Relative deviation learning bounds and generalization with unbounded loss functions
We present an extensive analysis of relative deviation bounds, including detailed proofs of two-sided inequalities and their implications. We also give detailed proofs of two-sided generalization bounds that hold in the general case of unbounded loss functions, under the assumption that a moment of...
Uloženo v:
| Vydáno v: | Annals of mathematics and artificial intelligence Ročník 85; číslo 1; s. 45 - 70 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.01.2019
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 1012-2443, 1573-7470 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present an extensive analysis of relative deviation bounds, including detailed proofs of two-sided inequalities and their implications. We also give detailed proofs of two-sided generalization bounds that hold in the general case of unbounded loss functions, under the assumption that a moment of the loss is bounded. We then illustrate how to apply these results in a sample application: the analysis of importance weighting. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1012-2443 1573-7470 |
| DOI: | 10.1007/s10472-018-9613-y |