Relative deviation learning bounds and generalization with unbounded loss functions

We present an extensive analysis of relative deviation bounds, including detailed proofs of two-sided inequalities and their implications. We also give detailed proofs of two-sided generalization bounds that hold in the general case of unbounded loss functions, under the assumption that a moment of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Annals of mathematics and artificial intelligence Ročník 85; číslo 1; s. 45 - 70
Hlavní autoři: Cortes, Corinna, Greenberg, Spencer, Mohri, Mehryar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.01.2019
Springer
Springer Nature B.V
Témata:
ISSN:1012-2443, 1573-7470
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present an extensive analysis of relative deviation bounds, including detailed proofs of two-sided inequalities and their implications. We also give detailed proofs of two-sided generalization bounds that hold in the general case of unbounded loss functions, under the assumption that a moment of the loss is bounded. We then illustrate how to apply these results in a sample application: the analysis of importance weighting.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1012-2443
1573-7470
DOI:10.1007/s10472-018-9613-y