Enhanced Fuzzy System Models With Improved Fuzzy Clustering Algorithm

Although traditional fuzzy models have proven to have high capacity of approximating the real-world systems, they have some challenges, such as computational complexity, optimization problems, subjectivity, etc. In order to solve some of these problems, this paper proposes a new fuzzy system modelin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on fuzzy systems Vol. 16; no. 3; pp. 779 - 794
Main Authors: Celikyilmaz, A., Burhan Turksen, I.
Format: Journal Article
Language:English
Published: New York IEEE 01.06.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1063-6706, 1941-0034
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Although traditional fuzzy models have proven to have high capacity of approximating the real-world systems, they have some challenges, such as computational complexity, optimization problems, subjectivity, etc. In order to solve some of these problems, this paper proposes a new fuzzy system modeling approach based on improved fuzzy functions to model systems with continuous output variable. The new modeling approach introduces three features: i) an improved fuzzy clustering (IFC) algorithm, ii) a new structure identification algorithm, and iii) a nonparametric inference engine. The IFC algorithm yields simultaneous estimates of parameters of c-regression models, together with fuzzy c-partitioning of the data, to calculate improved membership values with a new membership function. The structure identification of the new approach utilizes IFC, instead of standard fuzzy c-means clustering algorithm, to fuzzy partition the data, and it uses improved membership values as additional input variables along with the original scalar input variables for two different choices of regression methods: least squares estimation or support vector regression, to determine ldquofuzzy functionsrdquo for each cluster. With novel IFC, one could learn the system behavior more accurately compared to other FSM models. The nonparametric inference engine is a new approach, which uses the alike -nearest neighbor method for reasoning. Empirical comparisons indicate that the proposed approach yields comparable or better accuracy than fuzzy or neuro-fuzzy models based on fuzzy rules bases, as well as other soft computing methods.
AbstractList Although traditional fuzzy models have proven to have high capacity of approximating the real-world systems, they have some challenges, such as computational complexity, optimization problems, subjectivity, etc. In order to solve some of these problems, this paper proposes a new fuzzy system modeling approach based on improved fuzzy functions to model systems with continuous output variable. The new modeling approach introduces three features: i) an improved fuzzy clustering (IFC) algorithm II) a new structure identification algorithm, and III) a nonparametric inference engine. The IFC algorithm yields simultaneous estimates of parameters of c-regression models, together with fuzzy c-partitioning of the data, to calculate improved membership values with a new membership function. The structure identification of the new approach utilizes IFC, instead of standard fuzzy c-means clustering algorithm, to fuzzy partition the data, and it uses improved membership values as additional input variables along with the original scalar input variables for two different choices of regression methods: least squares estimation or support vector regression, to determine ldquofuzzy functionsrdquo for each cluster. With novel IFC, one could learn the system behavior more accurately compared to other FSM models. The nonparametric inference engine is a new approach, which uses the alike -nearest neighbor method for reasoning. Empirical comparisons indicate that the proposed approach yields comparable or better accuracy than fuzzy or neuro-fuzzy models based on fuzzy rules bases, as well as other soft computing methods.
The structure identification of the new approach utilizes IFC, instead of standard fuzzy c-means clustering algorithm, to fuzzy partition the data, and it uses improved membership values as additional input variables along with the original scalar input variables for two different choices of regression methods: least squares estimation or support vector regression, to determine ldquofuzzy functionsrdquo for each cluster.
Although traditional fuzzy models have proven to have high capacity of approximating the real-world systems, they have some challenges, such as computational complexity, optimization problems, subjectivity, etc. In order to solve some of these problems, this paper proposes a new fuzzy system modeling approach based on improved fuzzy functions to model systems with continuous output variable. The new modeling approach introduces three features: i) an improved fuzzy clustering (IFC) algorithm, ii) a new structure identification algorithm, and iii) a nonparametric inference engine. The IFC algorithm yields simultaneous estimates of parameters of c-regression models, together with fuzzy c-partitioning of the data, to calculate improved membership values with a new membership function. The structure identification of the new approach utilizes IFC, instead of standard fuzzy c-means clustering algorithm, to fuzzy partition the data, and it uses improved membership values as additional input variables along with the original scalar input variables for two different choices of regression methods: least squares estimation or support vector regression, to determine "fuzzy functions" for each cluster. With novel IFC, one could learn the system behavior more accurately compared to other FSM models. The nonparametric inference engine is a new approach, which uses the alike -nearest neighbor method for reasoning. Empirical comparisons indicate that the proposed approach yields comparable or better accuracy than fuzzy or neuro-fuzzy models based on fuzzy rules bases, as well as other soft computing methods.
Author Celikyilmaz, A.
Burhan Turksen, I.
Author_xml – sequence: 1
  givenname: A.
  surname: Celikyilmaz
  fullname: Celikyilmaz, A.
  organization: Dept. of Mech. & Ind. Eng., Univ. of Toronto, Toronto, ON
– sequence: 2
  givenname: I.
  surname: Burhan Turksen
  fullname: Burhan Turksen, I.
BookMark eNp90MtOAjEUBuDGaCKiD2DcTFzoavB0el8SAkqCcSHEhE1Thg4MmQu2Mybw9BYxLFy46ll8f0_7X6Hzqq4sQrcYehiDepqOZvN5LwEQPQVMYXWGOlhRHAMQeh5m4CTmAvgluvJ-A4Apw7KDhsNqbarULqNRu9_vovedb2wZvdZLW_joI2_W0bjcuvrrJAZFG4jLq1XUL1a1C6S8RheZKby9-T27aDYaTgcv8eTteTzoT-KUMNbEy0zQ5UIwCUJhIMAzQhecEiNSRhaZ5AwykwieMpNAJoSUieQqpcomSlmJSRc9Hu8NL_psrW90mfvUFoWpbN16LSVwqjjnQT78KwllQEGSAO__wE3duir8QiucEBCSJQHhI0pd7b2zmd66vDRupzHoQ__6p3996F8f-w8Z8SeT5o1p8rpqnMmLf5N3x2RurT1tokQyxoB8AwLvk2M
CODEN IEFSEV
CitedBy_id crossref_primary_10_1016_j_asoc_2020_106535
crossref_primary_10_1155_2015_682989
crossref_primary_10_1016_j_fss_2018_09_001
crossref_primary_10_1007_s40815_015_0055_y
crossref_primary_10_1109_TIE_2016_2562613
crossref_primary_10_1007_s41066_021_00257_3
crossref_primary_10_1016_j_cnsns_2013_12_006
crossref_primary_10_1016_j_enconman_2022_115815
crossref_primary_10_1016_j_ins_2011_07_036
crossref_primary_10_1111_exsy_12120
crossref_primary_10_1155_2014_916371
crossref_primary_10_1016_j_ins_2017_08_048
crossref_primary_10_1007_s00521_024_09673_3
crossref_primary_10_1109_TMM_2012_2186792
crossref_primary_10_1016_j_energy_2017_02_008
crossref_primary_10_1016_j_cam_2019_112656
crossref_primary_10_1007_s41066_018_0115_4
crossref_primary_10_1016_j_eswa_2023_119882
crossref_primary_10_1016_j_asr_2019_03_035
crossref_primary_10_1016_j_ijar_2020_12_021
crossref_primary_10_1007_s10586_017_1503_2
crossref_primary_10_1016_j_enggeo_2010_05_005
crossref_primary_10_1016_j_sjbs_2017_01_027
crossref_primary_10_1016_j_eswa_2012_05_049
crossref_primary_10_1080_00207721_2020_1759729
crossref_primary_10_1109_TFUZZ_2014_2300134
crossref_primary_10_1134_S2075108715010101
crossref_primary_10_1007_s40815_022_01394_w
crossref_primary_10_1016_j_asoc_2016_02_001
crossref_primary_10_1002_cplx_21458
crossref_primary_10_1007_s12652_023_04613_w
crossref_primary_10_1016_j_neucom_2022_07_029
crossref_primary_10_1109_TFUZZ_2011_2161612
crossref_primary_10_1016_j_ijar_2010_06_002
crossref_primary_10_1016_j_neucom_2014_02_027
crossref_primary_10_2478_ausi_2020_0018
crossref_primary_10_1016_j_eswa_2016_07_040
crossref_primary_10_1016_j_knosys_2025_113679
crossref_primary_10_1016_j_ins_2010_08_026
crossref_primary_10_1016_j_eswa_2022_117717
crossref_primary_10_1016_j_ins_2022_01_057
crossref_primary_10_1016_j_physleta_2015_11_036
crossref_primary_10_1016_j_engappai_2025_110445
crossref_primary_10_1016_j_asoc_2013_12_011
crossref_primary_10_1007_s00500_017_2984_x
crossref_primary_10_1016_j_eswa_2016_10_018
crossref_primary_10_1016_j_scs_2021_103550
crossref_primary_10_1007_s40815_015_0106_4
crossref_primary_10_1016_j_dcan_2016_06_003
crossref_primary_10_1109_TPWRS_2012_2197831
crossref_primary_10_1155_2022_3518190
crossref_primary_10_1016_j_eswa_2012_02_077
crossref_primary_10_1109_TFUZZ_2016_2612300
crossref_primary_10_1016_j_neucom_2014_02_059
crossref_primary_10_1016_j_knosys_2017_07_012
crossref_primary_10_1016_j_eswa_2013_12_037
crossref_primary_10_1016_j_fss_2011_02_011
crossref_primary_10_1080_03610918_2019_1626887
crossref_primary_10_1016_j_ijinfomgt_2016_05_022
Cites_doi 10.1109/91.728458
10.1109/NAFIPS.2004.1337399
10.1109/ICSMC.2004.1400667
10.1109/IJCNN.2004.1380933
10.1016/j.ins.2007.06.028
10.1007/978-3-642-60767-7_2
10.1109/ICIMA.2004.1384212
10.1109/21.256541
10.1016/S0888-613X(02)00078-6
10.1109/91.995117
10.1109/TFUZZ.2003.817853
10.1109/TFUZZ.1993.390281
10.1016/j.ejor.2005.11.017
10.1109/ICSMC.2005.1571584
10.1109/91.705501
10.1109/KES.2000.885783
10.1109/TSMC.1985.6313399
10.1109/72.159070
10.1016/S0165-0114(97)00280-7
10.1016/0165-0114(93)90024-C
10.1109/21.376490
10.1016/S0165-0114(96)00384-3
10.1016/j.asoc.2007.12.004
10.1109/91.236552
10.1016/S0165-0114(00)00052-X
10.1109/FUZZY.2006.1682003
10.1016/0098-3004(84)90020-7
10.1016/j.fss.2005.01.012
10.1109/FUZZ.2001.1009015
10.1109/CEC.2005.1554965
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7SP
F28
FR3
DOI 10.1109/TFUZZ.2007.905919
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Computer and Information Systems Abstracts
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 794
ExternalDocumentID 2545338431
10_1109_TFUZZ_2007_905919
4385550
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7SP
F28
FR3
ID FETCH-LOGICAL-c355t-df74db75807910306f34b643a7c53bf8650fa276c5a20f77882869c49e299e813
IEDL.DBID RIE
ISICitedReferencesCount 89
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000256670200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Wed Oct 01 14:52:45 EDT 2025
Mon Sep 29 03:51:59 EDT 2025
Sun Nov 30 03:55:33 EST 2025
Sat Nov 29 06:46:20 EST 2025
Tue Nov 18 22:21:55 EST 2025
Tue Aug 26 16:47:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-df74db75807910306f34b643a7c53bf8650fa276c5a20f77882869c49e299e813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 912307852
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_880649666
crossref_primary_10_1109_TFUZZ_2007_905919
proquest_journals_912307852
ieee_primary_4385550
crossref_citationtrail_10_1109_TFUZZ_2007_905919
proquest_miscellaneous_34504083
PublicationCentury 2000
PublicationDate 2008-06-01
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2008
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref10
chang (ref7) 2001
gunn (ref13) 1998
ref17
ref19
ref18
hill (ref16) 0
cristianini (ref9) 2000
ref50
uncu (ref43) 2003
ref47
ref41
kosko (ref25) 1992
ref44
ref49
turksen (ref40) 2006; 8
ref8
uncu (ref42) 2001
lin (ref27) 1996
ref4
ref3
weiss (ref48) 1991
montgomery (ref29) 1992
ref35
ref34
ref37
ref36
celikyilmaz (ref6) 2007
vergara (ref46) 1997
ref30
ref33
ref2
ref1
ref39
ref38
vapnik (ref45) 1998
kilic (ref22) 2001
ref23
ref26
ref20
ref21
(ref11) 0
ref28
(ref32) 0
newman (ref31) 1998
celikyilmaz (ref5) 0
kohavi (ref24) 1995
References_xml – ident: ref23
  doi: 10.1109/91.728458
– ident: ref50
  doi: 10.1109/NAFIPS.2004.1337399
– year: 1992
  ident: ref29
  publication-title: Introduction to Linear Regression Analysis
– ident: ref44
  doi: 10.1109/ICSMC.2004.1400667
– ident: ref19
  doi: 10.1109/IJCNN.2004.1380933
– ident: ref33
  doi: 10.1016/j.ins.2007.06.028
– year: 1998
  ident: ref31
  publication-title: UCI repository of machine learning databases
– ident: ref1
  doi: 10.1007/978-3-642-60767-7_2
– ident: ref49
  doi: 10.1109/ICIMA.2004.1384212
– start-page: 252
  year: 1997
  ident: ref46
  publication-title: Fuzzy Model Identification Selected Approaches
– ident: ref20
  doi: 10.1109/21.256541
– year: 2000
  ident: ref9
  publication-title: An Introduction to Support Vector Machines
– year: 0
  ident: ref11
  publication-title: DENFIS from ECOS Toolbox for Matlab
– year: 0
  ident: ref5
  article-title: fuzzy functions approximation with support vector machines for fuzzy system modeling
  publication-title: Inf Sci
– year: 1992
  ident: ref25
  publication-title: Neural Networks and Fuzzy Systems
– ident: ref18
  doi: 10.1016/S0888-613X(02)00078-6
– start-page: 1137
  year: 1995
  ident: ref24
  article-title: a study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: Proc 14th Int Joint Conf Artificial Intelligence
– ident: ref21
  doi: 10.1109/91.995117
– year: 0
  ident: ref16
  publication-title: Indicator Analysis
– ident: ref35
  doi: 10.1109/TFUZZ.2003.817853
– year: 1998
  ident: ref13
  publication-title: Support vector machines for classification and regression
– year: 1991
  ident: ref48
  publication-title: Computer Systems That Learn
– ident: ref37
  doi: 10.1109/TFUZZ.1993.390281
– ident: ref3
  doi: 10.1016/j.ejor.2005.11.017
– year: 0
  ident: ref32
  publication-title: NIST/SEMATECH e-Handbook of Statistical Methods
– start-page: 236
  year: 2001
  ident: ref22
  article-title: a -nearest neighborhood based fuzzy reasoning schema
  publication-title: Proc 10th IEEE Int Conf Fuzzy Systems
– start-page: 136
  year: 2007
  ident: ref6
  article-title: new classifier design with fuzzy functions
  publication-title: Proc 11th Int Conf Rough Sets
– ident: ref26
  doi: 10.1109/ICSMC.2005.1571584
– volume: 8
  start-page: 137
  year: 2006
  ident: ref40
  article-title: comparison of fuzzy functions with fuzzy rule base approaches
  publication-title: Int J Fuzzy Syst
– ident: ref12
  doi: 10.1109/91.705501
– year: 2001
  ident: ref7
  publication-title: LIBSVM A library for support vector machines
– ident: ref17
  doi: 10.1109/KES.2000.885783
– ident: ref38
  doi: 10.1109/TSMC.1985.6313399
– start-page: 191
  year: 2003
  ident: ref43
  article-title: localmfsm: a new fuzzy system modeling approach using a two-step fuzzy inference mechanism based on local fuzziness level selection
  publication-title: Proc 8th Int Fuzzy Systems Association World Congr
– ident: ref47
  doi: 10.1109/72.159070
– ident: ref10
  doi: 10.1016/S0165-0114(97)00280-7
– ident: ref30
  doi: 10.1016/0165-0114(93)90024-C
– ident: ref34
  doi: 10.1109/21.376490
– ident: ref8
  doi: 10.1016/S0165-0114(96)00384-3
– ident: ref39
  doi: 10.1016/j.asoc.2007.12.004
– start-page: 381
  year: 2001
  ident: ref42
  article-title: prediction of stock prices with multidimensional fuzzy structure identification and inference
  publication-title: Sig Proc
– year: 1998
  ident: ref45
  publication-title: Statistical Learning Theory
– ident: ref14
  doi: 10.1109/91.236552
– ident: ref28
  doi: 10.1016/S0165-0114(00)00052-X
– ident: ref4
  doi: 10.1109/FUZZY.2006.1682003
– ident: ref2
  doi: 10.1016/0098-3004(84)90020-7
– year: 1996
  ident: ref27
  publication-title: Neural Fuzzy Systems/A Neuro-Fuzzy Synergism to Intelligent Systems
– ident: ref15
  doi: 10.1016/j.fss.2005.01.012
– ident: ref41
  doi: 10.1109/FUZZ.2001.1009015
– ident: ref36
  doi: 10.1109/CEC.2005.1554965
SSID ssj0014518
Score 2.2652202
Snippet Although traditional fuzzy models have proven to have high capacity of approximating the real-world systems, they have some challenges, such as computational...
The structure identification of the new approach utilizes IFC, instead of standard fuzzy c-means clustering algorithm, to fuzzy partition the data, and it uses...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 779
SubjectTerms Algorithms
Clustering
Clustering algorithms
Computational complexity
Engines
Fuzzy
Fuzzy functions (FFs)
Fuzzy logic
Fuzzy set theory
fuzzy system modeling (FSM)
Fuzzy systems
improved fuzzy clustering (IFC)
Inference algorithms
inference mechanisms
Input variables
Least squares approximation
Mathematical analysis
Mathematical models
Parameter estimation
Partitioning algorithms
Studies
Yield estimation
Title Enhanced Fuzzy System Models With Improved Fuzzy Clustering Algorithm
URI https://ieeexplore.ieee.org/document/4385550
https://www.proquest.com/docview/912307852
https://www.proquest.com/docview/34504083
https://www.proquest.com/docview/880649666
Volume 16
WOSCitedRecordID wos000256670200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS-QwFH-4sgf3oK66WL82B09itW3SJD2KzOBhEQ9-4aX0I1mFsSMzU0H_et9LOkXQFfZW6AsteXl5X8nvB7BvuDFKyDhM0DeGgtdlqEtpQnTNlhitC-uKOdd_1Pm5vr3NLhbgsL8LY4xxh8_MET26Xn49rloqlR0LrtOUEvRvSkl_V6vvGIg09tfeJA-limTXwYyj7PhyeHV359EKM4wmCFTnnQ9ypCofdmLnXoYr__djq7DchZHsxOv9JyyYZg1W5hQNrLPYNfjxDm9wHQaD5t51_NmwfX19YR6unBEf2mjKbh5m98wXGXqJ01FLSAo4mp2M_o4nKPK4AVfDweXpWdjxKIQVRhOzsLZK1CUmBpHKiFVMWi5KjEQKVaW8tBqDNFskSlZpkURWYVKcaJlVIjPoq4yO-S9YbMaN2QRG6Pu80gXBuBE2fSmsqqWw6ORLNP40gGg-s3nVgYwT18Uod8lGlOVOGUR-qXKvjAAO-iFPHmHjK-F1mv1esJv4ALbn6ss7G5zmWUyH3HWaBPC7f4vGQx2RojHjdppzkeImpnkA7B8SuL1JgSmh3Pr8y9uw5E-QUF1mBxZnk9bswvfqefYwney5JfoGIqHhzg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFD6UVlAfWm0V06qdB5_E2CRzzWMpu1RcFx-2WvoScpmxhTUruxvB_vqeM5MNBS_gWyBnSJgzZ85t5vsA3lhurRYqjTP0jbHgTRWbStkYXbMjRuvS-WLOl4meTs3lZf55C94Nd2Gstf7wmX1Pj76X3yzqjkplJ4IbKSlB35FCZEm4rTX0DIRMw8U3xWOlE9X3MNMkP5mNL66uAl5hjvEEwerc80KeVuW3vdg7mPHe__3aE9jtA0l2GjT_FLZsuw97G5IG1tvsPjy-hzh4AKNRe-17_mzc3d7-YgGwnBEj2nzFvt6sr1koMwwSZ_OOsBRwNDudf1ssUeT7M7gYj2Zn53HPpBDXGE-s48Zp0VSYGiQ6J14x5bioMBYpdS155QyGaa7MtKplmSVOY1qcGZXXIrforaxJ-XPYbhetfQGM8Pd5bUoCciN0-ko43Sjh0M1XaP4ygmQzs0Xdw4wT28W88OlGkhdeGUR_qYugjAjeDkN-BIyNfwkf0OwPgv3ER3C0UV_RW-GqyFM65m5kFsHx8BbNh3oiZWsX3argQuI2ZngE7C8SuMEpgUmhOvzzl4_h4fns06SYfJh-PIJH4TwJVWlewvZ62dlX8KD-ub5ZLV_75XoHB4rlFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Fuzzy+System+Models+With+Improved+Fuzzy+Clustering+Algorithm&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Celikyilmaz%2C+A&rft.au=Burhan+Turksen%2C+I&rft.date=2008-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=16&rft.issue=3&rft.spage=779&rft_id=info:doi/10.1109%2FTFUZZ.2007.905919&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2545338431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon