Stable Computations with Gaussian Radial Basis Functions
Radial basis function (RBF) approximation is an extremely powerful tool for representing smooth functions in nontrivial geometries since the method is mesh-free and can be spectrally accurate. A perceived practical obstacle is that the interpolation matrix becomes increasingly ill-conditioned as the...
Uloženo v:
| Vydáno v: | SIAM journal on scientific computing Ročník 33; číslo 2; s. 869 - 892 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.01.2011
|
| Témata: | |
| ISSN: | 1064-8275, 1095-7197, 1095-7197 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Radial basis function (RBF) approximation is an extremely powerful tool for representing smooth functions in nontrivial geometries since the method is mesh-free and can be spectrally accurate. A perceived practical obstacle is that the interpolation matrix becomes increasingly ill-conditioned as the RBF shape parameter becomes small, corresponding to flat RBFs. Two stable approaches that overcome this problem exist: the Contour-Pade method and the RBF-QR method. However, the former is limited to small node sets, and the latter has until now been formulated only for the surface of the sphere. This paper focuses on an RBF-QR formulation for node sets in one, two, and three dimensions. The algorithm is stable for arbitrarily small shape parameters. It can be used for thousands of node points in two dimensions and still more in three dimensions. A sample MATLAB code for the two-dimensional case is provided. [PUBLICATION ABSTRACT] |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 1064-8275 1095-7197 1095-7197 |
| DOI: | 10.1137/09076756X |