Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodium‐Ion Batteries
Considering the ever‐growing climatic degeneration, sustainable and renewable energy sources are needed to be effectively integrated into the grid through large‐scale electrochemical energy storage and conversion (EESC) technologies. With regard to their competent benefit in cost and sustainable sup...
Uložené v:
| Vydané v: | Advanced functional materials Ročník 30; číslo 30 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken
Wiley Subscription Services, Inc
01.07.2020
|
| Predmet: | |
| ISSN: | 1616-301X, 1616-3028 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Considering the ever‐growing climatic degeneration, sustainable and renewable energy sources are needed to be effectively integrated into the grid through large‐scale electrochemical energy storage and conversion (EESC) technologies. With regard to their competent benefit in cost and sustainable supply of resource, room‐temperature sodium‐ion batteries (SIBs) have shown great promise in EESC, triumphing over other battery systems on the market. As one of the most fascinating cathode materials due to the simple synthesis process, large specific capacity, and high ionic conductivity, Na‐based layered transition metal oxide cathodes commonly suffer from the sluggish kinetics, multiphase evolution, poor air stability, and insufficient comprehensive performance, restricting their commercialization application. Here, this review summarizes the recent advances in layered oxide cathode materials for SIBs through different optimal structure modulation technologies, with an emphasis placed on strategies to boost Na+ kinetics and reduce the irreversible phase transition as well as enhance the store stability. Meanwhile, a thorough and in‐depth systematical investigation of the structure–function–property relationship is also discussed, and the challenges as well as opportunities for practical application electrode materials are sketched. The insights brought forward in this review can be considered as a guide for SIBs in next‐generation EESC.
The recent research progress of structure modulation technology on layered transition metal oxide cathodes for sodium‐ion batteries is summarized, concentrating especially on morphology design, coating technology, phase transition, ordering‐disordering, air stability, and composite structure to boost Na+ kinetics, suppress the irreversible phase transition, enhance the storage stability, improve the overall performance, and further realize sodium‐ion battery commercialization for market applications. |
|---|---|
| AbstractList | Considering the ever‐growing climatic degeneration, sustainable and renewable energy sources are needed to be effectively integrated into the grid through large‐scale electrochemical energy storage and conversion (EESC) technologies. With regard to their competent benefit in cost and sustainable supply of resource, room‐temperature sodium‐ion batteries (SIBs) have shown great promise in EESC, triumphing over other battery systems on the market. As one of the most fascinating cathode materials due to the simple synthesis process, large specific capacity, and high ionic conductivity, Na‐based layered transition metal oxide cathodes commonly suffer from the sluggish kinetics, multiphase evolution, poor air stability, and insufficient comprehensive performance, restricting their commercialization application. Here, this review summarizes the recent advances in layered oxide cathode materials for SIBs through different optimal structure modulation technologies, with an emphasis placed on strategies to boost Na+ kinetics and reduce the irreversible phase transition as well as enhance the store stability. Meanwhile, a thorough and in‐depth systematical investigation of the structure–function–property relationship is also discussed, and the challenges as well as opportunities for practical application electrode materials are sketched. The insights brought forward in this review can be considered as a guide for SIBs in next‐generation EESC.
The recent research progress of structure modulation technology on layered transition metal oxide cathodes for sodium‐ion batteries is summarized, concentrating especially on morphology design, coating technology, phase transition, ordering‐disordering, air stability, and composite structure to boost Na+ kinetics, suppress the irreversible phase transition, enhance the storage stability, improve the overall performance, and further realize sodium‐ion battery commercialization for market applications. Considering the ever‐growing climatic degeneration, sustainable and renewable energy sources are needed to be effectively integrated into the grid through large‐scale electrochemical energy storage and conversion (EESC) technologies. With regard to their competent benefit in cost and sustainable supply of resource, room‐temperature sodium‐ion batteries (SIBs) have shown great promise in EESC, triumphing over other battery systems on the market. As one of the most fascinating cathode materials due to the simple synthesis process, large specific capacity, and high ionic conductivity, Na‐based layered transition metal oxide cathodes commonly suffer from the sluggish kinetics, multiphase evolution, poor air stability, and insufficient comprehensive performance, restricting their commercialization application. Here, this review summarizes the recent advances in layered oxide cathode materials for SIBs through different optimal structure modulation technologies, with an emphasis placed on strategies to boost Na+ kinetics and reduce the irreversible phase transition as well as enhance the store stability. Meanwhile, a thorough and in‐depth systematical investigation of the structure–function–property relationship is also discussed, and the challenges as well as opportunities for practical application electrode materials are sketched. The insights brought forward in this review can be considered as a guide for SIBs in next‐generation EESC. |
| Author | Li, Shi Yang, Tingqiang Zhu, Yan‐Fang Wang, Lude Guo, Xiao‐Dong Zhang, Han Ling, Wei Peng, Ling Guo, Yu‐Guo Tan, Shuang‐Jie Abbasi, Nasir Mahmood Yin, Ya‐Xia Xiao, Yao |
| Author_xml | – sequence: 1 givenname: Yao surname: Xiao fullname: Xiao, Yao organization: Nanyang Technological University – sequence: 2 givenname: Nasir Mahmood surname: Abbasi fullname: Abbasi, Nasir Mahmood organization: Shenzhen University – sequence: 3 givenname: Yan‐Fang surname: Zhu fullname: Zhu, Yan‐Fang organization: Sichuan University – sequence: 4 givenname: Shi surname: Li fullname: Li, Shi organization: Sichuan University – sequence: 5 givenname: Shuang‐Jie surname: Tan fullname: Tan, Shuang‐Jie organization: Chinese Academy of Sciences (CAS) – sequence: 6 givenname: Wei surname: Ling fullname: Ling, Wei organization: Chinese Academy of Sciences (CAS) – sequence: 7 givenname: Ling surname: Peng fullname: Peng, Ling organization: Shenzhen University – sequence: 8 givenname: Tingqiang surname: Yang fullname: Yang, Tingqiang organization: Shenzhen University – sequence: 9 givenname: Lude surname: Wang fullname: Wang, Lude organization: Shenzhen University – sequence: 10 givenname: Xiao‐Dong orcidid: 0000-0003-0322-8476 surname: Guo fullname: Guo, Xiao‐Dong organization: Sichuan University – sequence: 11 givenname: Ya‐Xia surname: Yin fullname: Yin, Ya‐Xia organization: Chinese Academy of Sciences (CAS) – sequence: 12 givenname: Han surname: Zhang fullname: Zhang, Han email: hzhang@szu.edu.cn organization: Shenzhen University – sequence: 13 givenname: Yu‐Guo surname: Guo fullname: Guo, Yu‐Guo email: ygguo@iccas.ac.cn organization: Chinese Academy of Sciences (CAS) |
| BookMark | eNqFkE1Lw0AQhhdRsK1ePQc8t-5HPo-1Wi20VGgFL7JsdmdtSpKtmw2amz_B3-gvMbVSQRBPM8y8z7zM20WHpSkBoTOCBwRjeiGULgYUU4wJY_4B6pCQhH2GaXy478nDMepW1brVRBHzO-hxKhqwoLz5a6bAGwm3Mgoq786awrh2njbewtlautqCNzOqzoXLTOktQa5Kk5unxtPGegujsrr4eHuftLtL4RzYDKoTdKRFXsHpd-2h-_H1cnTbn85vJqPhtC9ZEPp9HeM00X4iFaWUsUCFMhYxhoD5GhOR4lQzqWMdER37VMcKx4EEwiQAJiQIWQ-d7-5urHmuoXJ8bWpbtpac-jQkEcZJ0KoGO5W0pqosaL6xWSFswwnm2wj5NkK-j7AF_F-AzNzX-86KLP8bS3bYS5ZD848JH16NZz_sJ7XUiaw |
| CitedBy_id | crossref_primary_10_1002_adfm_202106923 crossref_primary_10_1002_aenm_202301854 crossref_primary_10_1002_aenm_202301975 crossref_primary_10_1016_j_ssi_2021_115737 crossref_primary_10_1002_anie_202411059 crossref_primary_10_1016_j_jechem_2022_06_016 crossref_primary_10_1007_s11426_022_1550_2 crossref_primary_10_1002_ente_202000730 crossref_primary_10_1016_j_cej_2021_130680 crossref_primary_10_1002_elt2_31 crossref_primary_10_1016_j_ssi_2024_116545 crossref_primary_10_1016_j_jpowsour_2025_236718 crossref_primary_10_1088_2516_1075_acba6e crossref_primary_10_1016_j_pmatsci_2024_101425 crossref_primary_10_1002_smm2_1191 crossref_primary_10_1016_j_est_2023_107242 crossref_primary_10_1016_j_est_2023_109025 crossref_primary_10_1002_aenm_202102489 crossref_primary_10_1016_j_nanoen_2024_109528 crossref_primary_10_3390_coatings13030626 crossref_primary_10_1002_ente_202200879 crossref_primary_10_1002_eom2_12141 crossref_primary_10_1002_ange_202415450 crossref_primary_10_1002_smll_202506348 crossref_primary_10_1016_j_jcis_2025_01_278 crossref_primary_10_1002_celc_202200821 crossref_primary_10_1016_j_est_2023_108291 crossref_primary_10_1002_aenm_202203521 crossref_primary_10_1016_j_jcis_2022_04_112 crossref_primary_10_1007_s40820_024_01546_7 crossref_primary_10_1016_j_ceramint_2021_12_097 crossref_primary_10_1002_adfm_202205661 crossref_primary_10_1002_aenm_202303773 crossref_primary_10_1007_s40843_025_3567_x crossref_primary_10_1016_j_jallcom_2025_180310 crossref_primary_10_1002_adfm_202209026 crossref_primary_10_1002_adfm_202506098 crossref_primary_10_1016_j_nanoen_2022_107482 crossref_primary_10_1002_adfm_202206154 crossref_primary_10_1002_smtd_202300635 crossref_primary_10_1039_D0EE02997A crossref_primary_10_1016_j_jechem_2023_02_016 crossref_primary_10_1016_j_est_2025_118048 crossref_primary_10_1016_j_electacta_2022_140394 crossref_primary_10_1002_cnl2_7 crossref_primary_10_1002_inf2_12636 crossref_primary_10_1007_s11581_022_04845_4 crossref_primary_10_1016_S1872_5805_23_60725_5 crossref_primary_10_1002_anie_202416290 crossref_primary_10_1002_ange_202411059 crossref_primary_10_1007_s12598_024_03196_5 crossref_primary_10_1016_j_apsusc_2023_157856 crossref_primary_10_1002_ente_202100190 crossref_primary_10_1039_D5QI01070E crossref_primary_10_1002_cnl2_136 crossref_primary_10_1063_5_0051093 crossref_primary_10_1007_s12274_022_4687_6 crossref_primary_10_1016_j_jallcom_2025_180723 crossref_primary_10_1007_s10854_025_14258_4 crossref_primary_10_1002_adfm_202422106 crossref_primary_10_1002_adma_202417876 crossref_primary_10_1016_j_jallcom_2023_171808 crossref_primary_10_1016_j_cej_2021_128719 crossref_primary_10_1021_acs_jpcc_4c08703 crossref_primary_10_1002_batt_202100108 crossref_primary_10_1016_j_susmat_2024_e01059 crossref_primary_10_1016_j_jallcom_2022_165083 crossref_primary_10_1002_adma_202100409 crossref_primary_10_1016_j_jpowsour_2021_230324 crossref_primary_10_1002_smll_202006259 crossref_primary_10_1039_D0SC05427E crossref_primary_10_1039_D5GC03154K crossref_primary_10_1002_adfm_202111466 crossref_primary_10_1002_tcr_202200122 crossref_primary_10_1016_j_jcis_2025_138674 crossref_primary_10_1016_j_nanoen_2024_109562 crossref_primary_10_1002_sus2_265 crossref_primary_10_1016_j_actamat_2023_119392 crossref_primary_10_1002_adsu_202500678 crossref_primary_10_1002_ange_202416290 crossref_primary_10_1016_j_jcis_2024_08_054 crossref_primary_10_1016_j_ensm_2025_104188 crossref_primary_10_1002_adfm_202109319 crossref_primary_10_1002_adma_202202695 crossref_primary_10_1002_batt_202400744 crossref_primary_10_1039_D4EE00796D crossref_primary_10_1088_2515_7639_abf545 crossref_primary_10_1016_j_cej_2025_162805 crossref_primary_10_1039_D3EE02934D crossref_primary_10_1039_D0QM01105C crossref_primary_10_1007_s11581_021_03944_y crossref_primary_10_1002_adma_202413760 crossref_primary_10_3390_batteries8090105 crossref_primary_10_1007_s10008_025_06440_9 crossref_primary_10_1016_j_mtener_2022_101106 crossref_primary_10_1039_D1NH00585E crossref_primary_10_1002_smll_202502861 crossref_primary_10_1016_j_jelechem_2023_117916 crossref_primary_10_1016_j_cej_2021_130813 crossref_primary_10_1016_j_jechem_2022_09_016 crossref_primary_10_1016_j_mattod_2025_07_027 crossref_primary_10_1002_celc_202400657 crossref_primary_10_26599_NRE_2025_9120177 crossref_primary_10_4274_tjd_galenos_2025_29053 crossref_primary_10_1016_j_ceramint_2024_04_170 crossref_primary_10_1016_j_jechem_2023_10_023 crossref_primary_10_1016_j_electacta_2023_142521 crossref_primary_10_1016_j_jallcom_2023_170386 crossref_primary_10_1002_inf2_12422 crossref_primary_10_1016_j_nanoen_2021_106504 crossref_primary_10_1002_smtd_202200455 crossref_primary_10_26599_NRE_2025_9120185 crossref_primary_10_1002_adfm_202505824 crossref_primary_10_1002_adma_202402008 crossref_primary_10_1002_aenm_202300149 crossref_primary_10_1002_adma_202307938 crossref_primary_10_1002_smll_202400845 crossref_primary_10_1002_batt_202300476 crossref_primary_10_1016_j_jechem_2022_06_037 crossref_primary_10_1002_anie_202016334 crossref_primary_10_1002_cnl2_55 crossref_primary_10_1039_D4SC05206D crossref_primary_10_1002_smll_202406542 crossref_primary_10_1002_celc_202000963 crossref_primary_10_1002_adfm_202417258 crossref_primary_10_1002_ange_202513887 crossref_primary_10_1039_D3NR02373G crossref_primary_10_1016_j_cej_2023_146090 crossref_primary_10_1002_batt_202500095 crossref_primary_10_1016_j_apsusc_2022_152643 crossref_primary_10_1002_smm2_1211 crossref_primary_10_1039_D3QI01884A crossref_primary_10_3390_cryst13091339 crossref_primary_10_1016_S1872_5805_22_60616_4 crossref_primary_10_1016_j_ensm_2025_104575 crossref_primary_10_1021_acs_energyfuels_5c01717 crossref_primary_10_1002_adfm_202402398 crossref_primary_10_1016_j_electacta_2025_147232 crossref_primary_10_1002_aenm_202201511 crossref_primary_10_1002_ange_202016334 crossref_primary_10_1016_j_ensm_2025_104295 crossref_primary_10_1007_s11581_021_04265_w crossref_primary_10_1016_j_electacta_2023_141859 crossref_primary_10_1002_anie_202513887 crossref_primary_10_1007_s12274_023_6164_2 crossref_primary_10_1016_j_jechem_2023_03_014 crossref_primary_10_1002_cey2_464 crossref_primary_10_1007_s43979_023_00053_9 crossref_primary_10_1016_j_cej_2025_161145 crossref_primary_10_1016_j_nanoen_2025_110814 crossref_primary_10_1002_adfm_202207548 crossref_primary_10_1007_s10008_021_05067_w crossref_primary_10_1039_D4CC06789D crossref_primary_10_1002_smtd_202201201 crossref_primary_10_1002_anie_202415450 |
| Cites_doi | 10.1016/j.electacta.2018.08.124 10.1002/adma.201903483 10.1016/j.jpowsour.2019.04.038 10.1002/cssc.201702322 10.1002/adma.201600846 10.1002/adfm.201705237 10.1039/C8TA00206A 10.1002/ange.202003878 10.1021/jacs.9b01855 10.1021/acs.chemmater.5b00097 10.1002/aenm.201701428 10.1016/j.nanoen.2017.02.037 10.1039/C7EE02995K 10.1002/advs.201600275 10.1007/s11581-016-1659-4 10.1002/aenm.201702403 10.1021/acsami.7b16077 10.1002/adma.201701968 10.1002/adfm.201804458 10.1002/aenm.201501727 10.1007/s12274-019-2451-3 10.1021/acs.chemmater.6b01935 10.1021/cr500192f 10.1021/acs.nanolett.8b03637 10.1039/C7TA00455A 10.1039/C8TA06551A 10.1002/advs.201700219 10.1002/aenm.201601698 10.1002/anie.201912171 10.1002/cssc.201301254 10.1002/adma.201902352 10.1002/adma.201803031 10.1021/acsami.8b00478 10.1039/C8CP06248J 10.1149/2.0041605jes 10.1002/aenm.201901785 10.1021/acsami.8b05288 10.1002/aenm.201903966 10.1002/adma.201700210 10.1002/aenm.201700189 10.1007/s41918-018-0008-x 10.1039/C4TA02627F 10.1038/nmat3478 10.1002/smtd.201800221 10.1039/C7NR00663B 10.1039/C8CS00342D 10.1002/aenm.201800212 10.1039/C5TA05205J 10.1021/acsami.8b10519 10.1021/acs.chemmater.7b02772 10.1016/j.jpowsour.2018.07.066 10.1002/anie.201912101 10.1016/j.ensm.2016.06.005 10.1002/smtd.201600063 10.1002/anie.201802672 10.1021/acs.chemmater.6b04769 10.1016/j.physrep.2019.01.005 10.1002/adma.201704531 10.1039/C7TA00880E 10.1021/acs.jpcc.8b05537 10.1016/j.electacta.2016.07.089 10.1021/jacs.7b05176 10.1002/aenm.201702588 10.1016/j.isci.2019.07.029 10.1039/C5EE00695C 10.1002/aenm.201803978 10.1016/j.electacta.2019.04.140 10.1039/C7NR03318D 10.1002/anie.201903466 10.1002/adfm.201705833 10.1002/aenm.201800492 10.1016/j.jallcom.2018.10.380 10.1016/j.scib.2018.02.012 10.1038/s41560-018-0180-6 10.1002/anie.201304762 10.1016/j.nanoen.2018.09.073 10.1038/s41467-019-12310-6 10.1016/j.jpowsour.2013.02.047 10.1016/j.nanoen.2017.11.006 10.1007/s10008-019-04375-6 10.1002/smtd.201800183 10.1002/aenm.201703137 10.1039/C8NR00650D 10.1002/advs.201801908 10.1016/j.chempr.2019.08.003 10.1002/aenm.201803346 10.1016/j.cej.2019.122978 10.1016/j.jpowsour.2018.04.077 10.1002/adma.201803765 10.1002/anie.201411788 10.1002/adfm.201901912 10.1016/j.jallcom.2016.11.245 10.1039/C6EE01807F 10.1002/anie.201606415 10.1039/c4cp00826j 10.1021/cm300466b 10.1002/adma.201807770 10.1002/aenm.201900189 10.1038/nmat3435 10.1016/j.chempr.2019.10.008 10.1016/j.ceramint.2016.12.048 10.1126/sciadv.aar6018 10.1021/acsami.7b05326 10.1021/acsami.7b11282 10.1021/acs.chemmater.7b01146 