A Solid‐State Aqueous Electrolyte‐Gated Field‐Effect Transistor as a Low‐Voltage Operation Pressure‐Sensitive Platform
Flexible pressure sensors are increasingly impacting a wide variety of novel applications such as wearable health care sensors, in vivo monitoring, and even artificial skin. As a fundamental device component, organic field‐effect transistors (OFETs) are of great interest due to their inherent advant...
Uložené v:
| Vydané v: | Advanced materials interfaces Ročník 6; číslo 16 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Weinheim
John Wiley & Sons, Inc
01.08.2019
|
| Predmet: | |
| ISSN: | 2196-7350, 2196-7350 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Flexible pressure sensors are increasingly impacting a wide variety of novel applications such as wearable health care sensors, in vivo monitoring, and even artificial skin. As a fundamental device component, organic field‐effect transistors (OFETs) are of great interest due to their inherent advantages related to low‐cost solution fabrication processes and compatibility with plastic substrates. During OFET fabrication, it is almost impossible to avoid the water traces in the organic semiconductor (OSC) active layer, especially when ambient solution processing techniques are employed. Water exhibits a strong influence on the electrical performance in OFETs, such as hysteresis and nonideal transfer characteristics. Here, it is shown that the presence of water in OSCs also results in pressure‐sensitive devices caused by the modification of the water dipole alignment. This exciting phenomenon is exploited in a novel OFET, namely, hydrogel‐based electrolyte‐gated organic field‐effect transistor (HYGOFET), where a soft water‐based hydrogel layer is employed as a dielectric layer. The hydrogel layer plays two major contributions: 1) providing a constant saturated humidity environment and 2) reducing the operation voltage. The HYGOFET exhibits a high electrical performance and relative long‐term stability. Importantly, this device also exhibits an excellent pressure response in the low‐pressure regime (<10 kPa) working with a very low power consumption.
A novel pressure‐sensitive platform based on a solid‐state aqueous electrolyte‐gated field‐effect transistor is presented. By assembling a hydrogel dielectric layer, a high electrical performance and long‐term stability hydrogel‐based electrolyte‐gated organic field‐effect transistor device is achieved. In addition, this device is exploited as a low‐consumption pressure sensor driven by the modification of the water dipole alignment within the organic semiconductor layer. |
|---|---|
| AbstractList | Flexible pressure sensors are increasingly impacting a wide variety of novel applications such as wearable health care sensors, in vivo monitoring, and even artificial skin. As a fundamental device component, organic field‐effect transistors (OFETs) are of great interest due to their inherent advantages related to low‐cost solution fabrication processes and compatibility with plastic substrates. During OFET fabrication, it is almost impossible to avoid the water traces in the organic semiconductor (OSC) active layer, especially when ambient solution processing techniques are employed. Water exhibits a strong influence on the electrical performance in OFETs, such as hysteresis and nonideal transfer characteristics. Here, it is shown that the presence of water in OSCs also results in pressure‐sensitive devices caused by the modification of the water dipole alignment. This exciting phenomenon is exploited in a novel OFET, namely, hydrogel‐based electrolyte‐gated organic field‐effect transistor (HYGOFET), where a soft water‐based hydrogel layer is employed as a dielectric layer. The hydrogel layer plays two major contributions: 1) providing a constant saturated humidity environment and 2) reducing the operation voltage. The HYGOFET exhibits a high electrical performance and relative long‐term stability. Importantly, this device also exhibits an excellent pressure response in the low‐pressure regime (<10 kPa) working with a very low power consumption.
