Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodium‐Ion Batteries

Considering the ever‐growing climatic degeneration, sustainable and renewable energy sources are needed to be effectively integrated into the grid through large‐scale electrochemical energy storage and conversion (EESC) technologies. With regard to their competent benefit in cost and sustainable sup...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced functional materials Ročník 30; číslo 30
Hlavní autori: Xiao, Yao, Abbasi, Nasir Mahmood, Zhu, Yan‐Fang, Li, Shi, Tan, Shuang‐Jie, Ling, Wei, Peng, Ling, Yang, Tingqiang, Wang, Lude, Guo, Xiao‐Dong, Yin, Ya‐Xia, Zhang, Han, Guo, Yu‐Guo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc 01.07.2020
Predmet:
ISSN:1616-301X, 1616-3028
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Considering the ever‐growing climatic degeneration, sustainable and renewable energy sources are needed to be effectively integrated into the grid through large‐scale electrochemical energy storage and conversion (EESC) technologies. With regard to their competent benefit in cost and sustainable supply of resource, room‐temperature sodium‐ion batteries (SIBs) have shown great promise in EESC, triumphing over other battery systems on the market. As one of the most fascinating cathode materials due to the simple synthesis process, large specific capacity, and high ionic conductivity, Na‐based layered transition metal oxide cathodes commonly suffer from the sluggish kinetics, multiphase evolution, poor air stability, and insufficient comprehensive performance, restricting their commercialization application. Here, this review summarizes the recent advances in layered oxide cathode materials for SIBs through different optimal structure modulation technologies, with an emphasis placed on strategies to boost Na+ kinetics and reduce the irreversible phase transition as well as enhance the store stability. Meanwhile, a thorough and in‐depth systematical investigation of the structure–function–property relationship is also discussed, and the challenges as well as opportunities for practical application electrode materials are sketched. The insights brought forward in this review can be considered as a guide for SIBs in next‐generation EESC. The recent research progress of structure modulation technology on layered transition metal oxide cathodes for sodium‐ion batteries is summarized, concentrating especially on morphology design, coating technology, phase transition, ordering‐disordering, air stability, and composite structure to boost Na+ kinetics, suppress the irreversible phase transition, enhance the storage stability, improve the overall performance, and further realize sodium‐ion battery commercialization for market applications.
AbstractList Considering the ever‐growing climatic degeneration, sustainable and renewable energy sources are needed to be effectively integrated into the grid through large‐scale electrochemical energy storage and conversion (EESC) technologies. With regard to their competent benefit in cost and sustainable supply of resource, room‐temperature sodium‐ion batteries (SIBs) have shown great promise in EESC, triumphing over other battery systems on the market. As one of the most fascinating cathode materials due to the simple synthesis process, large specific capacity, and high ionic conductivity, Na‐based layered transition metal oxide cathodes commonly suffer from the sluggish kinetics, multiphase evolution, poor air stability, and insufficient comprehensive performance, restricting their commercialization application. Here, this review summarizes the recent advances in layered oxide cathode materials for SIBs through different optimal structure modulation technologies, with an emphasis placed on strategies to boost Na+ kinetics and reduce the irreversible phase transition as well as enhance the store stability. Meanwhile, a thorough and in‐depth systematical investigation of the structure–function–property relationship is also discussed, and the challenges as well as opportunities for practical application electrode materials are sketched. The insights brought forward in this review can be considered as a guide for SIBs in next‐generation EESC. The recent research progress of structure modulation technology on layered transition metal oxide cathodes for sodium‐ion batteries is summarized, concentrating especially on morphology design, coating technology, phase transition, ordering‐disordering, air stability, and composite structure to boost Na+ kinetics, suppress the irreversible phase transition, enhance the storage stability, improve the overall performance, and further realize sodium‐ion battery commercialization for market applications.
Considering the ever‐growing climatic degeneration, sustainable and renewable energy sources are needed to be effectively integrated into the grid through large‐scale electrochemical energy storage and conversion (EESC) technologies. With regard to their competent benefit in cost and sustainable supply of resource, room‐temperature sodium‐ion batteries (SIBs) have shown great promise in EESC, triumphing over other battery systems on the market. As one of the most fascinating cathode materials due to the simple synthesis process, large specific capacity, and high ionic conductivity, Na‐based layered transition metal oxide cathodes commonly suffer from the sluggish kinetics, multiphase evolution, poor air stability, and insufficient comprehensive performance, restricting their commercialization application. Here, this review summarizes the recent advances in layered oxide cathode materials for SIBs through different optimal structure modulation technologies, with an emphasis placed on strategies to boost Na+ kinetics and reduce the irreversible phase transition as well as enhance the store stability. Meanwhile, a thorough and in‐depth systematical investigation of the structure–function–property relationship is also discussed, and the challenges as well as opportunities for practical application electrode materials are sketched. The insights brought forward in this review can be considered as a guide for SIBs in next‐generation EESC.
Author Li, Shi
Yang, Tingqiang
Zhu, Yan‐Fang
Wang, Lude
Guo, Xiao‐Dong
Zhang, Han
Ling, Wei
Peng, Ling
Guo, Yu‐Guo
Tan, Shuang‐Jie
Abbasi, Nasir Mahmood
Yin, Ya‐Xia
Xiao, Yao
Author_xml – sequence: 1
  givenname: Yao
  surname: Xiao
  fullname: Xiao, Yao
  organization: Nanyang Technological University
– sequence: 2
  givenname: Nasir Mahmood
  surname: Abbasi
  fullname: Abbasi, Nasir Mahmood
  organization: Shenzhen University
– sequence: 3
  givenname: Yan‐Fang
  surname: Zhu
  fullname: Zhu, Yan‐Fang
  organization: Sichuan University
– sequence: 4
  givenname: Shi
  surname: Li
  fullname: Li, Shi
  organization: Sichuan University
– sequence: 5
  givenname: Shuang‐Jie
  surname: Tan
  fullname: Tan, Shuang‐Jie
  organization: Chinese Academy of Sciences (CAS)
– sequence: 6
  givenname: Wei
  surname: Ling
  fullname: Ling, Wei
  organization: Chinese Academy of Sciences (CAS)
– sequence: 7
  givenname: Ling
  surname: Peng
  fullname: Peng, Ling
  organization: Shenzhen University
– sequence: 8
  givenname: Tingqiang
  surname: Yang
  fullname: Yang, Tingqiang
  organization: Shenzhen University
– sequence: 9
  givenname: Lude
  surname: Wang
  fullname: Wang, Lude
  organization: Shenzhen University
– sequence: 10
  givenname: Xiao‐Dong
  orcidid: 0000-0003-0322-8476
  surname: Guo
  fullname: Guo, Xiao‐Dong
  organization: Sichuan University
– sequence: 11
  givenname: Ya‐Xia
  surname: Yin
  fullname: Yin, Ya‐Xia
  organization: Chinese Academy of Sciences (CAS)
– sequence: 12
  givenname: Han
  surname: Zhang
  fullname: Zhang, Han
  email: hzhang@szu.edu.cn
  organization: Shenzhen University
– sequence: 13
  givenname: Yu‐Guo
  surname: Guo
  fullname: Guo, Yu‐Guo
  email: ygguo@iccas.ac.cn
  organization: Chinese Academy of Sciences (CAS)
BookMark eNqFkE1Lw0AQhhdRsK1ePQc8t-5HPo-1Wi20VGgFL7JsdmdtSpKtmw2amz_B3-gvMbVSQRBPM8y8z7zM20WHpSkBoTOCBwRjeiGULgYUU4wJY_4B6pCQhH2GaXy478nDMepW1brVRBHzO-hxKhqwoLz5a6bAGwm3Mgoq786awrh2njbewtlautqCNzOqzoXLTOktQa5Kk5unxtPGegujsrr4eHuftLtL4RzYDKoTdKRFXsHpd-2h-_H1cnTbn85vJqPhtC9ZEPp9HeM00X4iFaWUsUCFMhYxhoD5GhOR4lQzqWMdER37VMcKx4EEwiQAJiQIWQ-d7-5urHmuoXJ8bWpbtpac-jQkEcZJ0KoGO5W0pqosaL6xWSFswwnm2wj5NkK-j7AF_F-AzNzX-86KLP8bS3bYS5ZD848JH16NZz_sJ7XUiaw
CitedBy_id crossref_primary_10_1002_adfm_202106923
crossref_primary_10_1002_aenm_202301854
crossref_primary_10_1002_aenm_202301975
crossref_primary_10_1016_j_ssi_2021_115737
crossref_primary_10_1002_anie_202411059
crossref_primary_10_1016_j_jechem_2022_06_016
crossref_primary_10_1007_s11426_022_1550_2
crossref_primary_10_1002_ente_202000730
crossref_primary_10_1016_j_cej_2021_130680
crossref_primary_10_1002_elt2_31
crossref_primary_10_1016_j_ssi_2024_116545
crossref_primary_10_1016_j_jpowsour_2025_236718
crossref_primary_10_1088_2516_1075_acba6e
crossref_primary_10_1016_j_pmatsci_2024_101425
crossref_primary_10_1002_smm2_1191
crossref_primary_10_1016_j_est_2023_107242
crossref_primary_10_1016_j_est_2023_109025
crossref_primary_10_1002_aenm_202102489
crossref_primary_10_1016_j_nanoen_2024_109528
crossref_primary_10_3390_coatings13030626
crossref_primary_10_1002_ente_202200879
crossref_primary_10_1002_eom2_12141
crossref_primary_10_1002_ange_202415450
crossref_primary_10_1002_smll_202506348
crossref_primary_10_1016_j_jcis_2025_01_278
crossref_primary_10_1002_celc_202200821
crossref_primary_10_1016_j_est_2023_108291
crossref_primary_10_1002_aenm_202203521
crossref_primary_10_1016_j_jcis_2022_04_112
crossref_primary_10_1007_s40820_024_01546_7
crossref_primary_10_1016_j_ceramint_2021_12_097
crossref_primary_10_1002_adfm_202205661
crossref_primary_10_1002_aenm_202303773
crossref_primary_10_1007_s40843_025_3567_x
crossref_primary_10_1016_j_jallcom_2025_180310
crossref_primary_10_1002_adfm_202209026
crossref_primary_10_1002_adfm_202506098
crossref_primary_10_1016_j_nanoen_2022_107482
crossref_primary_10_1002_adfm_202206154
crossref_primary_10_1002_smtd_202300635
crossref_primary_10_1039_D0EE02997A
crossref_primary_10_1016_j_jechem_2023_02_016
crossref_primary_10_1016_j_est_2025_118048
crossref_primary_10_1016_j_electacta_2022_140394
crossref_primary_10_1002_cnl2_7
crossref_primary_10_1002_inf2_12636
crossref_primary_10_1007_s11581_022_04845_4
crossref_primary_10_1016_S1872_5805_23_60725_5
crossref_primary_10_1002_anie_202416290
crossref_primary_10_1002_ange_202411059
crossref_primary_10_1007_s12598_024_03196_5
crossref_primary_10_1016_j_apsusc_2023_157856
crossref_primary_10_1002_ente_202100190
crossref_primary_10_1039_D5QI01070E
crossref_primary_10_1002_cnl2_136
crossref_primary_10_1063_5_0051093
crossref_primary_10_1007_s12274_022_4687_6
crossref_primary_10_1016_j_jallcom_2025_180723
crossref_primary_10_1007_s10854_025_14258_4
crossref_primary_10_1002_adfm_202422106
crossref_primary_10_1002_adma_202417876
crossref_primary_10_1016_j_jallcom_2023_171808
crossref_primary_10_1016_j_cej_2021_128719
crossref_primary_10_1021_acs_jpcc_4c08703
crossref_primary_10_1002_batt_202100108
crossref_primary_10_1016_j_susmat_2024_e01059
crossref_primary_10_1016_j_jallcom_2022_165083
crossref_primary_10_1002_adma_202100409
crossref_primary_10_1016_j_jpowsour_2021_230324
crossref_primary_10_1002_smll_202006259
crossref_primary_10_1039_D0SC05427E
crossref_primary_10_1039_D5GC03154K
crossref_primary_10_1002_adfm_202111466
crossref_primary_10_1002_tcr_202200122
crossref_primary_10_1016_j_jcis_2025_138674
crossref_primary_10_1016_j_nanoen_2024_109562
crossref_primary_10_1002_sus2_265
crossref_primary_10_1016_j_actamat_2023_119392
crossref_primary_10_1002_adsu_202500678
crossref_primary_10_1002_ange_202416290
crossref_primary_10_1016_j_jcis_2024_08_054
crossref_primary_10_1016_j_ensm_2025_104188
crossref_primary_10_1002_adfm_202109319
crossref_primary_10_1002_adma_202202695
crossref_primary_10_1002_batt_202400744
crossref_primary_10_1039_D4EE00796D
crossref_primary_10_1088_2515_7639_abf545
crossref_primary_10_1016_j_cej_2025_162805
crossref_primary_10_1039_D3EE02934D
crossref_primary_10_1039_D0QM01105C
crossref_primary_10_1007_s11581_021_03944_y
crossref_primary_10_1002_adma_202413760
crossref_primary_10_3390_batteries8090105
crossref_primary_10_1007_s10008_025_06440_9
crossref_primary_10_1016_j_mtener_2022_101106
crossref_primary_10_1039_D1NH00585E
crossref_primary_10_1002_smll_202502861
crossref_primary_10_1016_j_jelechem_2023_117916
crossref_primary_10_1016_j_cej_2021_130813
crossref_primary_10_1016_j_jechem_2022_09_016
crossref_primary_10_1016_j_mattod_2025_07_027
crossref_primary_10_1002_celc_202400657
crossref_primary_10_26599_NRE_2025_9120177
crossref_primary_10_4274_tjd_galenos_2025_29053
crossref_primary_10_1016_j_ceramint_2024_04_170
crossref_primary_10_1016_j_jechem_2023_10_023
crossref_primary_10_1016_j_electacta_2023_142521
crossref_primary_10_1016_j_jallcom_2023_170386
crossref_primary_10_1002_inf2_12422
crossref_primary_10_1016_j_nanoen_2021_106504
crossref_primary_10_1002_smtd_202200455
crossref_primary_10_26599_NRE_2025_9120185
crossref_primary_10_1002_adfm_202505824
crossref_primary_10_1002_adma_202402008
crossref_primary_10_1002_aenm_202300149
crossref_primary_10_1002_adma_202307938
crossref_primary_10_1002_smll_202400845
crossref_primary_10_1002_batt_202300476
crossref_primary_10_1016_j_jechem_2022_06_037
crossref_primary_10_1002_anie_202016334
crossref_primary_10_1002_cnl2_55
crossref_primary_10_1039_D4SC05206D
crossref_primary_10_1002_smll_202406542
crossref_primary_10_1002_celc_202000963
crossref_primary_10_1002_adfm_202417258
crossref_primary_10_1002_ange_202513887
crossref_primary_10_1039_D3NR02373G
crossref_primary_10_1016_j_cej_2023_146090
crossref_primary_10_1002_batt_202500095
crossref_primary_10_1016_j_apsusc_2022_152643
crossref_primary_10_1002_smm2_1211
crossref_primary_10_1039_D3QI01884A
crossref_primary_10_3390_cryst13091339
crossref_primary_10_1016_S1872_5805_22_60616_4
crossref_primary_10_1016_j_ensm_2025_104575
crossref_primary_10_1021_acs_energyfuels_5c01717
crossref_primary_10_1002_adfm_202402398
crossref_primary_10_1016_j_electacta_2025_147232
crossref_primary_10_1002_aenm_202201511
crossref_primary_10_1002_ange_202016334
crossref_primary_10_1016_j_ensm_2025_104295
crossref_primary_10_1007_s11581_021_04265_w
crossref_primary_10_1016_j_electacta_2023_141859
crossref_primary_10_1002_anie_202513887
crossref_primary_10_1007_s12274_023_6164_2
crossref_primary_10_1016_j_jechem_2023_03_014
crossref_primary_10_1002_cey2_464
crossref_primary_10_1007_s43979_023_00053_9
crossref_primary_10_1016_j_cej_2025_161145
crossref_primary_10_1016_j_nanoen_2025_110814
crossref_primary_10_1002_adfm_202207548
crossref_primary_10_1007_s10008_021_05067_w
crossref_primary_10_1039_D4CC06789D
crossref_primary_10_1002_smtd_202201201
crossref_primary_10_1002_anie_202415450
Cites_doi 10.1016/j.electacta.2018.08.124
10.1002/adma.201903483
10.1016/j.jpowsour.2019.04.038
10.1002/cssc.201702322
10.1002/adma.201600846
10.1002/adfm.201705237
10.1039/C8TA00206A
10.1002/ange.202003878
10.1021/jacs.9b01855
10.1021/acs.chemmater.5b00097
10.1002/aenm.201701428
10.1016/j.nanoen.2017.02.037
10.1039/C7EE02995K
10.1002/advs.201600275
10.1007/s11581-016-1659-4
10.1002/aenm.201702403
10.1021/acsami.7b16077
10.1002/adma.201701968
10.1002/adfm.201804458
10.1002/aenm.201501727
10.1007/s12274-019-2451-3
10.1021/acs.chemmater.6b01935
10.1021/cr500192f
10.1021/acs.nanolett.8b03637
10.1039/C7TA00455A
10.1039/C8TA06551A
10.1002/advs.201700219
10.1002/aenm.201601698
10.1002/anie.201912171
10.1002/cssc.201301254
10.1002/adma.201902352
10.1002/adma.201803031
10.1021/acsami.8b00478
10.1039/C8CP06248J
10.1149/2.0041605jes
10.1002/aenm.201901785
10.1021/acsami.8b05288
10.1002/aenm.201903966
10.1002/adma.201700210
10.1002/aenm.201700189
10.1007/s41918-018-0008-x
10.1039/C4TA02627F
10.1038/nmat3478
10.1002/smtd.201800221
10.1039/C7NR00663B
10.1039/C8CS00342D
10.1002/aenm.201800212
10.1039/C5TA05205J
10.1021/acsami.8b10519
10.1021/acs.chemmater.7b02772
10.1016/j.jpowsour.2018.07.066
10.1002/anie.201912101
10.1016/j.ensm.2016.06.005
10.1002/smtd.201600063
10.1002/anie.201802672
10.1021/acs.chemmater.6b04769
10.1016/j.physrep.2019.01.005
10.1002/adma.201704531
10.1039/C7TA00880E
10.1021/acs.jpcc.8b05537
10.1016/j.electacta.2016.07.089
10.1021/jacs.7b05176
10.1002/aenm.201702588
10.1016/j.isci.2019.07.029
10.1039/C5EE00695C
10.1002/aenm.201803978
10.1016/j.electacta.2019.04.140
10.1039/C7NR03318D
10.1002/anie.201903466
10.1002/adfm.201705833
10.1002/aenm.201800492
10.1016/j.jallcom.2018.10.380
10.1016/j.scib.2018.02.012
10.1038/s41560-018-0180-6
10.1002/anie.201304762
10.1016/j.nanoen.2018.09.073
10.1038/s41467-019-12310-6
10.1016/j.jpowsour.2013.02.047
10.1016/j.nanoen.2017.11.006
10.1007/s10008-019-04375-6
10.1002/smtd.201800183
10.1002/aenm.201703137
10.1039/C8NR00650D
10.1002/advs.201801908
10.1016/j.chempr.2019.08.003
10.1002/aenm.201803346
10.1016/j.cej.2019.122978
10.1016/j.jpowsour.2018.04.077
10.1002/adma.201803765
10.1002/anie.201411788
10.1002/adfm.201901912
10.1016/j.jallcom.2016.11.245
10.1039/C6EE01807F
10.1002/anie.201606415
10.1039/c4cp00826j
10.1021/cm300466b
10.1002/adma.201807770
10.1002/aenm.201900189
10.1038/nmat3435
10.1016/j.chempr.2019.10.008
10.1016/j.ceramint.2016.12.048
10.1126/sciadv.aar6018
10.1021/acsami.7b05326
10.1021/acsami.7b11282
10.1021/acs.chemmater.7b01146
10.1038/nmat2920
10.1039/C4EE03192J
10.1002/smtd.201800205
10.1002/anie.201702024
10.1038/451652a
10.1039/C4TA03946G
10.1002/adom.201701166
10.1002/cssc.201500155
10.1002/anie.201505215
10.1016/j.jpowsour.2018.02.053
10.1021/acsenergylett.9b01732
10.1021/acsami.7b04338
10.1007/s11426-014-5154-3
10.1002/smll.201900470
10.1002/aenm.201500944
10.1016/j.jpowsour.2018.10.058
10.1002/adma.201605535
10.1039/c3ta01430d
10.1002/anie.201911698
10.1002/anie.201602202
10.1021/cm702981a
10.1016/j.nanoen.2018.10.072
10.1002/adfm.201808306
10.1002/aenm.201703012
10.1021/jacs.8b08638
10.1002/smll.201904388
10.1021/acsami.8b20149
10.1002/adfm.201801898
10.1021/acsenergylett.7b00930
10.1002/ange.201811882
10.1002/ange.201400032
10.1021/acs.chemmater.8b02614
10.1039/C7TA11180K
10.1002/adma.201805468
10.1016/j.nanoen.2016.07.021
10.31635/ccschem.019.20190055
10.1039/C6CS00776G
10.1002/aenm.201703415
10.1002/adma.201100904
10.1038/ncomms7401
10.1039/C9CC08155K
10.1002/adma.201904816
10.1002/smll.201703671
10.1016/j.chempr.2018.01.007
10.1002/smtd.201900223
10.1038/s41467-019-11195-9
10.1021/acsami.9b03326
10.1039/C7EE00566K
10.1021/acsami.9b19260
10.1016/j.materresbull.2013.03.027
10.1002/adfm.201701870
10.1038/ncomms7954
10.1002/aenm.201702469
10.1039/C8EE01006D
10.1021/acs.chemmater.5b04557
10.1039/C7EE00827A
10.1016/j.joule.2017.10.008
10.1002/anie.201805555
10.1002/advs.201500031
10.1016/j.nanoen.2018.07.042
10.1021/acs.chemmater.5b03276
10.1002/aenm.201701610
10.1002/anie.201902185
10.1002/aenm.201701785
10.1002/anie.201804130
10.1016/j.ensm.2018.05.001
10.1021/acsami.8b17976
10.1038/s41467-017-00157-8
10.1016/j.nanoen.2020.104474
10.1038/ncomms7865
10.1016/j.jpowsour.2019.03.073
10.1016/j.jpowsour.2018.06.047
10.1002/smtd.201900239
10.1002/adma.201502449
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202001334
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202001334
ADFM202001334
Genre reviewArticle
GrantInformation_xml – fundername: College‐Enterprise Coorperation Project of Sichuan University
  funderid: 19H0628; 18H0357
– fundername: Science and Technology Innovation Commission of Shenzhen
  funderid: JCYJ20170811093453105
– fundername: National Key Research and Development Program of China
  funderid: 2017YFB0307504
– fundername: Library of Innovation Spark Project of Sichuan University
  funderid: 2018SCUH0094
– fundername: National Natural Science Foundation of China
  funderid: 21878195; 21805198; 21805018; 51772301; 61875138; 6181101252
– fundername: Outstanding Youth Science Foundation of Sichuan University
  funderid: 2017SCU04A08
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3564-f80b9f49cd222335d6c8a80e534f01ab0bf3cf8f71f842f8d085ce13cee011563
IEDL.DBID DRFUL
ISICitedReferencesCount 222
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529662800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Sun Nov 09 07:44:26 EST 2025
Sat Nov 29 07:24:03 EST 2025
Tue Nov 18 21:42:06 EST 2025
Wed Jan 22 16:32:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 30
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3564-f80b9f49cd222335d6c8a80e534f01ab0bf3cf8f71f842f8d085ce13cee011563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0322-8476
PQID 2426170095
PQPubID 2045204
PageCount 28
ParticipantIDs proquest_journals_2426170095
crossref_primary_10_1002_adfm_202001334
crossref_citationtrail_10_1002_adfm_202001334
wiley_primary_10_1002_adfm_202001334_ADFM202001334
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 1
2019; 11
2019; 10
2019; 12
2019; 15
2020; 16
2019; 19
2020; 12
2020; 10
2018; 43
2012; 11
2018; 47
2018; 6
2018; 8
2018; 451
2018; 3
2018; 291
2018; 2
2018; 4
2018; 1
2013; 236
2019; 23
2013; 52
2014; 16
2019; 313
2019; 795
2019; 29
2018; 30
2008; 20
2012; 24
2014; 126
2018; 28
2019; 9
2019; 4
2019; 3
2019; 6
2019; 5
2019; 31
2020; 382
2019; 1
2015; 54
2018; 21
2016; 163
2017; 139
2016; 5
2016; 6
2017; 56
2016; 213
2018; 12
2016; 28
2018; 11
2018; 10
2016; 27
2016; 9
2018; 15
2018; 14
2016; 22
2017; 5
2017; 7
2018; 122
2017; 8
2017; 1
2017; 2
2017; 4
2019; 55
2019; 56
2017; 43
2017; 46
2019; 58
2020; 59
2011; 10
2018; 406
2017; 9
2014; 2
2013; 12
2020; 132
2017; 34
2014; 57
2011; 23
2014; 7
2015; 2
2018; 383
2015; 6
2013; 48
2015; 5
2015; 3
2017; 27
2019; 423
2018; 63
2019; 427
2017; 29
2019; 141
2015; 8
2014; 114
2017; 699
2016; 55
2018; 396
2018; 391
2015; 27
2017; 10
2018; 398
2020; 69
2018; 52
2019; 777
2008; 451
2018; 54
2019; 131
2018; 57
e_1_2_6_114_1
e_1_2_6_137_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_152_1
e_1_2_6_175_1
e_1_2_6_110_1
e_1_2_6_133_1
e_1_2_6_156_1
e_1_2_6_179_1
e_1_2_6_19_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_148_1
e_1_2_6_129_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_163_1
e_1_2_6_140_1
e_1_2_6_121_1
e_1_2_6_167_1
e_1_2_6_102_1
e_1_2_6_144_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_170_1
e_1_2_6_1_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_136_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_159_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_174_1
e_1_2_6_151_1
e_1_2_6_132_1
e_1_2_6_178_1
e_1_2_6_113_1
e_1_2_6_155_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_147_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_162_1
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_143_1
e_1_2_6_166_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_116_1
e_1_2_6_139_1
e_1_2_6_158_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_131_1
e_1_2_6_150_1
e_1_2_6_173_1
e_1_2_6_112_1
e_1_2_6_135_1
e_1_2_6_154_1
e_1_2_6_177_1
e_1_2_6_180_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_127_1
e_1_2_6_169_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_108_1
e_1_2_6_142_1
e_1_2_6_161_1
e_1_2_6_100_1
e_1_2_6_146_1
e_1_2_6_123_1
e_1_2_6_165_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_115_1
e_1_2_6_75_1
e_1_2_6_138_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_119_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_153_1
Xu C. (e_1_2_6_44_1) 2019; 11
e_1_2_6_130_1
e_1_2_6_172_1
e_1_2_6_111_1
e_1_2_6_157_1
e_1_2_6_134_1
e_1_2_6_176_1
e_1_2_6_160_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_149_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_141_1
e_1_2_6_164_1
e_1_2_6_122_1
e_1_2_6_145_1
e_1_2_6_168_1
e_1_2_6_8_1
e_1_2_6_171_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_29_1
e_1_2_6_67_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 3385
  year: 2019
  publication-title: Nat. Commun.
– volume: 213
  start-page: 496
  year: 2016
  publication-title: Electrochim. Acta
– volume: 16
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 55
  start-page: 7445
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  start-page: 7243
  year: 2016
  publication-title: Adv. Mater.
– volume: 3
  start-page: 936
  year: 2018
  publication-title: Nat. Energy
– volume: 7
  start-page: 1870
  year: 2014
  publication-title: ChemSusChem
– volume: 14
  year: 2018
  publication-title: Small
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 57
  start-page: 8178
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 382
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 1
  start-page: 3895
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 141
  start-page: 840
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 699
  start-page: 358
  year: 2017
  publication-title: J. Alloys Compd.
– volume: 8
  start-page: 81
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 4458
  year: 2019
  publication-title: Nat. Commun.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 1677
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 52
  start-page: 88
  year: 2018
  publication-title: Nano Energy
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 30
  start-page: 8145
  year: 2018
  publication-title: Chem. Mater.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 57
  start-page: 1564
  year: 2014
  publication-title: Sci. China: Chem.
– volume: 11
  start-page: 4037
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 59
  start-page: 1491
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 18
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 54
  start-page: 148
  year: 2018
  publication-title: Nano Energy
– volume: 423
  start-page: 144
  year: 2019
  publication-title: J. Power Sources
– volume: 15
  start-page: 257
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 4
  start-page: 833
  year: 2018
  publication-title: Chem
– volume: 11
  start-page: 1223
  year: 2018
  publication-title: ChemSusChem
– volume: 63
  start-page: 376
  year: 2018
  publication-title: Sci. Bull.
– volume: 5
  start-page: 8752
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 74
  year: 2011
  publication-title: Nat. Mater.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 34
  start-page: 131
  year: 2017
  publication-title: Nano Energy
– volume: 55
  start-page: 143
  year: 2019
  publication-title: Nano Energy
– volume: 163
  start-page: A584
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 69
  year: 2020
  publication-title: Nano Energy
– volume: 59
  start-page: 264
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 589
  year: 2019
  publication-title: CCS Chem.
– volume: 8
  start-page: 135
  year: 2017
  publication-title: Nat. Commun.
– volume: 5
  start-page: 3220
  year: 2019
  publication-title: Chem
– volume: 28
  start-page: 106
  year: 2016
  publication-title: Chem. Mater.
– volume: 9
  start-page: 2978
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 56
  start-page: 245
  year: 2019
  publication-title: Chem. Commun.
– volume: 12
  start-page: 74
  year: 2013
  publication-title: Nat. Mater.
– volume: 12
  start-page: 2018
  year: 2019
  publication-title: Nano Res.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 6
  start-page: 6865
  year: 2015
  publication-title: Nat. Commun.
– volume: 27
  start-page: 2515
  year: 2015
  publication-title: Chem. Mater.
– volume: 23
  start-page: 3155
  year: 2011
  publication-title: Adv. Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 56
  start-page: 5801
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 27
  start-page: 602
  year: 2016
  publication-title: Nano Energy
– volume: 22
  start-page: 1361
  year: 2016
  publication-title: Ionics
– volume: 2
  start-page: 125
  year: 2018
  publication-title: Joule
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 8096
  year: 2017
  publication-title: Nanoscale
– volume: 54
  start-page: 5894
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 29
  start-page: 1623
  year: 2017
  publication-title: Chem. Mater.
– volume: 52
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 21
  start-page: 314
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 451
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– volume: 24
  start-page: 1846
  year: 2012
  publication-title: Chem. Mater.
– volume: 10
  start-page: 1051
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 23
  start-page: 2979
  year: 2019
  publication-title: J. Solid State Electrochem.
– volume: 43
  start-page: 1
  year: 2018
  publication-title: Nano Energy
– volume: 28
  start-page: 5087
  year: 2016
  publication-title: Chem. Mater.
– volume: 19
  start-page: 244
  year: 2019
  publication-title: iScience
– volume: 12
  start-page: 825
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 7144
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 1470
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 406
  start-page: 110
  year: 2018
  publication-title: J. Power Sources
– volume: 6
  start-page: 6675
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 141
  start-page: 6680
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 391
  start-page: 106
  year: 2018
  publication-title: J. Power Sources
– volume: 131
  start-page: 1426
  year: 2019
  publication-title: Angew. Chem.
– volume: 139
  start-page: 8440
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 3562
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 58
  start-page: 7802
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 126
  start-page: 6002
  year: 2014
  publication-title: Angew. Chem.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 2019
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 291
  start-page: 84
  year: 2018
  publication-title: Electrochim. Acta
– volume: 427
  start-page: 129
  year: 2019
  publication-title: J. Power Sources
– volume: 48
  start-page: 2678
  year: 2013
  publication-title: Mater. Res. Bull.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 6401
  year: 2015
  publication-title: Nat. Commun.
– volume: 46
  start-page: 3529
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 777
  start-page: 434
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 43
  start-page: 3866
  year: 2017
  publication-title: Ceram. Int.
– volume: 2
  year: 2015
  publication-title: Adv. Sci.
– volume: 27
  start-page: 6928
  year: 2015
  publication-title: Adv. Mater.
– volume: 9
  year: 2017
  publication-title: Nanoscale
– volume: 57
  start-page: 8901
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 856
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 313
  start-page: 122
  year: 2019
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 942
  year: 2012
  publication-title: Nat. Mater.
– volume: 6
  start-page: 6954
  year: 2015
  publication-title: Nat. Commun.
– volume: 2
  start-page: 2715
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 795
  start-page: 1
  year: 2019
  publication-title: Phys. Rep.
– volume: 236
  start-page: 1
  year: 2013
  publication-title: J. Power Sources
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 47
  start-page: 5588
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 29
  start-page: 8958
  year: 2017
  publication-title: Chem. Mater.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 1
  year: 2017
  publication-title: Small Methods
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 6684
  year: 2017
  publication-title: Chem. Mater.
– volume: 4
  start-page: 2409
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 5
  start-page: 2913
  year: 2019
  publication-title: Chem
– volume: 383
  start-page: 80
  year: 2018
  publication-title: J. Power Sources
– volume: 6
  start-page: 3552
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  year: 2019
  publication-title: Small Methods
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 396
  start-page: 379
  year: 2018
  publication-title: J. Power Sources
– volume: 132
  start-page: 7005
  year: 2020
  publication-title: Angew. Chem. Int. Ed.
– volume: 20
  start-page: 479
  year: 2008
  publication-title: Chem. Mater.
– volume: 5
  start-page: 6581
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 294
  year: 2018
  publication-title: Electrochem. Energy Rev.
– volume: 10
  start-page: 6671
  year: 2018
  publication-title: Nanoscale
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 8
  start-page: 2537
  year: 2015
  publication-title: ChemSusChem
– volume: 58
  start-page: 7020
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 19
  start-page: 182
  year: 2019
  publication-title: Nano Lett.
– volume: 5
  start-page: 116
  year: 2016
  publication-title: Energy Storage Mater.
– volume: 28
  start-page: 2041
  year: 2016
  publication-title: Chem. Mater.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 398
  start-page: 175
  year: 2018
  publication-title: J. Power Sources
– ident: e_1_2_6_8_1
  doi: 10.1016/j.electacta.2018.08.124
– ident: e_1_2_6_93_1
  doi: 10.1002/adma.201903483
– ident: e_1_2_6_162_1
  doi: 10.1016/j.jpowsour.2019.04.038
– ident: e_1_2_6_96_1
  doi: 10.1002/cssc.201702322
– ident: e_1_2_6_67_1
  doi: 10.1002/adma.201600846
– ident: e_1_2_6_12_1
  doi: 10.1002/adfm.201705237
– ident: e_1_2_6_169_1
  doi: 10.1039/C8TA00206A
– ident: e_1_2_6_174_1
  doi: 10.1002/ange.202003878
– ident: e_1_2_6_94_1
  doi: 10.1021/jacs.9b01855
– ident: e_1_2_6_141_1
  doi: 10.1021/acs.chemmater.5b00097
– ident: e_1_2_6_89_1
  doi: 10.1002/aenm.201701428
– ident: e_1_2_6_26_1
  doi: 10.1016/j.nanoen.2017.02.037
– ident: e_1_2_6_126_1
  doi: 10.1039/C7EE02995K
– ident: e_1_2_6_75_1
  doi: 10.1002/advs.201600275
– ident: e_1_2_6_48_1
  doi: 10.1007/s11581-016-1659-4
– ident: e_1_2_6_180_1
  doi: 10.1002/aenm.201702403
– ident: e_1_2_6_131_1
  doi: 10.1021/acsami.7b16077
– ident: e_1_2_6_64_1
  doi: 10.1002/adma.201701968
– ident: e_1_2_6_39_1
  doi: 10.1002/adfm.201804458
– ident: e_1_2_6_43_1
  doi: 10.1002/aenm.201501727
– ident: e_1_2_6_81_1
  doi: 10.1007/s12274-019-2451-3
– ident: e_1_2_6_125_1
  doi: 10.1021/acs.chemmater.6b01935
– ident: e_1_2_6_42_1
  doi: 10.1021/cr500192f
– ident: e_1_2_6_143_1
  doi: 10.1021/acs.nanolett.8b03637
– ident: e_1_2_6_28_1
  doi: 10.1039/C7TA00455A
– ident: e_1_2_6_113_1
  doi: 10.1039/C8TA06551A
– ident: e_1_2_6_82_1
  doi: 10.1002/advs.201700219
– ident: e_1_2_6_83_1
  doi: 10.1002/aenm.201601698
– ident: e_1_2_6_118_1
  doi: 10.1002/anie.201912171
– ident: e_1_2_6_166_1
  doi: 10.1002/cssc.201301254
– ident: e_1_2_6_15_1
  doi: 10.1002/adma.201902352
– ident: e_1_2_6_11_1
  doi: 10.1002/adma.201803031
– ident: e_1_2_6_164_1
  doi: 10.1021/acsami.8b00478
– ident: e_1_2_6_115_1
  doi: 10.1039/C8CP06248J
– ident: e_1_2_6_170_1
  doi: 10.1149/2.0041605jes
– ident: e_1_2_6_74_1
  doi: 10.1002/aenm.201901785
– ident: e_1_2_6_6_1
  doi: 10.1021/acsami.8b05288
– ident: e_1_2_6_54_1
  doi: 10.1002/aenm.201903966
– ident: e_1_2_6_119_1
  doi: 10.1002/adma.201700210
– ident: e_1_2_6_117_1
  doi: 10.1002/aenm.201700189
– ident: e_1_2_6_61_1
  doi: 10.1007/s41918-018-0008-x
– ident: e_1_2_6_136_1
  doi: 10.1039/C4TA02627F
– ident: e_1_2_6_5_1
  doi: 10.1038/nmat3478
– ident: e_1_2_6_60_1
  doi: 10.1002/smtd.201800221
– ident: e_1_2_6_9_1
  doi: 10.1039/C7NR00663B
– ident: e_1_2_6_13_1
  doi: 10.1039/C8CS00342D
– ident: e_1_2_6_40_1
  doi: 10.1002/aenm.201800212
– ident: e_1_2_6_158_1
  doi: 10.1039/C5TA05205J
– ident: e_1_2_6_172_1
  doi: 10.1021/acsami.8b10519
– ident: e_1_2_6_35_1
  doi: 10.1021/acs.chemmater.7b02772
– ident: e_1_2_6_62_1
  doi: 10.1016/j.jpowsour.2018.07.066
– ident: e_1_2_6_150_1
  doi: 10.1002/anie.201912101
– ident: e_1_2_6_52_1
  doi: 10.1016/j.ensm.2016.06.005
– ident: e_1_2_6_33_1
  doi: 10.1002/smtd.201600063
– ident: e_1_2_6_25_1
  doi: 10.1002/anie.201802672
– ident: e_1_2_6_59_1
  doi: 10.1021/acs.chemmater.6b04769
– ident: e_1_2_6_17_1
  doi: 10.1016/j.physrep.2019.01.005
– ident: e_1_2_6_19_1
  doi: 10.1002/adma.201704531
– ident: e_1_2_6_127_1
  doi: 10.1039/C7TA00880E
– ident: e_1_2_6_135_1
  doi: 10.1021/acs.jpcc.8b05537
– ident: e_1_2_6_148_1
  doi: 10.1016/j.electacta.2016.07.089
– ident: e_1_2_6_147_1
  doi: 10.1021/jacs.7b05176
– ident: e_1_2_6_34_1
  doi: 10.1002/aenm.201702588
– ident: e_1_2_6_3_1
  doi: 10.1016/j.isci.2019.07.029
– ident: e_1_2_6_7_1
  doi: 10.1039/C5EE00695C
– ident: e_1_2_6_102_1
  doi: 10.1002/aenm.201803978
– ident: e_1_2_6_163_1
  doi: 10.1016/j.electacta.2019.04.140
– ident: e_1_2_6_18_1
  doi: 10.1039/C7NR03318D
– ident: e_1_2_6_45_1
  doi: 10.1002/anie.201903466
– ident: e_1_2_6_14_1
  doi: 10.1002/adfm.201705833
– ident: e_1_2_6_168_1
  doi: 10.1002/aenm.201800492
– ident: e_1_2_6_47_1
  doi: 10.1016/j.jallcom.2018.10.380
– ident: e_1_2_6_120_1
  doi: 10.1016/j.scib.2018.02.012
– ident: e_1_2_6_36_1
  doi: 10.1038/s41560-018-0180-6
– ident: e_1_2_6_22_1
  doi: 10.1002/anie.201304762
– ident: e_1_2_6_86_1
  doi: 10.1016/j.nanoen.2018.09.073
– ident: e_1_2_6_68_1
  doi: 10.1038/s41467-019-12310-6
– ident: e_1_2_6_27_1
  doi: 10.1016/j.jpowsour.2013.02.047
– ident: e_1_2_6_175_1
  doi: 10.1016/j.nanoen.2017.11.006
– ident: e_1_2_6_149_1
  doi: 10.1007/s10008-019-04375-6
– ident: e_1_2_6_79_1
  doi: 10.1002/smtd.201800183
– ident: e_1_2_6_88_1
  doi: 10.1002/aenm.201703137
– ident: e_1_2_6_173_1
  doi: 10.1039/C8NR00650D
– ident: e_1_2_6_50_1
  doi: 10.1002/advs.201801908
– ident: e_1_2_6_77_1
  doi: 10.1016/j.chempr.2019.08.003
– ident: e_1_2_6_129_1
  doi: 10.1002/aenm.201803346
– ident: e_1_2_6_107_1
  doi: 10.1016/j.cej.2019.122978
– ident: e_1_2_6_114_1
  doi: 10.1016/j.jpowsour.2018.04.077
– ident: e_1_2_6_105_1
  doi: 10.1002/adma.201803765
– ident: e_1_2_6_154_1
  doi: 10.1002/anie.201411788
– ident: e_1_2_6_87_1
  doi: 10.1002/adfm.201901912
– ident: e_1_2_6_4_1
  doi: 10.1016/j.jallcom.2016.11.245
– ident: e_1_2_6_32_1
  doi: 10.1039/C6EE01807F
– ident: e_1_2_6_58_1
  doi: 10.1002/anie.201606415
– ident: e_1_2_6_76_1
  doi: 10.1039/c4cp00826j
– ident: e_1_2_6_140_1
  doi: 10.1021/cm300466b
– ident: e_1_2_6_29_1
  doi: 10.1002/adma.201807770
– ident: e_1_2_6_178_1
  doi: 10.1002/aenm.201900189
– ident: e_1_2_6_23_1
  doi: 10.1038/nmat3435
– ident: e_1_2_6_55_1
  doi: 10.1016/j.chempr.2019.10.008
– ident: e_1_2_6_51_1
  doi: 10.1016/j.ceramint.2016.12.048
– ident: e_1_2_6_134_1
  doi: 10.1126/sciadv.aar6018
– ident: e_1_2_6_111_1
  doi: 10.1021/acsami.7b05326
– ident: e_1_2_6_155_1
  doi: 10.1021/acsami.7b11282
– ident: e_1_2_6_124_1
  doi: 10.1021/acs.chemmater.7b01146
– ident: e_1_2_6_1_1
  doi: 10.1038/nmat2920
– ident: e_1_2_6_78_1
  doi: 10.1039/C4EE03192J
– ident: e_1_2_6_151_1
  doi: 10.1002/smtd.201800205
– ident: e_1_2_6_95_1
  doi: 10.1002/anie.201702024
– ident: e_1_2_6_21_1
  doi: 10.1038/451652a
– ident: e_1_2_6_160_1
  doi: 10.1039/C4TA03946G
– ident: e_1_2_6_10_1
  doi: 10.1002/adom.201701166
– ident: e_1_2_6_110_1
  doi: 10.1002/cssc.201500155
– ident: e_1_2_6_30_1
  doi: 10.1002/anie.201505215
– ident: e_1_2_6_108_1
  doi: 10.1016/j.jpowsour.2018.02.053
– ident: e_1_2_6_91_1
  doi: 10.1021/acsenergylett.9b01732
– ident: e_1_2_6_167_1
  doi: 10.1021/acsami.7b04338
– ident: e_1_2_6_24_1
  doi: 10.1007/s11426-014-5154-3
– ident: e_1_2_6_66_1
  doi: 10.1002/smll.201900470
– ident: e_1_2_6_121_1
  doi: 10.1002/aenm.201500944
– ident: e_1_2_6_156_1
  doi: 10.1016/j.jpowsour.2018.10.058
– ident: e_1_2_6_65_1
  doi: 10.1002/adma.201605535
– ident: e_1_2_6_99_1
  doi: 10.1039/c3ta01430d
– ident: e_1_2_6_132_1
  doi: 10.1002/anie.201911698
– ident: e_1_2_6_123_1
  doi: 10.1002/anie.201602202
– ident: e_1_2_6_137_1
  doi: 10.1021/cm702981a
– ident: e_1_2_6_159_1
  doi: 10.1016/j.nanoen.2018.10.072
– ident: e_1_2_6_16_1
  doi: 10.1002/adfm.201808306
– ident: e_1_2_6_56_1
  doi: 10.1002/aenm.201703012
– ident: e_1_2_6_122_1
  doi: 10.1021/jacs.8b08638
– ident: e_1_2_6_179_1
  doi: 10.1002/smll.201904388
– ident: e_1_2_6_104_1
  doi: 10.1021/acsami.8b20149
– ident: e_1_2_6_97_1
  doi: 10.1002/adfm.201801898
– ident: e_1_2_6_71_1
  doi: 10.1021/acsenergylett.7b00930
– ident: e_1_2_6_161_1
  doi: 10.1002/ange.201811882
– ident: e_1_2_6_69_1
  doi: 10.1002/ange.201400032
– ident: e_1_2_6_171_1
  doi: 10.1021/acs.chemmater.8b02614
– ident: e_1_2_6_157_1
  doi: 10.1039/C7TA11180K
– ident: e_1_2_6_20_1
  doi: 10.1002/adma.201805468
– ident: e_1_2_6_109_1
  doi: 10.1016/j.nanoen.2016.07.021
– ident: e_1_2_6_37_1
  doi: 10.31635/ccschem.019.20190055
– ident: e_1_2_6_2_1
  doi: 10.1039/C6CS00776G
– ident: e_1_2_6_84_1
  doi: 10.1002/aenm.201703415
– volume: 11
  start-page: 18
  year: 2019
  ident: e_1_2_6_44_1
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_6_165_1
  doi: 10.1002/adma.201100904
– ident: e_1_2_6_31_1
  doi: 10.1038/ncomms7401
– ident: e_1_2_6_46_1
  doi: 10.1039/C9CC08155K
– ident: e_1_2_6_73_1
  doi: 10.1002/adma.201904816
– ident: e_1_2_6_38_1
  doi: 10.1002/smll.201703671
– ident: e_1_2_6_57_1
  doi: 10.1016/j.chempr.2018.01.007
– ident: e_1_2_6_153_1
  doi: 10.1002/smtd.201900223
– ident: e_1_2_6_92_1
  doi: 10.1038/s41467-019-11195-9
– ident: e_1_2_6_130_1
  doi: 10.1021/acsami.9b03326
– ident: e_1_2_6_53_1
  doi: 10.1039/C7EE00566K
– ident: e_1_2_6_98_1
  doi: 10.1021/acsami.9b19260
– ident: e_1_2_6_138_1
  doi: 10.1016/j.materresbull.2013.03.027
– ident: e_1_2_6_112_1
  doi: 10.1002/adfm.201701870
– ident: e_1_2_6_133_1
  doi: 10.1038/ncomms7954
– ident: e_1_2_6_41_1
  doi: 10.1002/aenm.201702469
– ident: e_1_2_6_85_1
  doi: 10.1039/C8EE01006D
– ident: e_1_2_6_106_1
  doi: 10.1021/acs.chemmater.5b04557
– ident: e_1_2_6_176_1
  doi: 10.1039/C7EE00827A
– ident: e_1_2_6_72_1
  doi: 10.1016/j.joule.2017.10.008
– ident: e_1_2_6_63_1
  doi: 10.1002/anie.201805555
– ident: e_1_2_6_145_1
  doi: 10.1002/advs.201500031
– ident: e_1_2_6_144_1
  doi: 10.1016/j.nanoen.2018.07.042
– ident: e_1_2_6_139_1
  doi: 10.1021/acs.chemmater.5b03276
– ident: e_1_2_6_101_1
  doi: 10.1002/aenm.201701610
– ident: e_1_2_6_70_1
  doi: 10.1002/anie.201902185
– ident: e_1_2_6_90_1
  doi: 10.1002/aenm.201701785
– ident: e_1_2_6_80_1
  doi: 10.1002/anie.201804130
– ident: e_1_2_6_128_1
  doi: 10.1016/j.ensm.2018.05.001
– ident: e_1_2_6_116_1
  doi: 10.1021/acsami.8b17976
– ident: e_1_2_6_142_1
  doi: 10.1038/s41467-017-00157-8
– ident: e_1_2_6_177_1
  doi: 10.1016/j.nanoen.2020.104474
– ident: e_1_2_6_100_1
  doi: 10.1038/ncomms7865
– ident: e_1_2_6_49_1
  doi: 10.1016/j.jpowsour.2019.03.073
– ident: e_1_2_6_103_1
  doi: 10.1016/j.jpowsour.2018.06.047
– ident: e_1_2_6_152_1
  doi: 10.1002/smtd.201900239
– ident: e_1_2_6_146_1
  doi: 10.1002/adma.201502449
SSID ssj0017734
Score 2.6746664
SecondaryResourceType review_article
Snippet Considering the ever‐growing climatic degeneration, sustainable and renewable energy sources are needed to be effectively integrated into the grid through...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Cathodes
Commercialization
Degeneration
electrochemistry
Electrode materials
Energy storage
Ion currents
Kinetics
layered oxides
Lithium
Materials science
Modulation
Phase transitions
Rechargeable batteries
Renewable energy sources
Sodium-ion batteries
structure modulation
Transition metal oxides
Title Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodium‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202001334
https://www.proquest.com/docview/2426170095
Volume 30
WOSCitedRecordID wos000529662800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509aAH3-L6IgfBU7Ft0jY9Lq5FYdXFF3uRkics6Fa2KnrzJ_gb_SUmbbe7exBBb31MQ5iZNF-SmW8ADhTmkaspc7hZKzgkIsyhWCrHdVXASCQiUpRkuetEFxe014u7E1n8JT9EveFmR0bxv7YDnPH8aEwayqS2meQ2JghjMgtzvnHeoAFz7avktlOfJERRebIcejbGy-uNiBtd_2i6hemJaYw2JzFrMekky__v7gosVYATtUoPWYUZNViDxQkawnW477B3W7ITXb71pUI2KTCTKkfdIlTPPOfv6LrgmX0ZKnSeyarkFxrvyyODfdF1Jvsvj18fn2fmXUncadbhG3CbnNwcnzpV2QVH4CAkjqYujzWJhbTYAQcyFJRRYztMtOsx7nKNhaY68jQlvqbSoDahPGymW4svQ7wJjUE2UFuAiM-lF1PPZZwbpCZYbBrhRiSIpS9D3QRnpPNUVJzktjTGQ1qyKfupVVtaq60Jh7X8U8nG8aPk7siEaTUq89TCEctHGAdN8Atj_dJK2mon5_Xd9l8-2oEFe11G-O5Cw1hL7cG8eH3u58P9ylu_Acm86rg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB58gXrwLVar7kHwFJpkN8nmWKylYlpFrfQiYZ9Q0Fasit78Cf5Gf4m7SZrqQQTxmM3sEGZms9_uzn4DcKAwj1xNmcPNWsEhEWEOxVI5rqsCRiIRkawky3USdTq014vPi2xCexcm54coN9zsyMj-13aA2w3p2oQ1lEltr5LbpCCMyTTMEhNLJshnGxfNblIeJURRfrQcejbJy-uNmRtdv_Zdw_eZaQI3v4LWbNZpLv_D967AUgE5UT2PkVWYUoM1WPxCRLgONwl7tUU70dlLXypkrwUOpRqh8yxZz7TzV3SZMc0-PSjUHsqi6Bea7Mwjg37R5VD2n-4-3t5PzLucutOsxDeg2zy-Omo5ReEFR-AgJI6mLo81iYW06AEHMhSUUeM9TLTrMe5yjYWmOvI0Jb6m0uA2oTxsJlyLMEO8CTOD4UBtASI-l15MPZdxbrCaYLFRwo1IEEtfhroCztjoqShYyW1xjNs051P2U2u2tDRbBQ5L-fucj-NHyerYh2kxLkepBSSWkTAOKuBn3vpFS1pvNNvl0_ZfOu3DfOuqnaTJSed0BxZse57vW4UZ4zm1C3Pi-bE_etgrQvcT5LjuqA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60FdGDb7E-9yB4CibZTbI5ijUotrVYK71I2CcUtBWrojd_gr_RX-JukqZ6EEE8ZrM7hJndzLe7M98A7CvMI1dT5nCzV3BIRJhDsVSO66qAkUhEJCvJct2IWi3a68XtIprQ5sLk_BDlgZtdGdn_2i5wdS_14YQ1lEltU8ltUBDGZBqqxFaSqUC1fpl0G-VVQhTlV8uhZ4O8vN6YudH1D79L-O6ZJnDzK2jNvE6y-A_fuwQLBeRER_kcWYYpNViB-S9EhKtw02CvtmgnunjpS4VsWuBQqhFqZ8F6pp2_ok7GNPv0oFBzKIuiX2hyMo8M-kWdoew_3X28vZ-Zdzl1p9mJr0E3Obk6PnWKwguOwEFIHE1dHmsSC2nRAw5kKCijxnqYaNdj3OUaC0115GlKfE2lwW1Cedg4XIswQ7wOlcFwoDYAEZ9LL6aeyzg3WE2w2AjhpksQS1-GugbOWOmpKFjJbXGM2zTnU_ZTq7a0VFsNDsr-9zkfx489t8c2TIt1OUotILGMhHFQAz-z1i9S0qN60iyfNv8yaA9m2_UkbZy1zrdgzjbn4b7bUDGGUzswI54f-6OH3WLmfgKH5u4j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layered+Oxide+Cathodes+Promoted+by+Structure+Modulation+Technology+for+Sodium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Yao%2C+Xiao&rft.au=Abbasi%2C+Nasir+Mahmood&rft.au=Yan%E2%80%90Fang+Zhu&rft.au=Shi%2C+Li&rft.date=2020-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=30&rft_id=info:doi/10.1002%2Fadfm.202001334&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon