT7efxsj98D2LUmTgUyER6kUvOmyRXPrGzyVIe-yRBTSuXObEJ2u-r2Nr6ag5f6LQylVdYx0QXqfKDpjPwwiAlKyL-DP8N7Tq5RdLtaW2hMYNE2z39xy1b-Pj_G8d0LgtOT66MzXrkKcC3CiLzXI-tpPzAms6lEtk76Jn6OvCULs9hahXTTGItU3YapSn1fCtnMlI0iLK8zLbDeL7DQFEqSVn9b8ukGr1K9RAqCrBWX-uqRjnuqR0IrlAIWc0_gHOBPbxfCGbv950LWrXOnK5-th1ZhuWLUrDWZAt9gzhRrsFK7VbAqeK3DXatgPXeEYnJmhmWvPyiYJnpMLhlj7vQmsEvYxFSb9QrWuTxpHR4z5PXsqHN5VTI6tWZ9Sp5nlMWWYjzpG0bmFljPBtx8SDs3Yb4YFGYLWCpVaATSAY07PCJhwsu8PBJCWqWj2GuAXw92oivxdWpdP5nKRjuAJAiQxAEkeWrA_vSf4UR65N3S2zUqkioMlckMEg04qHE1-_z_2r6_X9sv-Hp23blILs677R-wFBCsXYrPNsyPRw_mJyzqx3GvHO24CcLg7qPx9gq5kUmm
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED5ERfTB-ROnU_Pgm4atzdqmj2NzKOoc-APfapsmMBjd2Kb453uXtXOKCuJzr6G9XJrvmrvvAzgxOowFIhHuxoHidZ1KnpigzmPlOTrBmJIytWITQacjn57C7lwXv612L44kpz0NxNKUTarD1FRnjW9EW0IFVSGvCYwojihyqU6iQZSv3z3OUq6chxJBAeJI3Hzztpnvx_i8NX3gzS9HpHbnaZf-_8wbsJ6jTtaYhskmLOhsC0qFogPLF_gWrM3RE27DcyNjPfvTQadMD8e9_iBjigAl6UpMuGVoQEs2laFmvYzd3J43qi2GSJg1b267Y0b_eVmfys0Z1X3FuAL7mpEcBI6zAw_t8_vmBc8VGbgSnk-69b6pKcfVOjFxgL4lbhgnRcyXeElojESorrVBtxsvlrHjBCKoJ9L4PtqrRIldWMwGmd4DFgfS0wI3UIU5EcEWUUtqqS9EYKTClL0MTjEZkcrpyunt-tGMaNk6NEKHRtah0VsZTmf3DKdkHb9aV4o5jvKFO47ckL5YmOa5ZTgr5vTj8s-j7f_N_BhWuq12dH3ZuTqAVZeiwtbIVGBxMnrRh7CsXie98ejIxvM7ZOHy-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+epsilon+constraint-handling+method+in+MOEA%2FD+for+CMOPs+with+large+infeasible+regions&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Fan%2C+Zhun&rft.au=Li%2C+Wenji&rft.au=Cai%2C+Xinye&rft.au=Huang%2C+Han&rft.date=2019-12-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=23&rft.issue=23&rft.spage=12491&rft.epage=12510&rft_id=info:doi/10.1007%2Fs00500-019-03794-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_019_03794_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon