A Solid‐State Aqueous Electrolyte‐Gated Field‐Effect Transistor as a Low‐Voltage Operation Pressure‐Sensitive Platform

Flexible pressure sensors are increasingly impacting a wide variety of novel applications such as wearable health care sensors, in vivo monitoring, and even artificial skin. As a fundamental device component, organic field‐effect transistors (OFETs) are of great interest due to their inherent advant...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced materials interfaces Ročník 6; číslo 16
Hlavní autori: Zhang, Qiaoming, Leonardi, Francesca, Pfattner, Raphael, Mas‐Torrent, Marta
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Weinheim John Wiley & Sons, Inc 01.08.2019
Predmet:
ISSN:2196-7350, 2196-7350
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Flexible pressure sensors are increasingly impacting a wide variety of novel applications such as wearable health care sensors, in vivo monitoring, and even artificial skin. As a fundamental device component, organic field‐effect transistors (OFETs) are of great interest due to their inherent advantages related to low‐cost solution fabrication processes and compatibility with plastic substrates. During OFET fabrication, it is almost impossible to avoid the water traces in the organic semiconductor (OSC) active layer, especially when ambient solution processing techniques are employed. Water exhibits a strong influence on the electrical performance in OFETs, such as hysteresis and nonideal transfer characteristics. Here, it is shown that the presence of water in OSCs also results in pressure‐sensitive devices caused by the modification of the water dipole alignment. This exciting phenomenon is exploited in a novel OFET, namely, hydrogel‐based electrolyte‐gated organic field‐effect transistor (HYGOFET), where a soft water‐based hydrogel layer is employed as a dielectric layer. The hydrogel layer plays two major contributions: 1) providing a constant saturated humidity environment and 2) reducing the operation voltage. The HYGOFET exhibits a high electrical performance and relative long‐term stability. Importantly, this device also exhibits an excellent pressure response in the low‐pressure regime (<10 kPa) working with a very low power consumption. A novel pressure‐sensitive platform based on a solid‐state aqueous electrolyte‐gated field‐effect transistor is presented. By assembling a hydrogel dielectric layer, a high electrical performance and long‐term stability hydrogel‐based electrolyte‐gated organic field‐effect transistor device is achieved. In addition, this device is exploited as a low‐consumption pressure sensor driven by the modification of the water dipole alignment within the organic semiconductor layer.
AbstractList Flexible pressure sensors are increasingly impacting a wide variety of novel applications such as wearable health care sensors, in vivo monitoring, and even artificial skin. As a fundamental device component, organic field‐effect transistors (OFETs) are of great interest due to their inherent advantages related to low‐cost solution fabrication processes and compatibility with plastic substrates. During OFET fabrication, it is almost impossible to avoid the water traces in the organic semiconductor (OSC) active layer, especially when ambient solution processing techniques are employed. Water exhibits a strong influence on the electrical performance in OFETs, such as hysteresis and nonideal transfer characteristics. Here, it is shown that the presence of water in OSCs also results in pressure‐sensitive devices caused by the modification of the water dipole alignment. This exciting phenomenon is exploited in a novel OFET, namely, hydrogel‐based electrolyte‐gated organic field‐effect transistor (HYGOFET), where a soft water‐based hydrogel layer is employed as a dielectric layer. The hydrogel layer plays two major contributions: 1) providing a constant saturated humidity environment and 2) reducing the operation voltage. The HYGOFET exhibits a high electrical performance and relative long‐term stability. Importantly, this device also exhibits an excellent pressure response in the low‐pressure regime (<10 kPa) working with a very low power consumption.
Flexible pressure sensors are increasingly impacting a wide variety of novel applications such as wearable health care sensors, in vivo monitoring, and even artificial skin. As a fundamental device component, organic field‐effect transistors (OFETs) are of great interest due to their inherent advantages related to low‐cost solution fabrication processes and compatibility with plastic substrates. During OFET fabrication, it is almost impossible to avoid the water traces in the organic semiconductor (OSC) active layer, especially when ambient solution processing techniques are employed. Water exhibits a strong influence on the electrical performance in OFETs, such as hysteresis and nonideal transfer characteristics. Here, it is shown that the presence of water in OSCs also results in pressure‐sensitive devices caused by the modification of the water dipole alignment. This exciting phenomenon is exploited in a novel OFET, namely, hydrogel‐based electrolyte‐gated organic field‐effect transistor (HYGOFET), where a soft water‐based hydrogel layer is employed as a dielectric layer. The hydrogel layer plays two major contributions: 1) providing a constant saturated humidity environment and 2) reducing the operation voltage. The HYGOFET exhibits a high electrical performance and relative long‐term stability. Importantly, this device also exhibits an excellent pressure response in the low‐pressure regime (<10 kPa) working with a very low power consumption. A novel pressure‐sensitive platform based on a solid‐state aqueous electrolyte‐gated field‐effect transistor is presented. By assembling a hydrogel dielectric layer, a high electrical performance and long‐term stability hydrogel‐based electrolyte‐gated organic field‐effect transistor device is achieved. In addition, this device is exploited as a low‐consumption pressure sensor driven by the modification of the water dipole alignment within the organic semiconductor layer.
Author Zhang, Qiaoming
Leonardi, Francesca
Mas‐Torrent, Marta
Pfattner, Raphael
Author_xml – sequence: 1
  givenname: Qiaoming
  surname: Zhang
  fullname: Zhang, Qiaoming
  organization: Campus de la UAB
– sequence: 2
  givenname: Francesca
  surname: Leonardi
  fullname: Leonardi, Francesca
  email: fleonardi@icmab.es
  organization: Campus de la UAB
– sequence: 3
  givenname: Raphael
  surname: Pfattner
  fullname: Pfattner, Raphael
  organization: Campus de la UAB
– sequence: 4
  givenname: Marta
  orcidid: 0000-0002-1586-005X
  surname: Mas‐Torrent
  fullname: Mas‐Torrent, Marta
  email: mmas@icmab.es
  organization: Campus de la UAB
BookMark eNqFkM1OAjEUhRuDiYhsXTdxDbYznZ8uJwhIgoFkiNtJmbljSsoU2yJhxyP4jD6JRYwaE-Pq9uac7zbnXKJWoxtA6JqSPiUkuBXVWvYDQjkhCeVnqB1QHveSMCKtH-8L1LV2RQihNKBBGrbRIcO5VrJ6O7zmTjjA2fMW9NbioYLSGa32Drw29lKFRxLU0Tmsay_ihRGNldZpg4XFAk_1zouPWjnxBHi2ASOc1A2eG7B2a453cvCEky-A50q4Wpv1FTqvhbLQ_ZwdlI-Gi8F9bzobTwbZtFeGUcx7FHjI02UZVGVZ0apaRrBkYULjpGYJxFCmfo8Yo9yHhZhxxkXKWQi0ErQOO-jmdHVjtA9oXbHSW9P4D4sgSJI0IWnEvIudXKXR1hqoi1K6jwzOCKkKSopj2cWx7OKrbI_1f2EbI9fC7P8G-AnYSQX7f9xFdvcw-WbfAZ5bmsI
CitedBy_id crossref_primary_10_3390_electronics11050716
crossref_primary_10_1002_admt_202100445
crossref_primary_10_3390_app10186403
crossref_primary_10_1002_pi_6095
crossref_primary_10_1039_D4TC05403B
crossref_primary_10_1515_polyeng_2023_0044
crossref_primary_10_1002_adfm_202105799
crossref_primary_10_1002_adma_202403937
crossref_primary_10_3390_polym12010128
crossref_primary_10_1002_aisy_202400760
crossref_primary_10_1016_j_wees_2024_03_002
crossref_primary_10_1039_D4TC04265D
crossref_primary_10_1002_inf2_12376
crossref_primary_10_1007_s11467_020_0985_1
crossref_primary_10_1109_TED_2022_3148700
crossref_primary_10_1016_j_est_2023_108810
crossref_primary_10_1109_LED_2020_3042310
Cites_doi 10.1038/s41598-018-26263-1
10.1038/ncomms2639
10.1002/adma.201800129
10.1002/adma.201305182
10.1021/acsami.8b11362
10.1002/adma.201602479
10.1039/B713122D
10.1038/nmat4785
10.1002/adma.201104580
10.1002/adfm.201703899
10.1088/2058-8585/aac8a8
10.1038/ncomms4002
10.1063/1.2396924
10.1002/adfm.201502274
10.1038/ncomms7269
10.3390/molecules21111577
10.1073/pnas.1110626108
10.1021/acsami.8b15319
10.1038/nmat2834
10.1021/acs.jpcc.5b10694
10.1002/adfm.201806092
10.1002/adfm.201400712
10.1038/ncomms3133
10.1002/aelm.201500452
10.1021/jp110166u
10.1002/aelm.201700271
10.1073/pnas.0401918101
10.1002/advs.201701041
10.1038/srep06596
10.1016/j.biomaterials.2010.01.020
10.1002/adma.201805630
10.1002/adfm.201606755
10.1103/PhysRevB.97.144111
10.1038/ncomms2832
10.1002/aelm.201600356
10.1016/j.eml.2016.05.015
10.1002/admt.201600090
10.1021/bm005583j
10.1039/C4MH00147H
10.1038/srep39623
10.1016/j.bios.2007.01.021
10.1016/j.progpolymsci.2012.09.001
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/admi.201900719
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID 10_1002_admi_201900719
ADMI201900719
Genre article
GrantInformation_xml – fundername: Generalitat de Catalunya
  funderid: 2017‐SGR‐918
– fundername: Spanish Ministry of Economy and Competitiveness
  funderid: SEV‐2015‐0496
– fundername: FANCY
  funderid: CTQ2016‐80030‐R
– fundername: DGI
– fundername: Networking Research Center on Bioengineering, Biomaterials and Nanomedicine
– fundername: ERC
  funderid: StG 2012‐306826 e‐GAMES
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
DPXWK
EBS
EJD
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
M~E
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAFWJ
AAMMB
AAYXX
ABJCF
ABJNI
ACCMX
ADMLS
AEFGJ
AFFHD
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
KB.
M7S
PDBOC
PHGZM
PHGZT
PQGLB
PTHSS
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3569-1e9398bc2dccd1ddb5eb437167f47e6ec8eb454419219e64949a8943e1da1f3
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474075500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2196-7350
IngestDate Fri Jul 25 12:03:09 EDT 2025
Sat Nov 29 07:23:02 EST 2025
Tue Nov 18 21:45:43 EST 2025
Sat Aug 24 01:13:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3569-1e9398bc2dccd1ddb5eb437167f47e6ec8eb454419219e64949a8943e1da1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1586-005X
PQID 2277870854
PQPubID 2034582
PageCount 8
ParticipantIDs proquest_journals_2277870854
crossref_citationtrail_10_1002_admi_201900719
crossref_primary_10_1002_admi_201900719
wiley_primary_10_1002_admi_201900719_ADMI201900719
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2015; 2
2004; 101
2011; 115
2010; 31
2015; 6
2013; 4
2015; 4
2019; 31
2017; 27
2008; 18
2014; 26
2014; 24
2000; 1
2012; 37
2016; 120
2016; 6
2018; 8
2014; 5
2018; 3
2016; 1
2011; 108
2016; 2
2018; 5
2018; 4
2006; 89
2017; 16
2016; 21
2019; 29
2018; 30
2012; 24
2016; 28
2018; 10
2007; 22
2016; 26
2018; 97
2016; 9
2010; 9
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 2
  start-page: 1500452
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 6
  start-page: 39623
  year: 2016
  publication-title: Sci. Rep.
– volume: 26
  start-page: 3451
  year: 2014
  publication-title: Adv. Mater.
– volume: 10
  start-page: 39083
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 024001
  year: 2018
  publication-title: Flexible Printed Electron.
– volume: 24
  start-page: 1146
  year: 2012
  publication-title: Adv. Mater.
– volume: 18
  start-page: 116
  year: 2008
  publication-title: J. Mater. Chem.
– volume: 9
  start-page: 859
  year: 2010
  publication-title: Nat. Mater.
– volume: 10
  start-page: 41570
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 1600356
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 30
  start-page: 1800129
  year: 2018
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1703899
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 31
  start-page: 1805630
  year: 2019
  publication-title: Adv. Mater.
– volume: 21
  start-page: 1577
  year: 2016
  publication-title: Molecules
– volume: 120
  start-page: 108
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 1700271
  year: 2018
  publication-title: Adv. Electron. Mater.
– volume: 9
  start-page: 269
  year: 2016
  publication-title: Extreme Mech. Lett.
– volume: 6
  start-page: 6269
  year: 2015
  publication-title: Nat. Commun.
– volume: 31
  start-page: 3156
  year: 2010
  publication-title: Biomaterials
– volume: 97
  start-page: 144111
  year: 2018
  publication-title: Phys. Rev. B
– volume: 89
  start-page: 213509
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 29
  start-page: 1806092
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 1600090
  year: 2016
  publication-title: Adv. Mater. Technol.
– volume: 2
  start-page: 140
  year: 2015
  publication-title: Mater. Horiz.
– volume: 5
  start-page: 3002
  year: 2014
  publication-title: Nat. Commun.
– volume: 115
  start-page: 3315
  year: 2011
  publication-title: J. Phys. Chem. B
– volume: 4
  start-page: 6596
  year: 2015
  publication-title: Sci. Rep.
– volume: 16
  start-page: 356
  year: 2017
  publication-title: Nat. Mater.
– volume: 4
  start-page: 1859
  year: 2013
  publication-title: Nat. Commun.
– volume: 37
  start-page: 1678
  year: 2012
  publication-title: Prog. Polym. Sci.
– volume: 24
  start-page: 5427
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 1701041
  year: 2018
  publication-title: Adv. Sci.
– volume: 28
  start-page: 10311
  year: 2016
  publication-title: Adv. Mater.
– volume: 26
  start-page: 2379
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 2133
  year: 2013
  publication-title: Nat. Commun.
– volume: 108
  start-page: 14455
  year: 2011
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 27
  start-page: 1606755
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 730
  year: 2000
  publication-title: Biomacromolecules
– volume: 101
  start-page: 9966
  year: 2004
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4
  start-page: 1633
  year: 2013
  publication-title: Nat. Commun.
– volume: 22
  start-page: 2775
  year: 2007
  publication-title: Biosens. Bioelectron.
– volume: 8
  start-page: 8073
  year: 2018
  publication-title: Sci. Rep.
– ident: e_1_2_7_14_1
  doi: 10.1038/s41598-018-26263-1
– ident: e_1_2_7_11_1
  doi: 10.1038/ncomms2639
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201800129
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.201305182
– ident: e_1_2_7_24_1
  doi: 10.1021/acsami.8b11362
– ident: e_1_2_7_36_1
  doi: 10.1002/adma.201602479
– ident: e_1_2_7_39_1
  doi: 10.1039/B713122D
– ident: e_1_2_7_35_1
  doi: 10.1038/nmat4785
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201104580
– ident: e_1_2_7_30_1
  doi: 10.1002/adfm.201703899
– ident: e_1_2_7_25_1
  doi: 10.1088/2058-8585/aac8a8
– ident: e_1_2_7_8_1
  doi: 10.1038/ncomms4002
– ident: e_1_2_7_34_1
  doi: 10.1063/1.2396924
– ident: e_1_2_7_28_1
  doi: 10.1002/adfm.201502274
– ident: e_1_2_7_6_1
  doi: 10.1038/ncomms7269
– ident: e_1_2_7_21_1
  doi: 10.3390/molecules21111577
– ident: e_1_2_7_31_1
  doi: 10.1073/pnas.1110626108
– ident: e_1_2_7_12_1
  doi: 10.1021/acsami.8b15319
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat2834
– ident: e_1_2_7_37_1
  doi: 10.1021/acs.jpcc.5b10694
– ident: e_1_2_7_17_1
  doi: 10.1002/adfm.201806092
– ident: e_1_2_7_4_1
  doi: 10.1002/adfm.201400712
– ident: e_1_2_7_42_1
  doi: 10.1038/ncomms3133
– ident: e_1_2_7_15_1
  doi: 10.1002/aelm.201500452
– ident: e_1_2_7_38_1
  doi: 10.1021/jp110166u
– ident: e_1_2_7_40_1
  doi: 10.1002/aelm.201700271
– ident: e_1_2_7_13_1
  doi: 10.1073/pnas.0401918101
– ident: e_1_2_7_18_1
  doi: 10.1002/advs.201701041
– ident: e_1_2_7_32_1
  doi: 10.1038/srep06596
– ident: e_1_2_7_22_1
  doi: 10.1016/j.biomaterials.2010.01.020
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201805630
– ident: e_1_2_7_26_1
  doi: 10.1002/adfm.201606755
– ident: e_1_2_7_33_1
  doi: 10.1103/PhysRevB.97.144111
– ident: e_1_2_7_3_1
  doi: 10.1038/ncomms2832
– ident: e_1_2_7_5_1
  doi: 10.1002/aelm.201600356
– ident: e_1_2_7_10_1
  doi: 10.1016/j.eml.2016.05.015
– ident: e_1_2_7_27_1
  doi: 10.1002/admt.201600090
– ident: e_1_2_7_41_1
  doi: 10.1021/bm005583j
– ident: e_1_2_7_2_1
  doi: 10.1039/C4MH00147H
– ident: e_1_2_7_29_1
  doi: 10.1038/srep39623
– ident: e_1_2_7_16_1
  doi: 10.1016/j.bios.2007.01.021
– ident: e_1_2_7_23_1
  doi: 10.1016/j.progpolymsci.2012.09.001
SSID ssj0001121283
Score 2.2747595
Snippet Flexible pressure sensors are increasingly impacting a wide variety of novel applications such as wearable health care sensors, in vivo monitoring, and even...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms agarose gel
Aqueous electrolytes
Biocompatibility
Dipoles
Electric potential
Electrolytes
electrolyte‐gated organic field‐effect transistors
Field effect transistors
flexible devices
Hydrogels
Power consumption
pressure response
Pressure sensors
Semiconductor devices
Substrates
Transistors
Voltage
water dipole
Title A Solid‐State Aqueous Electrolyte‐Gated Field‐Effect Transistor as a Low‐Voltage Operation Pressure‐Sensitive Platform
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.201900719
https://www.proquest.com/docview/2277870854
Volume 6
WOSCitedRecordID wos000474075500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2196-7350
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001121283
  issn: 2196-7350
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKAhIXxFMUFuQDEocqkHfiYwS7AoldCq3Q3iIndqRK2aZqwz4uaH8Cv5ADv4TxxHayUMRy4GLVju1Enq_jsfXNDCHPk7RKXL-IHERwKEQJelAClkUpi4hXTIoCk00kh4fp0RGbjkbfjS_MSZ0sl-nZGVv9V1FDGwhbuc7-g7jtpNAAv0HoUILYobyS4LPJrKnhrYbFgObkJAP9r9iue13am_q8lbaHukETk31MVm3adFRj3MowkohKSMMn75tT2-VzU7eK8fNhJTWMOl_DdT_zTNHjkZw0rXmr7OOhMZwZ_gFYzd3KYPSKdaVoYr_daH9c8ObYbLRIIYJDBMDbmN8wpqcdTSvettqX5xNfWc8AvHvf2O-bNxidSjsttXx4B6LcrlJzB4KqEtRu7CRBF8L2pdzSpnV9PIR0vHUL6ULScnG8UMQ_pmww1m-WhiDwyx5qmY1dFGg_V-NzO_4aue4nEVNa9-Dr4A7QA8MBI8XajzVxRV3_1eVPuGw39Yeh4ZEKbaL5HXJbH2Zo1oHwLhnJ5T1yE0nF5eY-ucgoQvHHxTcEIdUgpAMQwjOEH0X4Qa0DHu2BR_mGcgrAg4cactRCjhrIqXcYsFEDtgdktr83f_3W0Rk_nDKIYuZ4kgUsLUpflKXwhCgiWYQBHOmTKkxkLMsU6iprHoMFk7GKrMRVAgHpCe5VwUOys2yW8hGhfiwFdyvfTbkMXVEVYIkyKOE8nMY8rMbEMauZlzoYvsrJUufbBTgmL2z_VRcG5o89d41wcq0VNrnvJ2pjTKNwTHwU2F9mybM3B-9s7fGV3_6E3Or_H7tkp11_kU_JjfKkXWzWzxB9PwEJJcXG
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Solid%E2%80%90State+Aqueous+Electrolyte%E2%80%90Gated+Field%E2%80%90Effect+Transistor+as+a+Low%E2%80%90Voltage+Operation+Pressure%E2%80%90Sensitive+Platform&rft.jtitle=Advanced+materials+interfaces&rft.au=Zhang%2C+Qiaoming&rft.au=Leonardi%2C+Francesca&rft.au=Pfattner%2C+Raphael&rft.au=Mas%E2%80%90Torrent%2C+Marta&rft.date=2019-08-01&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=6&rft.issue=16&rft_id=info:doi/10.1002%2Fadmi.201900719&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_admi_201900719
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon