simplified multi‐objective genetic algorithm optimization model for canal scheduling

A simplified Multi‐Objective Genetic Algorithm Optimization Model (MOM‐GA) for canal scheduling under unequal flow rates of distributary canals is presented in this paper. This MOM‐GA was designed for dynamic rotational scheduling with two objectives: to reduce fluctuations of flow rates of superior...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Irrigation and drainage Ročník 61; číslo 3; s. 294 - 305
Hlavní autoři: Peng, S. Z, Wang, Y, Khan, S, Rana, T, Luo, Y. F
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chichester, UK John Wiley & Sons, Ltd 01.07.2012
Témata:
ISSN:1531-0353, 1531-0361
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A simplified Multi‐Objective Genetic Algorithm Optimization Model (MOM‐GA) for canal scheduling under unequal flow rates of distributary canals is presented in this paper. This MOM‐GA was designed for dynamic rotational scheduling with two objectives: to reduce fluctuations of flow rates of superior canals, and to reduce seepage losses of canal systems. This model was programmed in MATLAB using its genetic algorithm functions. Application of this model was demonstrated with a case study of the Nanguan Main Canal system (NMC) in the Gaoyou Irrigation Area, China. The results demonstrated that the MOM‐GA is an effective model for optimizing canal scheduling. NMC keeps running under a relatively steady range, and the seepage losses are reduced by around half that under current and binary optimized scheduling. The MOM‐GA is also sufficiently flexible to be applied to different levels in canal systems as a simplified approach for canal scheduling design and operation. The optimization results given by MOM‐GA can assist irrigators to make better canal scheduling decisions in each irrigation event.
Bibliografie:http://dx.doi.org/10.1002/ird.654
Une version simplifiée d'un modèle d'optimisation utilisant un algorithme génétique multi-objectif pour la programmation d'un canal.
ark:/67375/WNG-H5LN4HWR-S
istex:847CD1EBC0117CC4E4DDA455BBBABF7D688B381A
ArticleID:IRD654
National Science Foundation of China - No. 50839002; No. 50809021
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1531-0353
1531-0361
DOI:10.1002/ird.654