10.1038/nmat2920 10.1039/C4EE03192J 10.1002/smtd.201800205 10.1002/anie.201702024 10.1038/451652a 10.1039/C4TA03946G 10.1002/adom.201701166 10.1002/cssc.201500155 10.1002/anie.201505215 10.1016/j.jpowsour.2018.02.053 10.1021/acsenergylett.9b01732 10.1021/acsami.7b04338 10.1007/s11426-014-5154-3 10.1002/smll.201900470 10.1002/aenm.201500944 10.1016/j.jpowsour.2018.10.058 10.1002/adma.201605535 10.1039/c3ta01430d 10.1002/anie.201911698 10.1002/anie.201602202 10.1021/cm702981a 10.1016/j.nanoen.2018.10.072 10.1002/adfm.201808306 10.1002/aenm.201703012 10.1021/jacs.8b08638 10.1002/smll.201904388 10.1021/acsami.8b20149 10.1002/adfm.201801898 10.1021/acsenergylett.7b00930 10.1002/ange.201811882 10.1002/ange.201400032 10.1021/acs.chemmater.8b02614 10.1039/C7TA11180K 10.1002/adma.201805468 10.1016/j.nanoen.2016.07.021 10.31635/ccschem.019.20190055 10.1039/C6CS00776G 10.1002/aenm.201703415 10.1002/adma.201100904 10.1038/ncomms7401 10.1039/C9CC08155K 10.1002/adma.201904816 10.1002/smll.201703671 10.1016/j.chempr.2018.01.007 10.1002/smtd.201900223 10.1038/s41467-019-11195-9 10.1021/acsami.9b03326 10.1039/C7EE00566K 10.1021/acsami.9b19260 10.1016/j.materresbull.2013.03.027 10.1002/adfm.201701870 10.1038/ncomms7954 10.1002/aenm.201702469 10.1039/C8EE01006D 10.1021/acs.chemmater.5b04557 10.1039/C7EE00827A 10.1016/j.joule.2017.10.008 10.1002/anie.201805555 10.1002/advs.201500031 10.1016/j.nanoen.2018.07.042 10.1021/acs.chemmater.5b03276 10.1002/aenm.201701610 10.1002/anie.201902185 10.1002/aenm.201701785 10.1002/anie.201804130 10.1016/j.ensm.2018.05.001 10.1021/acsami.8b17976 10.1038/s41467-017-00157-8 10.1016/j.nanoen.2020.104474 10.1038/ncomms7865 10.1016/j.jpowsour.2019.03.073 10.1016/j.jpowsour.2018.06.047 10.1002/smtd.201900239 10.1002/adma.201502449 |
| ContentType | Journal Article |
| Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.202001334 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adfm_202001334 ADFM202001334 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: College‐Enterprise Coorperation Project of Sichuan University funderid: 19H0628; 18H0357 – fundername: Science and Technology Innovation Commission of Shenzhen funderid: JCYJ20170811093453105 – fundername: National Key Research and Development Program of China funderid: 2017YFB0307504 – fundername: Library of Innovation Spark Project of Sichuan University funderid: 2018SCUH0094 – fundername: National Natural Science Foundation of China funderid: 21878195; 21805198; 21805018; 51772301; 61875138; 6181101252 – fundername: Outstanding Youth Science Foundation of Sichuan University funderid: 2017SCU04A08 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMMB AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 O8X 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3564-f80b9f49cd222335d6c8a80e534f01ab0bf3cf8f71f842f8d085ce13cee011563 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 222 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529662800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Sun Nov 09 07:44:26 EST 2025 Sat Nov 29 07:24:03 EST 2025 Tue Nov 18 21:42:06 EST 2025 Wed Jan 22 16:32:49 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 30 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3564-f80b9f49cd222335d6c8a80e534f01ab0bf3cf8f71f842f8d085ce13cee011563 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0322-8476 |
| PQID | 2426170095 |
| PQPubID | 2045204 |
| PageCount | 28 |
| ParticipantIDs | proquest_journals_2426170095 crossref_primary_10_1002_adfm_202001334 crossref_citationtrail_10_1002_adfm_202001334 wiley_primary_10_1002_adfm_202001334_ADFM202001334 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-01 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2013; 1 2019; 11 2019; 10 2019; 12 2019; 15 2020; 16 2019; 19 2020; 12 2020; 10 2018; 43 2012; 11 2018; 47 2018; 6 2018; 8 2018; 451 2018; 3 2018; 291 2018; 2 2018; 4 2018; 1 2013; 236 2019; 23 2013; 52 2014; 16 2019; 313 2019; 795 2019; 29 2018; 30 2008; 20 2012; 24 2014; 126 2018; 28 2019; 9 2019; 4 2019; 3 2019; 6 2019; 5 2019; 31 2020; 382 2019; 1 2015; 54 2018; 21 2016; 163 2017; 139 2016; 5 2016; 6 2017; 56 2016; 213 2018; 12 2016; 28 2018; 11 2018; 10 2016; 27 2016; 9 2018; 15 2018; 14 2016; 22 2017; 5 2017; 7 2018; 122 2017; 8 2017; 1 2017; 2 2017; 4 2019; 55 2019; 56 2017; 43 2017; 46 2019; 58 2020; 59 2011; 10 2018; 406 2017; 9 2014; 2 2013; 12 2020; 132 2017; 34 2014; 57 2011; 23 2014; 7 2015; 2 2018; 383 2015; 6 2013; 48 2015; 5 2015; 3 2017; 27 2019; 423 2018; 63 2019; 427 2017; 29 2019; 141 2015; 8 2014; 114 2017; 699 2016; 55 2018; 396 2018; 391 2015; 27 2017; 10 2018; 398 2020; 69 2018; 52 2019; 777 2008; 451 2018; 54 2019; 131 2018; 57 e_1_2_6_114_1 e_1_2_6_137_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_152_1 e_1_2_6_175_1 e_1_2_6_110_1 e_1_2_6_133_1 e_1_2_6_156_1 e_1_2_6_179_1 e_1_2_6_19_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_148_1 e_1_2_6_129_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_163_1 e_1_2_6_140_1 e_1_2_6_121_1 e_1_2_6_167_1 e_1_2_6_102_1 e_1_2_6_144_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_170_1 e_1_2_6_1_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_136_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_159_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_174_1 e_1_2_6_151_1 e_1_2_6_132_1 e_1_2_6_178_1 e_1_2_6_113_1 e_1_2_6_155_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_128_1 e_1_2_6_147_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_61_1 e_1_2_6_120_1 e_1_2_6_162_1 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_143_1 e_1_2_6_166_1 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_116_1 e_1_2_6_139_1 e_1_2_6_158_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_131_1 e_1_2_6_150_1 e_1_2_6_173_1 e_1_2_6_112_1 e_1_2_6_135_1 e_1_2_6_154_1 e_1_2_6_177_1 e_1_2_6_180_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_127_1 e_1_2_6_169_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_108_1 e_1_2_6_142_1 e_1_2_6_161_1 e_1_2_6_100_1 e_1_2_6_146_1 e_1_2_6_123_1 e_1_2_6_165_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_115_1 e_1_2_6_75_1 e_1_2_6_138_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_119_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_153_1 Xu C. (e_1_2_6_44_1) 2019; 11 e_1_2_6_130_1 e_1_2_6_172_1 e_1_2_6_111_1 e_1_2_6_157_1 e_1_2_6_134_1 e_1_2_6_176_1 e_1_2_6_160_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_103_1 e_1_2_6_126_1 e_1_2_6_149_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_107_1 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_141_1 e_1_2_6_164_1 e_1_2_6_122_1 e_1_2_6_145_1 e_1_2_6_168_1 e_1_2_6_8_1 e_1_2_6_171_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_29_1 e_1_2_6_67_1 |
| References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 3385 year: 2019 publication-title: Nat. Commun. – volume: 213 start-page: 496 year: 2016 publication-title: Electrochim. Acta – volume: 16 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 55 start-page: 7445 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 28 start-page: 7243 year: 2016 publication-title: Adv. Mater. – volume: 3 start-page: 936 year: 2018 publication-title: Nat. Energy – volume: 7 start-page: 1870 year: 2014 publication-title: ChemSusChem – volume: 14 year: 2018 publication-title: Small – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 57 start-page: 8178 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 382 year: 2020 publication-title: Chem. Eng. J. – volume: 1 start-page: 3895 year: 2013 publication-title: J. Mater. Chem. A – volume: 141 start-page: 840 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 699 start-page: 358 year: 2017 publication-title: J. Alloys Compd. – volume: 8 start-page: 81 year: 2015 publication-title: Energy Environ. Sci. – volume: 10 start-page: 4458 year: 2019 publication-title: Nat. Commun. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1677 year: 2017 publication-title: Energy Environ. Sci. – volume: 52 start-page: 88 year: 2018 publication-title: Nano Energy – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 30 start-page: 8145 year: 2018 publication-title: Chem. Mater. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 57 start-page: 1564 year: 2014 publication-title: Sci. China: Chem. – volume: 11 start-page: 4037 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 59 start-page: 1491 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 18 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 54 start-page: 148 year: 2018 publication-title: Nano Energy – volume: 423 start-page: 144 year: 2019 publication-title: J. Power Sources – volume: 15 start-page: 257 year: 2018 publication-title: Energy Storage Mater. – volume: 4 start-page: 833 year: 2018 publication-title: Chem – volume: 11 start-page: 1223 year: 2018 publication-title: ChemSusChem – volume: 63 start-page: 376 year: 2018 publication-title: Sci. Bull. – volume: 5 start-page: 8752 year: 2017 publication-title: J. Mater. Chem. A – volume: 10 start-page: 74 year: 2011 publication-title: Nat. Mater. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 34 start-page: 131 year: 2017 publication-title: Nano Energy – volume: 55 start-page: 143 year: 2019 publication-title: Nano Energy – volume: 163 start-page: A584 year: 2016 publication-title: J. Electrochem. Soc. – volume: 69 year: 2020 publication-title: Nano Energy – volume: 59 start-page: 264 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 589 year: 2019 publication-title: CCS Chem. – volume: 8 start-page: 135 year: 2017 publication-title: Nat. Commun. – volume: 5 start-page: 3220 year: 2019 publication-title: Chem – volume: 28 start-page: 106 year: 2016 publication-title: Chem. Mater. – volume: 9 start-page: 2978 year: 2016 publication-title: Energy Environ. Sci. – volume: 56 start-page: 245 year: 2019 publication-title: Chem. Commun. – volume: 12 start-page: 74 year: 2013 publication-title: Nat. Mater. – volume: 12 start-page: 2018 year: 2019 publication-title: Nano Res. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 6 start-page: 6865 year: 2015 publication-title: Nat. Commun. – volume: 27 start-page: 2515 year: 2015 publication-title: Chem. Mater. – volume: 23 start-page: 3155 year: 2011 publication-title: Adv. Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 56 start-page: 5801 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 27 start-page: 602 year: 2016 publication-title: Nano Energy – volume: 22 start-page: 1361 year: 2016 publication-title: Ionics – volume: 2 start-page: 125 year: 2018 publication-title: Joule – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 9 start-page: 8096 year: 2017 publication-title: Nanoscale – volume: 54 start-page: 5894 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 29 start-page: 1623 year: 2017 publication-title: Chem. Mater. – volume: 52 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 21 start-page: 314 year: 2018 publication-title: Phys. Chem. Chem. Phys. – volume: 451 year: 2018 publication-title: Adv. Energy Mater. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 451 start-page: 652 year: 2008 publication-title: Nature – volume: 24 start-page: 1846 year: 2012 publication-title: Chem. Mater. – volume: 10 start-page: 1051 year: 2017 publication-title: Energy Environ. Sci. – volume: 23 start-page: 2979 year: 2019 publication-title: J. Solid State Electrochem. – volume: 43 start-page: 1 year: 2018 publication-title: Nano Energy – volume: 28 start-page: 5087 year: 2016 publication-title: Chem. Mater. – volume: 19 start-page: 244 year: 2019 publication-title: iScience – volume: 12 start-page: 825 year: 2018 publication-title: Energy Environ. Sci. – volume: 12 start-page: 7144 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 1470 year: 2018 publication-title: Energy Environ. Sci. – volume: 406 start-page: 110 year: 2018 publication-title: J. Power Sources – volume: 6 start-page: 6675 year: 2018 publication-title: J. Mater. Chem. A – volume: 141 start-page: 6680 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 391 start-page: 106 year: 2018 publication-title: J. Power Sources – volume: 131 start-page: 1426 year: 2019 publication-title: Angew. Chem. – volume: 139 start-page: 8440 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 16 year: 2020 publication-title: Small – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 10 start-page: 3562 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 58 start-page: 7802 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 126 start-page: 6002 year: 2014 publication-title: Angew. Chem. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 8 start-page: 2019 year: 2015 publication-title: Energy Environ. Sci. – volume: 291 start-page: 84 year: 2018 publication-title: Electrochim. Acta – volume: 427 start-page: 129 year: 2019 publication-title: J. Power Sources – volume: 48 start-page: 2678 year: 2013 publication-title: Mater. Res. Bull. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 6401 year: 2015 publication-title: Nat. Commun. – volume: 46 start-page: 3529 year: 2017 publication-title: Chem. Soc. Rev. – volume: 777 start-page: 434 year: 2019 publication-title: J. Alloys Compd. – volume: 43 start-page: 3866 year: 2017 publication-title: Ceram. Int. – volume: 2 year: 2015 publication-title: Adv. Sci. – volume: 27 start-page: 6928 year: 2015 publication-title: Adv. Mater. – volume: 9 year: 2017 publication-title: Nanoscale – volume: 57 start-page: 8901 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 856 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 313 start-page: 122 year: 2019 publication-title: Electrochim. Acta – volume: 11 start-page: 942 year: 2012 publication-title: Nat. Mater. – volume: 6 start-page: 6954 year: 2015 publication-title: Nat. Commun. – volume: 2 start-page: 2715 year: 2017 publication-title: ACS Energy Lett. – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: Adv. Opt. Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 795 start-page: 1 year: 2019 publication-title: Phys. Rep. – volume: 236 start-page: 1 year: 2013 publication-title: J. Power Sources – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 47 start-page: 5588 year: 2018 publication-title: Chem. Soc. Rev. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 29 start-page: 8958 year: 2017 publication-title: Chem. Mater. – volume: 15 year: 2019 publication-title: Small – volume: 1 year: 2017 publication-title: Small Methods – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 29 start-page: 6684 year: 2017 publication-title: Chem. Mater. – volume: 4 start-page: 2409 year: 2019 publication-title: ACS Energy Lett. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 3 year: 2019 publication-title: Small Methods – volume: 5 start-page: 2913 year: 2019 publication-title: Chem – volume: 383 start-page: 80 year: 2018 publication-title: J. Power Sources – volume: 6 start-page: 3552 year: 2018 publication-title: J. Mater. Chem. A – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 4 year: 2019 publication-title: Small Methods – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 396 start-page: 379 year: 2018 publication-title: J. Power Sources – volume: 132 start-page: 7005 year: 2020 publication-title: Angew. Chem. Int. Ed. – volume: 20 start-page: 479 year: 2008 publication-title: Chem. Mater. – volume: 5 start-page: 6581 year: 2017 publication-title: J. Mater. Chem. A – volume: 1 start-page: 294 year: 2018 publication-title: Electrochem. Energy Rev. – volume: 10 start-page: 6671 year: 2018 publication-title: Nanoscale – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 8 start-page: 2537 year: 2015 publication-title: ChemSusChem – volume: 58 start-page: 7020 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 19 start-page: 182 year: 2019 publication-title: Nano Lett. – volume: 5 start-page: 116 year: 2016 publication-title: Energy Storage Mater. – volume: 28 start-page: 2041 year: 2016 publication-title: Chem. Mater. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 398 start-page: 175 year: 2018 publication-title: J. Power Sources – ident: e_1_2_6_8_1 doi: 10.1016/j.electacta.2018.08.124 – ident: e_1_2_6_93_1 doi: 10.1002/adma.201903483 – ident: e_1_2_6_162_1 doi: 10.1016/j.jpowsour.2019.04.038 – ident: e_1_2_6_96_1 doi: 10.1002/cssc.201702322 – ident: e_1_2_6_67_1 doi: 10.1002/adma.201600846 – ident: e_1_2_6_12_1 doi: 10.1002/adfm.201705237 – ident: e_1_2_6_169_1 doi: 10.1039/C8TA00206A – ident: e_1_2_6_174_1 doi: 10.1002/ange.202003878 – ident: e_1_2_6_94_1 doi: 10.1021/jacs.9b01855 – ident: e_1_2_6_141_1 doi: 10.1021/acs.chemmater.5b00097 – ident: e_1_2_6_89_1 doi: 10.1002/aenm.201701428 – ident: e_1_2_6_26_1 doi: 10.1016/j.nanoen.2017.02.037 – ident: e_1_2_6_126_1 doi: 10.1039/C7EE02995K – ident: e_1_2_6_75_1 doi: 10.1002/advs.201600275 – ident: e_1_2_6_48_1 doi: 10.1007/s11581-016-1659-4 – ident: e_1_2_6_180_1 doi: 10.1002/aenm.201702403 – ident: e_1_2_6_131_1 doi: 10.1021/acsami.7b16077 – ident: e_1_2_6_64_1 doi: 10.1002/adma.201701968 – ident: e_1_2_6_39_1 doi: 10.1002/adfm.201804458 – ident: e_1_2_6_43_1 doi: 10.1002/aenm.201501727 – ident: e_1_2_6_81_1 doi: 10.1007/s12274-019-2451-3 – ident: e_1_2_6_125_1 doi: 10.1021/acs.chemmater.6b01935 – ident: e_1_2_6_42_1 doi: 10.1021/cr500192f – ident: e_1_2_6_143_1 doi: 10.1021/acs.nanolett.8b03637 – ident: e_1_2_6_28_1 doi: 10.1039/C7TA00455A – ident: e_1_2_6_113_1 doi: 10.1039/C8TA06551A – ident: e_1_2_6_82_1 doi: 10.1002/advs.201700219 – ident: e_1_2_6_83_1 doi: 10.1002/aenm.201601698 – ident: e_1_2_6_118_1 doi: 10.1002/anie.201912171 – ident: e_1_2_6_166_1 doi: 10.1002/cssc.201301254 – ident: e_1_2_6_15_1 doi: 10.1002/adma.201902352 – ident: e_1_2_6_11_1 doi: 10.1002/adma.201803031 – ident: e_1_2_6_164_1 doi: 10.1021/acsami.8b00478 – ident: e_1_2_6_115_1 doi: 10.1039/C8CP06248J – ident: e_1_2_6_170_1 doi: 10.1149/2.0041605jes – ident: e_1_2_6_74_1 doi: 10.1002/aenm.201901785 – ident: e_1_2_6_6_1 doi: 10.1021/acsami.8b05288 – ident: e_1_2_6_54_1 doi: 10.1002/aenm.201903966 – ident: e_1_2_6_119_1 doi: 10.1002/adma.201700210 – ident: e_1_2_6_117_1 doi: 10.1002/aenm.201700189 – ident: e_1_2_6_61_1 doi: 10.1007/s41918-018-0008-x – ident: e_1_2_6_136_1 doi: 10.1039/C4TA02627F – ident: e_1_2_6_5_1 doi: 10.1038/nmat3478 – ident: e_1_2_6_60_1 doi: 10.1002/smtd.201800221 – ident: e_1_2_6_9_1 doi: 10.1039/C7NR00663B – ident: e_1_2_6_13_1 doi: 10.1039/C8CS00342D – ident: e_1_2_6_40_1 doi: 10.1002/aenm.201800212 – ident: e_1_2_6_158_1 doi: 10.1039/C5TA05205J – ident: e_1_2_6_172_1 doi: 10.1021/acsami.8b10519 – ident: e_1_2_6_35_1 doi: 10.1021/acs.chemmater.7b02772 – ident: e_1_2_6_62_1 doi: 10.1016/j.jpowsour.2018.07.066 – ident: e_1_2_6_150_1 doi: 10.1002/anie.201912101 – ident: e_1_2_6_52_1 doi: 10.1016/j.ensm.2016.06.005 – ident: e_1_2_6_33_1 doi: 10.1002/smtd.201600063 – ident: e_1_2_6_25_1 doi: 10.1002/anie.201802672 – ident: e_1_2_6_59_1 doi: 10.1021/acs.chemmater.6b04769 – ident: e_1_2_6_17_1 doi: 10.1016/j.physrep.2019.01.005 – ident: e_1_2_6_19_1 doi: 10.1002/adma.201704531 – ident: e_1_2_6_127_1 doi: 10.1039/C7TA00880E – ident: e_1_2_6_135_1 doi: 10.1021/acs.jpcc.8b05537 – ident: e_1_2_6_148_1 doi: 10.1016/j.electacta.2016.07.089 – ident: e_1_2_6_147_1 doi: 10.1021/jacs.7b05176 – ident: e_1_2_6_34_1 doi: 10.1002/aenm.201702588 – ident: e_1_2_6_3_1 doi: 10.1016/j.isci.2019.07.029 – ident: e_1_2_6_7_1 doi: 10.1039/C5EE00695C – ident: e_1_2_6_102_1 doi: 10.1002/aenm.201803978 – ident: e_1_2_6_163_1 doi: 10.1016/j.electacta.2019.04.140 – ident: e_1_2_6_18_1 doi: 10.1039/C7NR03318D – ident: e_1_2_6_45_1 doi: 10.1002/anie.201903466 – ident: e_1_2_6_14_1 doi: 10.1002/adfm.201705833 – ident: e_1_2_6_168_1 doi: 10.1002/aenm.201800492 – ident: e_1_2_6_47_1 doi: 10.1016/j.jallcom.2018.10.380 – ident: e_1_2_6_120_1 doi: 10.1016/j.scib.2018.02.012 – ident: e_1_2_6_36_1 doi: 10.1038/s41560-018-0180-6 – ident: e_1_2_6_22_1 doi: 10.1002/anie.201304762 – ident: e_1_2_6_86_1 doi: 10.1016/j.nanoen.2018.09.073 – ident: e_1_2_6_68_1 doi: 10.1038/s41467-019-12310-6 – ident: e_1_2_6_27_1 doi: 10.1016/j.jpowsour.2013.02.047 – ident: e_1_2_6_175_1 doi: 10.1016/j.nanoen.2017.11.006 – ident: e_1_2_6_149_1 doi: 10.1007/s10008-019-04375-6 – ident: e_1_2_6_79_1 doi: 10.1002/smtd.201800183 – ident: e_1_2_6_88_1 doi: 10.1002/aenm.201703137 – ident: e_1_2_6_173_1 doi: 10.1039/C8NR00650D – ident: e_1_2_6_50_1 doi: 10.1002/advs.201801908 – ident: e_1_2_6_77_1 doi: 10.1016/j.chempr.2019.08.003 – ident: e_1_2_6_129_1 doi: 10.1002/aenm.201803346 – ident: e_1_2_6_107_1 doi: 10.1016/j.cej.2019.122978 – ident: e_1_2_6_114_1 doi: 10.1016/j.jpowsour.2018.04.077 – ident: e_1_2_6_105_1 doi: 10.1002/adma.201803765 – ident: e_1_2_6_154_1 doi: 10.1002/anie.201411788 – ident: e_1_2_6_87_1 doi: 10.1002/adfm.201901912 – ident: e_1_2_6_4_1 doi: 10.1016/j.jallcom.2016.11.245 – ident: e_1_2_6_32_1 doi: 10.1039/C6EE01807F – ident: e_1_2_6_58_1 doi: 10.1002/anie.201606415 – ident: e_1_2_6_76_1 doi: 10.1039/c4cp00826j – ident: e_1_2_6_140_1 doi: 10.1021/cm300466b – ident: e_1_2_6_29_1 doi: 10.1002/adma.201807770 – ident: e_1_2_6_178_1 doi: 10.1002/aenm.201900189 – ident: e_1_2_6_23_1 doi: 10.1038/nmat3435 – ident: e_1_2_6_55_1 doi: 10.1016/j.chempr.2019.10.008 – ident: e_1_2_6_51_1 doi: 10.1016/j.ceramint.2016.12.048 – ident: e_1_2_6_134_1 doi: 10.1126/sciadv.aar6018 – ident: e_1_2_6_111_1 doi: 10.1021/acsami.7b05326 – ident: e_1_2_6_155_1 doi: 10.1021/acsami.7b11282 – ident: e_1_2_6_124_1 doi: 10.1021/acs.chemmater.7b01146 – ident: e_1_2_6_1_1 doi: 10.1038/nmat2920 – ident: e_1_2_6_78_1 doi: 10.1039/C4EE03192J – ident: e_1_2_6_151_1 doi: 10.1002/smtd.201800205 – ident: e_1_2_6_95_1 doi: 10.1002/anie.201702024 – ident: e_1_2_6_21_1 doi: 10.1038/451652a – ident: e_1_2_6_160_1 doi: 10.1039/C4TA03946G – ident: e_1_2_6_10_1 doi: 10.1002/adom.201701166 – ident: e_1_2_6_110_1 doi: 10.1002/cssc.201500155 – ident: e_1_2_6_30_1 doi: 10.1002/anie.201505215 – ident: e_1_2_6_108_1 doi: 10.1016/j.jpowsour.2018.02.053 – ident: e_1_2_6_91_1 doi: 10.1021/acsenergylett.9b01732 – ident: e_1_2_6_167_1 doi: 10.1021/acsami.7b04338 – ident: e_1_2_6_24_1 doi: 10.1007/s11426-014-5154-3 – ident: e_1_2_6_66_1 doi: 10.1002/smll.201900470 – ident: e_1_2_6_121_1 doi: 10.1002/aenm.201500944 – ident: e_1_2_6_156_1 doi: 10.1016/j.jpowsour.2018.10.058 – ident: e_1_2_6_65_1 doi: 10.1002/adma.201605535 – ident: e_1_2_6_99_1 doi: 10.1039/c3ta01430d – ident: e_1_2_6_132_1 doi: 10.1002/anie.201911698 – ident: e_1_2_6_123_1 doi: 10.1002/anie.201602202 – ident: e_1_2_6_137_1 doi: 10.1021/cm702981a – ident: e_1_2_6_159_1 doi: 10.1016/j.nanoen.2018.10.072 – ident: e_1_2_6_16_1 doi: 10.1002/adfm.201808306 – ident: e_1_2_6_56_1 doi: 10.1002/aenm.201703012 – ident: e_1_2_6_122_1 doi: 10.1021/jacs.8b08638 – ident: e_1_2_6_179_1 doi: 10.1002/smll.201904388 – ident: e_1_2_6_104_1 doi: 10.1021/acsami.8b20149 – ident: e_1_2_6_97_1 doi: 10.1002/adfm.201801898 – ident: e_1_2_6_71_1 doi: 10.1021/acsenergylett.7b00930 – ident: e_1_2_6_161_1 doi: 10.1002/ange.201811882 – ident: e_1_2_6_69_1 doi: 10.1002/ange.201400032 – ident: e_1_2_6_171_1 doi: 10.1021/acs.chemmater.8b02614 – ident: e_1_2_6_157_1 doi: 10.1039/C7TA11180K – ident: e_1_2_6_20_1 doi: 10.1002/adma.201805468 – ident: e_1_2_6_109_1 doi: 10.1016/j.nanoen.2016.07.021 – ident: e_1_2_6_37_1 doi: 10.31635/ccschem.019.20190055 – ident: e_1_2_6_2_1 doi: 10.1039/C6CS00776G – ident: e_1_2_6_84_1 doi: 10.1002/aenm.201703415 – volume: 11 start-page: 18 year: 2019 ident: e_1_2_6_44_1 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_6_165_1 doi: 10.1002/adma.201100904 – ident: e_1_2_6_31_1 doi: 10.1038/ncomms7401 – ident: e_1_2_6_46_1 doi: 10.1039/C9CC08155K – ident: e_1_2_6_73_1 doi: 10.1002/adma.201904816 – ident: e_1_2_6_38_1 doi: 10.1002/smll.201703671 – ident: e_1_2_6_57_1 doi: 10.1016/j.chempr.2018.01.007 – ident: e_1_2_6_153_1 doi: 10.1002/smtd.201900223 – ident: e_1_2_6_92_1 doi: 10.1038/s41467-019-11195-9 – ident: e_1_2_6_130_1 doi: 10.1021/acsami.9b03326 – ident: e_1_2_6_53_1 doi: 10.1039/C7EE00566K – ident: e_1_2_6_98_1 doi: 10.1021/acsami.9b19260 – ident: e_1_2_6_138_1 doi: 10.1016/j.materresbull.2013.03.027 – ident: e_1_2_6_112_1 doi: 10.1002/adfm.201701870 – ident: e_1_2_6_133_1 doi: 10.1038/ncomms7954 – ident: e_1_2_6_41_1 doi: 10.1002/aenm.201702469 – ident: e_1_2_6_85_1 doi: 10.1039/C8EE01006D – ident: e_1_2_6_106_1 doi: 10.1021/acs.chemmater.5b04557 – ident: e_1_2_6_176_1 doi: 10.1039/C7EE00827A – ident: e_1_2_6_72_1 doi: 10.1016/j.joule.2017.10.008 – ident: e_1_2_6_63_1 doi: 10.1002/anie.201805555 – ident: e_1_2_6_145_1 doi: 10.1002/advs.201500031 – ident: e_1_2_6_144_1 doi: 10.1016/j.nanoen.2018.07.042 – ident: e_1_2_6_139_1 doi: 10.1021/acs.chemmater.5b03276 – ident: e_1_2_6_101_1 doi: 10.1002/aenm.201701610 – ident: e_1_2_6_70_1 doi: 10.1002/anie.201902185 – ident: e_1_2_6_90_1 doi: 10.1002/aenm.201701785 – ident: e_1_2_6_80_1 doi: 10.1002/anie.201804130 – ident: e_1_2_6_128_1 doi: 10.1016/j.ensm.2018.05.001 – ident: e_1_2_6_116_1 doi: 10.1021/acsami.8b17976 – ident: e_1_2_6_142_1 doi: 10.1038/s41467-017-00157-8 – ident: e_1_2_6_177_1 doi: 10.1016/j.nanoen.2020.104474 – ident: e_1_2_6_100_1 doi: 10.1038/ncomms7865 – ident: e_1_2_6_49_1 doi: 10.1016/j.jpowsour.2019.03.073 – ident: e_1_2_6_103_1 doi: 10.1016/j.jpowsour.2018.06.047 – ident: e_1_2_6_152_1 doi: 10.1002/smtd.201900239 – ident: e_1_2_6_146_1 doi: 10.1002/adma.201502449 |
| SSID | ssj0017734 |
| Score | 2.6746664 |
| SecondaryResourceType | review_article |
| Snippet | Considering the ever‐growing climatic degeneration, sustainable and renewable energy sources are needed to be effectively integrated into the grid through... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Cathodes Commercialization Degeneration electrochemistry Electrode materials Energy storage Ion currents Kinetics layered oxides Lithium Materials science Modulation Phase transitions Rechargeable batteries Renewable energy sources Sodium-ion batteries structure modulation Transition metal oxides |
| Title | Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodium‐Ion Batteries |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202001334 https://www.proquest.com/docview/2426170095 |
| Volume | 30 |
| WOSCitedRecordID | wos000529662800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509aAH3-L6IgfBU7Ft0jY9Lq5FYdXFF3uRkics6Fa2KnrzJ_gb_SUmbbe7exBBb31MQ5iZNF-SmW8ADhTmkaspc7hZKzgkIsyhWCrHdVXASCQiUpRkuetEFxe014u7E1n8JT9EveFmR0bxv7YDnPH8aEwayqS2meQ2JghjMgtzvnHeoAFz7avktlOfJERRebIcejbGy-uNiBtd_2i6hemJaYw2JzFrMekky__v7gosVYATtUoPWYUZNViDxQkawnW477B3W7ITXb71pUI2KTCTKkfdIlTPPOfv6LrgmX0ZKnSeyarkFxrvyyODfdF1Jvsvj18fn2fmXUncadbhG3CbnNwcnzpV2QVH4CAkjqYujzWJhbTYAQcyFJRRYztMtOsx7nKNhaY68jQlvqbSoDahPGymW4svQ7wJjUE2UFuAiM-lF1PPZZwbpCZYbBrhRiSIpS9D3QRnpPNUVJzktjTGQ1qyKfupVVtaq60Jh7X8U8nG8aPk7siEaTUq89TCEctHGAdN8Atj_dJK2mon5_Xd9l8-2oEFe11G-O5Cw1hL7cG8eH3u58P9ylu_Acm86rg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB58gXrwLVar7kHwFJpkN8nmWKylYlpFrfQiYZ9Q0Fasit78Cf5Gf4m7SZrqQQTxmM3sEGZms9_uzn4DcKAwj1xNmcPNWsEhEWEOxVI5rqsCRiIRkawky3USdTq014vPi2xCexcm54coN9zsyMj-13aA2w3p2oQ1lEltr5LbpCCMyTTMEhNLJshnGxfNblIeJURRfrQcejbJy-uNmRtdv_Zdw_eZaQI3v4LWbNZpLv_D967AUgE5UT2PkVWYUoM1WPxCRLgONwl7tUU70dlLXypkrwUOpRqh8yxZz7TzV3SZMc0-PSjUHsqi6Bea7Mwjg37R5VD2n-4-3t5PzLucutOsxDeg2zy-Omo5ReEFR-AgJI6mLo81iYW06AEHMhSUUeM9TLTrMe5yjYWmOvI0Jb6m0uA2oTxsJlyLMEO8CTOD4UBtASI-l15MPZdxbrCaYLFRwo1IEEtfhroCztjoqShYyW1xjNs051P2U2u2tDRbBQ5L-fucj-NHyerYh2kxLkepBSSWkTAOKuBn3vpFS1pvNNvl0_ZfOu3DfOuqnaTJSed0BxZse57vW4UZ4zm1C3Pi-bE_etgrQvcT5LjuqA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60FdGDb7E-9yB4CibZTbI5ijUotrVYK71I2CcUtBWrojd_gr_RX-JukqZ6EEE8ZrM7hJndzLe7M98A7CvMI1dT5nCzV3BIRJhDsVSO66qAkUhEJCvJct2IWi3a68XtIprQ5sLk_BDlgZtdGdn_2i5wdS_14YQ1lEltU8ltUBDGZBqqxFaSqUC1fpl0G-VVQhTlV8uhZ4O8vN6YudH1D79L-O6ZJnDzK2jNvE6y-A_fuwQLBeRER_kcWYYpNViB-S9EhKtw02CvtmgnunjpS4VsWuBQqhFqZ8F6pp2_ok7GNPv0oFBzKIuiX2hyMo8M-kWdoew_3X28vZ-Zdzl1p9mJr0E3Obk6PnWKwguOwEFIHE1dHmsSC2nRAw5kKCijxnqYaNdj3OUaC0115GlKfE2lwW1Cedg4XIswQ7wOlcFwoDYAEZ9LL6aeyzg3WE2w2AjhpksQS1-GugbOWOmpKFjJbXGM2zTnU_ZTq7a0VFsNDsr-9zkfx489t8c2TIt1OUotILGMhHFQAz-z1i9S0qN60iyfNv8yaA9m2_UkbZy1zrdgzjbn4b7bUDGGUzswI54f-6OH3WLmfgKH5u4j |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layered+Oxide+Cathodes+Promoted+by+Structure+Modulation+Technology+for+Sodium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Yao%2C+Xiao&rft.au=Abbasi%2C+Nasir+Mahmood&rft.au=Yan%E2%80%90Fang+Zhu&rft.au=Shi%2C+Li&rft.date=2020-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=30&rft_id=info:doi/10.1002%2Fadfm.202001334&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |