The concept of intrinsic versus extrinsic apoptosis
Regulated cell death is a vital and dynamic process in multicellular organisms that maintains tissue homeostasis and eliminates potentially dangerous cells. Apoptosis, one of the better-known forms of regulated cell death, is activated when cell-surface death receptors like Fas are engaged by their...
Gespeichert in:
| Veröffentlicht in: | Biochemical journal Jg. 479; H. 3; S. 357 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
11.02.2022
|
| Schlagworte: | |
| ISSN: | 1470-8728, 1470-8728 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Regulated cell death is a vital and dynamic process in multicellular organisms that maintains tissue homeostasis and eliminates potentially dangerous cells. Apoptosis, one of the better-known forms of regulated cell death, is activated when cell-surface death receptors like Fas are engaged by their ligands (the extrinsic pathway) or when BCL-2-family pro-apoptotic proteins cause the permeabilization of the mitochondrial outer membrane (the intrinsic pathway). Both the intrinsic and extrinsic pathways of apoptosis lead to the activation of a family of proteases, the caspases, which are responsible for the final cell demise in the so-called execution phase of apoptosis. In this review, I will first discuss the most common types of regulated cell death on a morphological basis. I will then consider in detail the molecular pathways of intrinsic and extrinsic apoptosis, discussing how they are activated in response to specific stimuli and are sometimes overlapping. In-depth knowledge of the cellular mechanisms of apoptosis is becoming more and more important not only in the field of cellular and molecular biology but also for its translational potential in several pathologies, including neurodegeneration and cancer. |
|---|---|
| AbstractList | Regulated cell death is a vital and dynamic process in multicellular organisms that maintains tissue homeostasis and eliminates potentially dangerous cells. Apoptosis, one of the better-known forms of regulated cell death, is activated when cell-surface death receptors like Fas are engaged by their ligands (the extrinsic pathway) or when BCL-2-family pro-apoptotic proteins cause the permeabilization of the mitochondrial outer membrane (the intrinsic pathway). Both the intrinsic and extrinsic pathways of apoptosis lead to the activation of a family of proteases, the caspases, which are responsible for the final cell demise in the so-called execution phase of apoptosis. In this review, I will first discuss the most common types of regulated cell death on a morphological basis. I will then consider in detail the molecular pathways of intrinsic and extrinsic apoptosis, discussing how they are activated in response to specific stimuli and are sometimes overlapping. In-depth knowledge of the cellular mechanisms of apoptosis is becoming more and more important not only in the field of cellular and molecular biology but also for its translational potential in several pathologies, including neurodegeneration and cancer.Regulated cell death is a vital and dynamic process in multicellular organisms that maintains tissue homeostasis and eliminates potentially dangerous cells. Apoptosis, one of the better-known forms of regulated cell death, is activated when cell-surface death receptors like Fas are engaged by their ligands (the extrinsic pathway) or when BCL-2-family pro-apoptotic proteins cause the permeabilization of the mitochondrial outer membrane (the intrinsic pathway). Both the intrinsic and extrinsic pathways of apoptosis lead to the activation of a family of proteases, the caspases, which are responsible for the final cell demise in the so-called execution phase of apoptosis. In this review, I will first discuss the most common types of regulated cell death on a morphological basis. I will then consider in detail the molecular pathways of intrinsic and extrinsic apoptosis, discussing how they are activated in response to specific stimuli and are sometimes overlapping. In-depth knowledge of the cellular mechanisms of apoptosis is becoming more and more important not only in the field of cellular and molecular biology but also for its translational potential in several pathologies, including neurodegeneration and cancer. Regulated cell death is a vital and dynamic process in multicellular organisms that maintains tissue homeostasis and eliminates potentially dangerous cells. Apoptosis, one of the better-known forms of regulated cell death, is activated when cell-surface death receptors like Fas are engaged by their ligands (the extrinsic pathway) or when BCL-2-family pro-apoptotic proteins cause the permeabilization of the mitochondrial outer membrane (the intrinsic pathway). Both the intrinsic and extrinsic pathways of apoptosis lead to the activation of a family of proteases, the caspases, which are responsible for the final cell demise in the so-called execution phase of apoptosis. In this review, I will first discuss the most common types of regulated cell death on a morphological basis. I will then consider in detail the molecular pathways of intrinsic and extrinsic apoptosis, discussing how they are activated in response to specific stimuli and are sometimes overlapping. In-depth knowledge of the cellular mechanisms of apoptosis is becoming more and more important not only in the field of cellular and molecular biology but also for its translational potential in several pathologies, including neurodegeneration and cancer. |
| Author | Lossi, Laura |
| Author_xml | – sequence: 1 givenname: Laura orcidid: 0000-0003-1149-212X surname: Lossi fullname: Lossi, Laura organization: Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095 Grugliasco, Torino, Italy |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35147165$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj8tLxDAYxIOsuA89eZcevVTzfXk0PWpZXyx4Wc-lTb9ipJvUphX9711wFzzNMPNjYJZs5oMnxi6B3wCXeHtfvCBH4EbJE7YAmfHUZGhm__ycLWP84Bwkl_yMzYXaV6DVgontOyU2eEv9mIQ2cX4cnI_OJl80xCkm9H0Mqj70Y4gunrPTtuoiXRx0xd4e1tviKd28Pj4Xd5vUCqXGlIzUvCEgLYURQDnWkEFDVZ0pDXkjZG1lQ6IGpSxogxkoo7DlSlQoiHDFrv92-yF8ThTHcueipa6rPIUplqjRYJ5zFHv06oBO9Y6ash_crhp-yuNR_AUfKFSb |
| CitedBy_id | crossref_primary_10_1007_s10534_025_00742_1 crossref_primary_10_1016_j_jff_2024_106498 crossref_primary_10_3389_fcell_2025_1611936 crossref_primary_10_3390_ijms252111713 crossref_primary_10_1007_s10989_022_10458_2 crossref_primary_10_1016_j_biopha_2023_115990 crossref_primary_10_1016_j_phymed_2025_156743 crossref_primary_10_1016_j_semcdb_2024_01_006 crossref_primary_10_3892_etm_2025_12861 crossref_primary_10_1007_s00726_023_03373_3 crossref_primary_10_3389_fceld_2023_1281137 crossref_primary_10_3390_cimb46110748 crossref_primary_10_3390_molecules28207209 crossref_primary_10_1016_j_ejphar_2025_177349 crossref_primary_10_1016_j_intimp_2024_112240 crossref_primary_10_1177_1934578X251344985 crossref_primary_10_3390_foods13213508 crossref_primary_10_1242_jcs_260790 crossref_primary_10_2147_JIR_S514309 crossref_primary_10_1016_j_conb_2022_102629 crossref_primary_10_1016_j_taap_2025_117403 crossref_primary_10_3390_ani14203009 crossref_primary_10_1002_cmdc_202300519 crossref_primary_10_3390_ijms24076014 crossref_primary_10_1097_JCMA_0000000000000806 crossref_primary_10_3390_cancers16050885 crossref_primary_10_1016_j_mcn_2025_104016 crossref_primary_10_1038_s41598_024_66367_5 crossref_primary_10_3389_fphar_2025_1599756 crossref_primary_10_3390_molecules27196401 crossref_primary_10_3390_ani15020228 crossref_primary_10_1007_s11356_022_24213_z crossref_primary_10_1021_acs_est_5c05893 crossref_primary_10_1186_s43094_025_00788_5 crossref_primary_10_1016_j_semcdb_2022_11_007 crossref_primary_10_3390_ph17010121 crossref_primary_10_1016_j_jtos_2024_11_004 crossref_primary_10_1155_cmi_7344471 crossref_primary_10_3389_fonc_2022_835027 crossref_primary_10_3892_ijmm_2023_5309 crossref_primary_10_1016_j_gene_2025_149270 crossref_primary_10_1038_s41598_025_97633_9 crossref_primary_10_3390_molecules28176208 crossref_primary_10_3390_molecules28041879 crossref_primary_10_1002_jbt_70373 crossref_primary_10_1002_mco2_693 crossref_primary_10_1016_j_fsi_2025_110687 crossref_primary_10_4014_jmb_2409_09025 crossref_primary_10_1002_vms3_70216 crossref_primary_10_1111_eci_14226 crossref_primary_10_1002_JLB_4MR0422_636R crossref_primary_10_1016_j_watbs_2025_100409 crossref_primary_10_3390_encyclopedia2040111 crossref_primary_10_1016_j_biopha_2025_118363 crossref_primary_10_1007_s10495_025_02161_6 crossref_primary_10_1080_14786419_2023_2298383 crossref_primary_10_1016_j_bioorg_2025_108432 crossref_primary_10_1016_j_prp_2023_154889 crossref_primary_10_1021_acsnano_4c14273 crossref_primary_10_3390_cells13020183 crossref_primary_10_3390_cells12182304 crossref_primary_10_1515_jtim_2025_0004 crossref_primary_10_3390_genes15020183 crossref_primary_10_1113_JP287635 crossref_primary_10_1111_boc_202400077 crossref_primary_10_1002_tox_24515 crossref_primary_10_1007_s12013_023_01179_4 crossref_primary_10_1016_j_heares_2025_109287 crossref_primary_10_62347_NCFF5626 crossref_primary_10_3390_ijms26188876 crossref_primary_10_1016_j_tips_2025_05_002 crossref_primary_10_1080_15476286_2025_2525886 crossref_primary_10_1002_ptr_8128 crossref_primary_10_3390_ani14233394 crossref_primary_10_1016_j_heliyon_2024_e35636 crossref_primary_10_3892_or_2024_8771 crossref_primary_10_1007_s40291_023_00672_z crossref_primary_10_1007_s10904_025_03901_6 crossref_primary_10_1002_jat_4536 crossref_primary_10_1016_j_scitotenv_2024_172125 crossref_primary_10_1515_oncologie_2024_0378 crossref_primary_10_1016_j_ccr_2025_217119 crossref_primary_10_1007_s11033_025_10924_2 crossref_primary_10_1016_j_omtn_2025_102649 crossref_primary_10_31083_j_fbl2904157 crossref_primary_10_1038_s41420_024_01978_5 crossref_primary_10_3389_fvets_2024_1360878 crossref_primary_10_4103_NRR_NRR_D_24_01324 crossref_primary_10_3390_pathogens12060839 crossref_primary_10_3390_pharmaceutics16121504 crossref_primary_10_1016_j_toxicon_2024_107718 crossref_primary_10_1038_s41418_023_01249_3 crossref_primary_10_2174_0109298673288774240406053607 crossref_primary_10_3390_biology12030415 crossref_primary_10_3390_ijms232315186 crossref_primary_10_1007_s12032_025_02762_w crossref_primary_10_1016_j_bioorg_2025_108211 crossref_primary_10_1016_j_heliyon_2024_e37196 crossref_primary_10_1016_j_exer_2023_109728 crossref_primary_10_3390_cells14151203 crossref_primary_10_1007_s12032_023_02180_w crossref_primary_10_3390_biom13060912 crossref_primary_10_3390_ijms241713527 crossref_primary_10_1016_j_arabjc_2024_105694 crossref_primary_10_1134_S1068162024030166 crossref_primary_10_1016_j_bbadis_2023_166720 crossref_primary_10_1016_j_bcp_2024_116588 crossref_primary_10_1016_j_bcp_2024_116621 crossref_primary_10_34133_bmr_0157 crossref_primary_10_1007_s10495_025_02081_5 crossref_primary_10_3390_ijms26104870 crossref_primary_10_1016_j_freeradbiomed_2024_04_235 crossref_primary_10_1016_j_ejmech_2024_116757 crossref_primary_10_1038_s41598_025_14351_y crossref_primary_10_1002_smll_202506890 crossref_primary_10_1042_BST20231332 crossref_primary_10_3390_ani13243817 crossref_primary_10_1007_s12017_025_08864_y crossref_primary_10_1016_j_phyplu_2025_100845 crossref_primary_10_1016_j_chemosphere_2024_142964 crossref_primary_10_1016_j_fgb_2022_103730 crossref_primary_10_1016_j_jep_2024_118414 crossref_primary_10_1371_journal_pone_0286274 crossref_primary_10_1016_j_heliyon_2024_e40654 crossref_primary_10_1080_10408398_2024_2357701 crossref_primary_10_3390_ph17060692 crossref_primary_10_1007_s12088_025_01447_2 crossref_primary_10_1080_13543776_2024_2397732 crossref_primary_10_1002_cbdv_202400709 crossref_primary_10_1016_j_foodres_2025_116124 crossref_primary_10_1016_j_biopha_2025_118091 crossref_primary_10_3389_fceld_2023_1322780 crossref_primary_10_1016_j_chmed_2025_09_005 crossref_primary_10_1016_j_mam_2025_101411 crossref_primary_10_3390_molecules28020796 crossref_primary_10_1016_j_tox_2023_153692 crossref_primary_10_7759_cureus_89916 crossref_primary_10_1039_D5NJ00670H crossref_primary_10_3389_fphar_2024_1303732 crossref_primary_10_1016_j_arabjc_2023_105192 crossref_primary_10_1016_j_tox_2025_154102 crossref_primary_10_1002_ptr_7870 crossref_primary_10_1111_jcmm_70624 crossref_primary_10_1371_journal_pone_0308095 crossref_primary_10_1002_open_202500252 crossref_primary_10_3389_fphar_2023_1291920 crossref_primary_10_1016_j_jinorgbio_2023_112283 crossref_primary_10_1021_acsptsci_4c00681 crossref_primary_10_1111_bph_16299 crossref_primary_10_3390_md22020057 crossref_primary_10_1186_s12935_025_03828_5 crossref_primary_10_3390_ijms26115066 crossref_primary_10_1080_09546634_2025_2526075 crossref_primary_10_1007_s12032_024_02335_3 crossref_primary_10_1016_j_fct_2024_115218 crossref_primary_10_1371_journal_pone_0332212 crossref_primary_10_1016_j_metabol_2025_156359 crossref_primary_10_1016_j_jtemb_2025_127757 crossref_primary_10_1038_s41598_023_39455_1 crossref_primary_10_3389_fphar_2025_1631977 crossref_primary_10_3390_ijms26062390 crossref_primary_10_1371_journal_pone_0292434 crossref_primary_10_1002_iub_2888 crossref_primary_10_1080_14756366_2024_2311157 crossref_primary_10_1111_apha_14150 crossref_primary_10_1002_jemt_24872 crossref_primary_10_1002_tox_24168 crossref_primary_10_1016_j_ejphar_2022_175426 crossref_primary_10_1111_cbdd_14355 crossref_primary_10_1186_s10020_023_00678_7 crossref_primary_10_3390_ijms252313048 crossref_primary_10_1007_s12013_025_01724_3 crossref_primary_10_1007_s00210_025_04288_4 crossref_primary_10_1515_tjb_2024_0045 crossref_primary_10_2147_JIR_S497775 crossref_primary_10_1111_cns_70481 crossref_primary_10_1016_j_semcdb_2023_06_008 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society. |
| Copyright_xml | – notice: 2022 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1042/BCJ20210854 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1470-8728 |
| ExternalDocumentID | 35147165 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -~X 0R~ 23N 2WC 4.4 53G 5GY 5RE 6J9 79B A8Z AABGO AAHRG ABJNI ABPPZ ABRJW ACGFO ACGFS ACNCT ADBBV AEGXH AENEX AIAGR AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL CGR CS3 CUY CVF DU5 E3Z EBD EBS ECM EIF EMOBN F5P H13 HH6 HZ~ K-O L7B ML- MV1 N9A NPM NTEUP O9- OK1 P2P RHI RNS RPM RPO SV3 TR2 TWZ WH7 XSW Y6R YNY ~02 ~KM 7X8 ESTFP |
| ID | FETCH-LOGICAL-c355t-e8460de1e643831e92b171deab75619d34bc4de3b155c1682715852f053a23ee2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 205 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001124787200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1470-8728 |
| IngestDate | Wed Oct 01 13:37:23 EDT 2025 Wed Feb 19 02:27:05 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | BCL-2 apoptosis apoptosome cell death caspases death receptors |
| Language | English |
| License | 2022 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c355t-e8460de1e643831e92b171deab75619d34bc4de3b155c1682715852f053a23ee2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1149-212X |
| PMID | 35147165 |
| PQID | 2628299023 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2628299023 pubmed_primary_35147165 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-11 |
| PublicationDateYYYYMMDD | 2022-02-11 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Biochemical journal |
| PublicationTitleAlternate | Biochem J |
| PublicationYear | 2022 |
| SSID | ssj0014040 |
| Score | 2.6920075 |
| SecondaryResourceType | review_article |
| Snippet | Regulated cell death is a vital and dynamic process in multicellular organisms that maintains tissue homeostasis and eliminates potentially dangerous cells.... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 357 |
| SubjectTerms | Animals Apoptosis - physiology Apoptosis Regulatory Proteins - physiology Apoptosomes - physiology Apoptosomes - ultrastructure Autophagy Caspases - physiology Humans Invertebrates - cytology Ligands Lysosomes - physiology Macrophages - physiology Mitochondrial Membranes - physiology Necrosis Neoplasm Proteins - physiology Permeability Phagocytosis Proto-Oncogene Proteins c-bcl-2 - physiology Receptors, Death Domain - physiology |
| Title | The concept of intrinsic versus extrinsic apoptosis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35147165 https://www.proquest.com/docview/2628299023 |
| Volume | 479 |
| WOSCitedRecordID | wos001124787200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_qBL34sfkxv4gg3sKWNGuSk8zhEMGxg8JuJU0T6MG2rp3gf-9L27GTIHjpoVBIXl9efu_zh9Cdih3XLh4SKRUn3FJDtAot4X7UCLNGmCSpySbEbCYXCzVvA25lW1a5tom1oU5y42PkAxb6nJ-CK-ah-CSeNcpnV1sKjW3UCQDKeK0Wi00WgQ-bhkguYC2CybY_D_R08Dh5Yd7dkZ4H4DdsWd8x08P_ru4IHbToEo8bdThGWzbrot44A8_64xvf47resw6kd9HeZM311kMBaAs2TQcjzh1Os2qZZvADsa_aWJUYTHj7Qhd5UeVlWp6g9-nT2-SZtHQKxACoqIgFqDFMLLWhH09KrWIxFTSxOhYAolQS8NjwxAYxQAxDQ8kEBV-COTimmgXWslO0k-WZPUeYOWkkd2Hgp9eETqvAsxabkdOMWzHUfXS7FlMEO_E5CJ3ZfFVGG0H10Vkj66ho5mpEvqkA3LfRxR--vkT7zDcieGoWeoU6Dg6rvUa75qtKy-VNrQfwnM1ffwBzK7wG |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+concept+of+intrinsic+versus+extrinsic+apoptosis&rft.jtitle=Biochemical+journal&rft.au=Lossi%2C+Laura&rft.date=2022-02-11&rft.issn=1470-8728&rft.eissn=1470-8728&rft.volume=479&rft.issue=3&rft.spage=357&rft_id=info:doi/10.1042%2FBCJ20210854&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-8728&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-8728&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-8728&client=summon |