A novel pressure‐sensitive platform based on a solid‐state aqueous electrolyte‐gated field‐effect transistor is presented. By assembling a hydrogel dielectric layer, a high electrical performance and long‐term stability hydrogel‐based electrolyte‐gated organic field‐effect transistor device is achieved. In addition, this device is exploited as a low‐consumption pressure sensor driven by the modification of the water dipole alignment within the organic semiconductor layer. Flexible pressure sensors are increasingly impacting a wide variety of novel applications such as wearable health care sensors, in vivo monitoring, and even artificial skin. As a fundamental device component, organic field‐effect transistors (OFETs) are of great interest due to their inherent advantages related to low‐cost solution fabrication processes and compatibility with plastic substrates. During OFET fabrication, it is almost impossible to avoid the water traces in the organic semiconductor (OSC) active layer, especially when ambient solution processing techniques are employed. Water exhibits a strong influence on the electrical performance in OFETs, such as hysteresis and nonideal transfer characteristics. Here, it is shown that the presence of water in OSCs also results in pressure‐sensitive devices caused by the modification of the water dipole alignment. This exciting phenomenon is exploited in a novel OFET, namely, hydrogel‐based electrolyte‐gated organic field‐effect transistor (HYGOFET), where a soft water‐based hydrogel layer is employed as a dielectric layer. The hydrogel layer plays two major contributions: 1) providing a constant saturated humidity environment and 2) reducing the operation voltage. The HYGOFET exhibits a high electrical performance and relative long‐term stability. Importantly, this device also exhibits an excellent pressure response in the low‐pressure regime (<10 kPa) working with a very low power consumption. |
| Author | Zhang, Qiaoming Leonardi, Francesca Mas‐Torrent, Marta Pfattner, Raphael |
| Author_xml | – sequence: 1 givenname: Qiaoming surname: Zhang fullname: Zhang, Qiaoming organization: Campus de la UAB – sequence: 2 givenname: Francesca surname: Leonardi fullname: Leonardi, Francesca email: fleonardi@icmab.es organization: Campus de la UAB – sequence: 3 givenname: Raphael surname: Pfattner fullname: Pfattner, Raphael organization: Campus de la UAB – sequence: 4 givenname: Marta orcidid: 0000-0002-1586-005X surname: Mas‐Torrent fullname: Mas‐Torrent, Marta email: mmas@icmab.es organization: Campus de la UAB |
| BookMark | eNqFkM1OAjEUhRuDiYhsXTdxDbYznZ8uJwhIgoFkiNtJmbljSsoU2yJhxyP4jD6JRYwaE-Pq9uac7zbnXKJWoxtA6JqSPiUkuBXVWvYDQjkhCeVnqB1QHveSMCKtH-8L1LV2RQihNKBBGrbRIcO5VrJ6O7zmTjjA2fMW9NbioYLSGa32Drw29lKFRxLU0Tmsay_ihRGNldZpg4XFAk_1zouPWjnxBHi2ASOc1A2eG7B2a453cvCEky-A50q4Wpv1FTqvhbLQ_ZwdlI-Gi8F9bzobTwbZtFeGUcx7FHjI02UZVGVZ0apaRrBkYULjpGYJxFCmfo8Yo9yHhZhxxkXKWQi0ErQOO-jmdHVjtA9oXbHSW9P4D4sgSJI0IWnEvIudXKXR1hqoi1K6jwzOCKkKSopj2cWx7OKrbI_1f2EbI9fC7P8G-AnYSQX7f9xFdvcw-WbfAZ5bmsI |
| CitedBy_id | crossref_primary_10_3390_electronics11050716 crossref_primary_10_1002_admt_202100445 crossref_primary_10_3390_app10186403 crossref_primary_10_1002_pi_6095 crossref_primary_10_1039_D4TC05403B crossref_primary_10_1515_polyeng_2023_0044 crossref_primary_10_1002_adfm_202105799 crossref_primary_10_1002_adma_202403937 crossref_primary_10_3390_polym12010128 crossref_primary_10_1002_aisy_202400760 crossref_primary_10_1016_j_wees_2024_03_002 crossref_primary_10_1039_D4TC04265D crossref_primary_10_1002_inf2_12376 crossref_primary_10_1007_s11467_020_0985_1 crossref_primary_10_1109_TED_2022_3148700 crossref_primary_10_1016_j_est_2023_108810 crossref_primary_10_1109_LED_2020_3042310 |
| Cites_doi | 10.1038/s41598-018-26263-1 10.1038/ncomms2639 10.1002/adma.201800129 10.1002/adma.201305182 10.1021/acsami.8b11362 10.1002/adma.201602479 10.1039/B713122D 10.1038/nmat4785 10.1002/adma.201104580 10.1002/adfm.201703899 10.1088/2058-8585/aac8a8 10.1038/ncomms4002 10.1063/1.2396924 10.1002/adfm.201502274 10.1038/ncomms7269 10.3390/molecules21111577 10.1073/pnas.1110626108 10.1021/acsami.8b15319 10.1038/nmat2834 10.1021/acs.jpcc.5b10694 10.1002/adfm.201806092 10.1002/adfm.201400712 10.1038/ncomms3133 10.1002/aelm.201500452 10.1021/jp110166u 10.1002/aelm.201700271 10.1073/pnas.0401918101 10.1002/advs.201701041 10.1038/srep06596 10.1016/j.biomaterials.2010.01.020 10.1002/adma.201805630 10.1002/adfm.201606755 10.1103/PhysRevB.97.144111 10.1038/ncomms2832 10.1002/aelm.201600356 10.1016/j.eml.2016.05.015 10.1002/admt.201600090 10.1021/bm005583j 10.1039/C4MH00147H 10.1038/srep39623 10.1016/j.bios.2007.01.021 10.1016/j.progpolymsci.2012.09.001 |
| ContentType | Journal Article |
| Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/admi.201900719 |
| DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2196-7350 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_admi_201900719 ADMI201900719 |
| Genre | article |
| GrantInformation_xml | – fundername: Generalitat de Catalunya funderid: 2017‐SGR‐918 – fundername: Spanish Ministry of Economy and Competitiveness funderid: SEV‐2015‐0496 – fundername: FANCY funderid: CTQ2016‐80030‐R – fundername: DGI – fundername: Networking Research Center on Bioengineering, Biomaterials and Nanomedicine – fundername: ERC funderid: StG 2012‐306826 e‐GAMES |
| GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG DPXWK EBS EJD G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ M~E O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW AAFWJ AAMMB AAYXX ABJCF ABJNI ACCMX ADMLS AEFGJ AFFHD AFKRA AFPKN AGXDD AIDQK AIDYY ARAPS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ KB. M7S PDBOC PHGZM PHGZT PQGLB PTHSS 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3569-1e9398bc2dccd1ddb5eb437167f47e6ec8eb454419219e64949a8943e1da1f3 |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474075500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2196-7350 |
| IngestDate | Fri Jul 25 12:03:09 EDT 2025 Sat Nov 29 07:23:02 EST 2025 Tue Nov 18 21:45:43 EST 2025 Sat Aug 24 01:13:06 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c3569-1e9398bc2dccd1ddb5eb437167f47e6ec8eb454419219e64949a8943e1da1f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1586-005X |
| PQID | 2277870854 |
| PQPubID | 2034582 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2277870854 crossref_citationtrail_10_1002_admi_201900719 crossref_primary_10_1002_admi_201900719 wiley_primary_10_1002_admi_201900719_ADMI201900719 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-01 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Advanced materials interfaces |
| PublicationYear | 2019 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2015; 2 2004; 101 2011; 115 2010; 31 2015; 6 2013; 4 2015; 4 2019; 31 2017; 27 2008; 18 2014; 26 2014; 24 2000; 1 2012; 37 2016; 120 2016; 6 2018; 8 2014; 5 2018; 3 2016; 1 2011; 108 2016; 2 2018; 5 2018; 4 2006; 89 2017; 16 2016; 21 2019; 29 2018; 30 2012; 24 2016; 28 2018; 10 2007; 22 2016; 26 2018; 97 2016; 9 2010; 9 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
| References_xml | – volume: 2 start-page: 1500452 year: 2016 publication-title: Adv. Electron. Mater. – volume: 6 start-page: 39623 year: 2016 publication-title: Sci. Rep. – volume: 26 start-page: 3451 year: 2014 publication-title: Adv. Mater. – volume: 10 start-page: 39083 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 024001 year: 2018 publication-title: Flexible Printed Electron. – volume: 24 start-page: 1146 year: 2012 publication-title: Adv. Mater. – volume: 18 start-page: 116 year: 2008 publication-title: J. Mater. Chem. – volume: 9 start-page: 859 year: 2010 publication-title: Nat. Mater. – volume: 10 start-page: 41570 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 1600356 year: 2016 publication-title: Adv. Electron. Mater. – volume: 30 start-page: 1800129 year: 2018 publication-title: Adv. Mater. – volume: 27 start-page: 1703899 year: 2017 publication-title: Adv. Funct. Mater. – volume: 31 start-page: 1805630 year: 2019 publication-title: Adv. Mater. – volume: 21 start-page: 1577 year: 2016 publication-title: Molecules – volume: 120 start-page: 108 year: 2016 publication-title: J. Phys. Chem. C – volume: 4 start-page: 1700271 year: 2018 publication-title: Adv. Electron. Mater. – volume: 9 start-page: 269 year: 2016 publication-title: Extreme Mech. Lett. – volume: 6 start-page: 6269 year: 2015 publication-title: Nat. Commun. – volume: 31 start-page: 3156 year: 2010 publication-title: Biomaterials – volume: 97 start-page: 144111 year: 2018 publication-title: Phys. Rev. B – volume: 89 start-page: 213509 year: 2006 publication-title: Appl. Phys. Lett. – volume: 29 start-page: 1806092 year: 2019 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 1600090 year: 2016 publication-title: Adv. Mater. Technol. – volume: 2 start-page: 140 year: 2015 publication-title: Mater. Horiz. – volume: 5 start-page: 3002 year: 2014 publication-title: Nat. Commun. – volume: 115 start-page: 3315 year: 2011 publication-title: J. Phys. Chem. B – volume: 4 start-page: 6596 year: 2015 publication-title: Sci. Rep. – volume: 16 start-page: 356 year: 2017 publication-title: Nat. Mater. – volume: 4 start-page: 1859 year: 2013 publication-title: Nat. Commun. – volume: 37 start-page: 1678 year: 2012 publication-title: Prog. Polym. Sci. – volume: 24 start-page: 5427 year: 2014 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 1701041 year: 2018 publication-title: Adv. Sci. – volume: 28 start-page: 10311 year: 2016 publication-title: Adv. Mater. – volume: 26 start-page: 2379 year: 2016 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 2133 year: 2013 publication-title: Nat. Commun. – volume: 108 start-page: 14455 year: 2011 publication-title: Proc. Natl. Acad. Sci. USA – volume: 27 start-page: 1606755 year: 2017 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 730 year: 2000 publication-title: Biomacromolecules – volume: 101 start-page: 9966 year: 2004 publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 start-page: 1633 year: 2013 publication-title: Nat. Commun. – volume: 22 start-page: 2775 year: 2007 publication-title: Biosens. Bioelectron. – volume: 8 start-page: 8073 year: 2018 publication-title: Sci. Rep. – ident: e_1_2_7_14_1 doi: 10.1038/s41598-018-26263-1 – ident: e_1_2_7_11_1 doi: 10.1038/ncomms2639 – ident: e_1_2_7_19_1 doi: 10.1002/adma.201800129 – ident: e_1_2_7_7_1 doi: 10.1002/adma.201305182 – ident: e_1_2_7_24_1 doi: 10.1021/acsami.8b11362 – ident: e_1_2_7_36_1 doi: 10.1002/adma.201602479 – ident: e_1_2_7_39_1 doi: 10.1039/B713122D – ident: e_1_2_7_35_1 doi: 10.1038/nmat4785 – ident: e_1_2_7_20_1 doi: 10.1002/adma.201104580 – ident: e_1_2_7_30_1 doi: 10.1002/adfm.201703899 – ident: e_1_2_7_25_1 doi: 10.1088/2058-8585/aac8a8 – ident: e_1_2_7_8_1 doi: 10.1038/ncomms4002 – ident: e_1_2_7_34_1 doi: 10.1063/1.2396924 – ident: e_1_2_7_28_1 doi: 10.1002/adfm.201502274 – ident: e_1_2_7_6_1 doi: 10.1038/ncomms7269 – ident: e_1_2_7_21_1 doi: 10.3390/molecules21111577 – ident: e_1_2_7_31_1 doi: 10.1073/pnas.1110626108 – ident: e_1_2_7_12_1 doi: 10.1021/acsami.8b15319 – ident: e_1_2_7_1_1 doi: 10.1038/nmat2834 – ident: e_1_2_7_37_1 doi: 10.1021/acs.jpcc.5b10694 – ident: e_1_2_7_17_1 doi: 10.1002/adfm.201806092 – ident: e_1_2_7_4_1 doi: 10.1002/adfm.201400712 – ident: e_1_2_7_42_1 doi: 10.1038/ncomms3133 – ident: e_1_2_7_15_1 doi: 10.1002/aelm.201500452 – ident: e_1_2_7_38_1 doi: 10.1021/jp110166u – ident: e_1_2_7_40_1 doi: 10.1002/aelm.201700271 – ident: e_1_2_7_13_1 doi: 10.1073/pnas.0401918101 – ident: e_1_2_7_18_1 doi: 10.1002/advs.201701041 – ident: e_1_2_7_32_1 doi: 10.1038/srep06596 – ident: e_1_2_7_22_1 doi: 10.1016/j.biomaterials.2010.01.020 – ident: e_1_2_7_9_1 doi: 10.1002/adma.201805630 – ident: e_1_2_7_26_1 doi: 10.1002/adfm.201606755 – ident: e_1_2_7_33_1 doi: 10.1103/PhysRevB.97.144111 – ident: e_1_2_7_3_1 doi: 10.1038/ncomms2832 – ident: e_1_2_7_5_1 doi: 10.1002/aelm.201600356 – ident: e_1_2_7_10_1 doi: 10.1016/j.eml.2016.05.015 – ident: e_1_2_7_27_1 doi: 10.1002/admt.201600090 – ident: e_1_2_7_41_1 doi: 10.1021/bm005583j – ident: e_1_2_7_2_1 doi: 10.1039/C4MH00147H – ident: e_1_2_7_29_1 doi: 10.1038/srep39623 – ident: e_1_2_7_16_1 doi: 10.1016/j.bios.2007.01.021 – ident: e_1_2_7_23_1 doi: 10.1016/j.progpolymsci.2012.09.001 |
| SSID | ssj0001121283 |
| Score | 2.2746127 |
| Snippet | Flexible pressure sensors are increasingly impacting a wide variety of novel applications such as wearable health care sensors, in vivo monitoring, and even... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | agarose gel Aqueous electrolytes Biocompatibility Dipoles Electric potential Electrolytes electrolyte‐gated organic field‐effect transistors Field effect transistors flexible devices Hydrogels Power consumption pressure response Pressure sensors Semiconductor devices Substrates Transistors Voltage water dipole |
| Title | A Solid‐State Aqueous Electrolyte‐Gated Field‐Effect Transistor as a Low‐Voltage Operation Pressure‐Sensitive Platform |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.201900719 https://www.proquest.com/docview/2277870854 |
| Volume | 6 |
| WOSCitedRecordID | wos000474075500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2196-7350 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001121283 issn: 2196-7350 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWAhIXxKe6UJAPSBxWgcTZfPgYQSuQ2rKwK9Rb5NiOtFK6WW1CKRfUn8Av5MAvYezYTgqLKAcu0cZxnCjz1jO23rxB6BkNeSQS3_emXJcwi4hXEO574NsDIktSUqZ1Zg-T4-P05ITORqPvNhfmrEpWq_T8nK7_q6mhDYytUmf_wdxuUGiA32B0OILZ4Xglw2eTeV3BUy2LQYeTkwzmf8V23e_K3lRfWul6qB00MTnQxaptm1E11q5MK4mogjRsclh_dl0-1lWrGD_v1tLAqMs13PQjzxU9XpOTZhVrVXw8DIYzyz-AqLn7Mlq9YlMqmthvO9rvl6w-tY5WU4hgEQHwtuE33NPTjmYla1uTy_OBrV1mgN57b9z7LWqtTmWSllo23ANRaVep3QPRUyVMu7GXhJ2E7Qu5pc3M9fEQ0vFWF9JJ0jJxulTEP6piMNo7S0sQ-MWHOmZjpwJNcnV_7u6_hq6TJKJq1j36OtgDDCBw0Eqx7mWtrqhPXl5-hctxU78YGi6pdEy0uINum8UMzjoQ3kUjubqHbmpSMW_uo4sMayj-uPimQYgNCPEAhHBNww9r-MFZBzzcAw-zBjMMwIOLBnLYQQ5byKlnWLBhC7YHaH6wv3j1xjMVPzweRjH1AklDmhacCM5FIEQRyWIawpI-KaeJjCVP4VxVzaPwwWSslJWYKiAgA8GCMnyIdlb1Su4izEWR-EKyNC0g_AoJxGFlXAaFTyFoKwM2Rp79mjk3YviqJkuVbzfgGD13_dedDMwfe-5Z4-RmVmhyQhLlGNNoOkZEG-wvo-TZ66O37uzRlZ_-GN3q_x97aKfdfJJP0A1-1i6bzVONvp8kN8Rg |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Solid%E2%80%90State+Aqueous+Electrolyte%E2%80%90Gated+Field%E2%80%90Effect+Transistor+as+a+Low%E2%80%90Voltage+Operation+Pressure%E2%80%90Sensitive+Platform&rft.jtitle=Advanced+materials+interfaces&rft.au=Zhang%2C+Qiaoming&rft.au=Leonardi%2C+Francesca&rft.au=Pfattner%2C+Raphael&rft.au=Mas%E2%80%90Torrent%2C+Marta&rft.date=2019-08-01&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=6&rft.issue=16&rft_id=info:doi/10.1002%2Fadmi.201900719&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_admi_201900719 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |