Enhanced Fuzzy System Models With Improved Fuzzy Clustering Algorithm
Although traditional fuzzy models have proven to have high capacity of approximating the real-world systems, they have some challenges, such as computational complexity, optimization problems, subjectivity, etc. In order to solve some of these problems, this paper proposes a new fuzzy system modelin...
Saved in:
| Published in: | IEEE transactions on fuzzy systems Vol. 16; no. 3; pp. 779 - 794 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.06.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1063-6706, 1941-0034 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Although traditional fuzzy models have proven to have high capacity of approximating the real-world systems, they have some challenges, such as computational complexity, optimization problems, subjectivity, etc. In order to solve some of these problems, this paper proposes a new fuzzy system modeling approach based on improved fuzzy functions to model systems with continuous output variable. The new modeling approach introduces three features: i) an improved fuzzy clustering (IFC) algorithm, ii) a new structure identification algorithm, and iii) a nonparametric inference engine. The IFC algorithm yields simultaneous estimates of parameters of c-regression models, together with fuzzy c-partitioning of the data, to calculate improved membership values with a new membership function. The structure identification of the new approach utilizes IFC, instead of standard fuzzy c-means clustering algorithm, to fuzzy partition the data, and it uses improved membership values as additional input variables along with the original scalar input variables for two different choices of regression methods: least squares estimation or support vector regression, to determine ldquofuzzy functionsrdquo for each cluster. With novel IFC, one could learn the system behavior more accurately compared to other FSM models. The nonparametric inference engine is a new approach, which uses the alike -nearest neighbor method for reasoning. Empirical comparisons indicate that the proposed approach yields comparable or better accuracy than fuzzy or neuro-fuzzy models based on fuzzy rules bases, as well as other soft computing methods. |
|---|---|
| AbstractList | Although traditional fuzzy models have proven to have high capacity of approximating the real-world systems, they have some challenges, such as computational complexity, optimization problems, subjectivity, etc. In order to solve some of these problems, this paper proposes a new fuzzy system modeling approach based on improved fuzzy functions to model systems with continuous output variable. The new modeling approach introduces three features: i) an improved fuzzy clustering (IFC) algorithm II) a new structure identification algorithm, and III) a nonparametric inference engine. The IFC algorithm yields simultaneous estimates of parameters of c-regression models, together with fuzzy c-partitioning of the data, to calculate improved membership values with a new membership function. The structure identification of the new approach utilizes IFC, instead of standard fuzzy c-means clustering algorithm, to fuzzy partition the data, and it uses improved membership values as additional input variables along with the original scalar input variables for two different choices of regression methods: least squares estimation or support vector regression, to determine ldquofuzzy functionsrdquo for each cluster. With novel IFC, one could learn the system behavior more accurately compared to other FSM models. The nonparametric inference engine is a new approach, which uses the alike -nearest neighbor method for reasoning. Empirical comparisons indicate that the proposed approach yields comparable or better accuracy than fuzzy or neuro-fuzzy models based on fuzzy rules bases, as well as other soft computing methods. The structure identification of the new approach utilizes IFC, instead of standard fuzzy c-means clustering algorithm, to fuzzy partition the data, and it uses improved membership values as additional input variables along with the original scalar input variables for two different choices of regression methods: least squares estimation or support vector regression, to determine ldquofuzzy functionsrdquo for each cluster. Although traditional fuzzy models have proven to have high capacity of approximating the real-world systems, they have some challenges, such as computational complexity, optimization problems, subjectivity, etc. In order to solve some of these problems, this paper proposes a new fuzzy system modeling approach based on improved fuzzy functions to model systems with continuous output variable. The new modeling approach introduces three features: i) an improved fuzzy clustering (IFC) algorithm, ii) a new structure identification algorithm, and iii) a nonparametric inference engine. The IFC algorithm yields simultaneous estimates of parameters of c-regression models, together with fuzzy c-partitioning of the data, to calculate improved membership values with a new membership function. The structure identification of the new approach utilizes IFC, instead of standard fuzzy c-means clustering algorithm, to fuzzy partition the data, and it uses improved membership values as additional input variables along with the original scalar input variables for two different choices of regression methods: least squares estimation or support vector regression, to determine "fuzzy functions" for each cluster. With novel IFC, one could learn the system behavior more accurately compared to other FSM models. The nonparametric inference engine is a new approach, which uses the alike -nearest neighbor method for reasoning. Empirical comparisons indicate that the proposed approach yields comparable or better accuracy than fuzzy or neuro-fuzzy models based on fuzzy rules bases, as well as other soft computing methods. |
| Author | Celikyilmaz, A. Burhan Turksen, I. |
| Author_xml | – sequence: 1 givenname: A. surname: Celikyilmaz fullname: Celikyilmaz, A. organization: Dept. of Mech. & Ind. Eng., Univ. of Toronto, Toronto, ON – sequence: 2 givenname: I. surname: Burhan Turksen fullname: Burhan Turksen, I. |
| BookMark | eNp90MtOAjEUBuDGaCKiD2DcTFzoavB0el8SAkqCcSHEhE1Thg4MmQu2Mybw9BYxLFy46ll8f0_7X6Hzqq4sQrcYehiDepqOZvN5LwEQPQVMYXWGOlhRHAMQeh5m4CTmAvgluvJ-A4Apw7KDhsNqbarULqNRu9_vovedb2wZvdZLW_joI2_W0bjcuvrrJAZFG4jLq1XUL1a1C6S8RheZKby9-T27aDYaTgcv8eTteTzoT-KUMNbEy0zQ5UIwCUJhIMAzQhecEiNSRhaZ5AwykwieMpNAJoSUieQqpcomSlmJSRc9Hu8NL_psrW90mfvUFoWpbN16LSVwqjjnQT78KwllQEGSAO__wE3duir8QiucEBCSJQHhI0pd7b2zmd66vDRupzHoQ__6p3996F8f-w8Z8SeT5o1p8rpqnMmLf5N3x2RurT1tokQyxoB8AwLvk2M |
| CODEN | IEFSEV |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2020_106535 crossref_primary_10_1155_2015_682989 crossref_primary_10_1016_j_fss_2018_09_001 crossref_primary_10_1007_s40815_015_0055_y crossref_primary_10_1109_TIE_2016_2562613 crossref_primary_10_1007_s41066_021_00257_3 crossref_primary_10_1016_j_cnsns_2013_12_006 crossref_primary_10_1016_j_enconman_2022_115815 crossref_primary_10_1016_j_ins_2011_07_036 crossref_primary_10_1111_exsy_12120 crossref_primary_10_1155_2014_916371 crossref_primary_10_1016_j_ins_2017_08_048 crossref_primary_10_1007_s00521_024_09673_3 crossref_primary_10_1109_TMM_2012_2186792 crossref_primary_10_1016_j_energy_2017_02_008 crossref_primary_10_1016_j_cam_2019_112656 crossref_primary_10_1007_s41066_018_0115_4 crossref_primary_10_1016_j_eswa_2023_119882 crossref_primary_10_1016_j_asr_2019_03_035 crossref_primary_10_1016_j_ijar_2020_12_021 crossref_primary_10_1007_s10586_017_1503_2 crossref_primary_10_1016_j_enggeo_2010_05_005 crossref_primary_10_1016_j_sjbs_2017_01_027 crossref_primary_10_1016_j_eswa_2012_05_049 crossref_primary_10_1080_00207721_2020_1759729 crossref_primary_10_1109_TFUZZ_2014_2300134 crossref_primary_10_1134_S2075108715010101 crossref_primary_10_1007_s40815_022_01394_w crossref_primary_10_1016_j_asoc_2016_02_001 crossref_primary_10_1002_cplx_21458 crossref_primary_10_1007_s12652_023_04613_w crossref_primary_10_1016_j_neucom_2022_07_029 crossref_primary_10_1109_TFUZZ_2011_2161612 crossref_primary_10_1016_j_ijar_2010_06_002 crossref_primary_10_1016_j_neucom_2014_02_027 crossref_primary_10_2478_ausi_2020_0018 crossref_primary_10_1016_j_eswa_2016_07_040 crossref_primary_10_1016_j_knosys_2025_113679 crossref_primary_10_1016_j_ins_2010_08_026 crossref_primary_10_1016_j_eswa_2022_117717 crossref_primary_10_1016_j_ins_2022_01_057 crossref_primary_10_1016_j_physleta_2015_11_036 crossref_primary_10_1016_j_engappai_2025_110445 crossref_primary_10_1016_j_asoc_2013_12_011 crossref_primary_10_1007_s00500_017_2984_x crossref_primary_10_1016_j_eswa_2016_10_018 crossref_primary_10_1016_j_scs_2021_103550 crossref_primary_10_1007_s40815_015_0106_4 crossref_primary_10_1016_j_dcan_2016_06_003 crossref_primary_10_1109_TPWRS_2012_2197831 crossref_primary_10_1155_2022_3518190 crossref_primary_10_1016_j_eswa_2012_02_077 crossref_primary_10_1109_TFUZZ_2016_2612300 crossref_primary_10_1016_j_neucom_2014_02_059 crossref_primary_10_1016_j_knosys_2017_07_012 crossref_primary_10_1016_j_eswa_2013_12_037 crossref_primary_10_1016_j_fss_2011_02_011 crossref_primary_10_1080_03610918_2019_1626887 crossref_primary_10_1016_j_ijinfomgt_2016_05_022 |
| Cites_doi | 10.1109/91.728458 10.1109/NAFIPS.2004.1337399 10.1109/ICSMC.2004.1400667 10.1109/IJCNN.2004.1380933 10.1016/j.ins.2007.06.028 10.1007/978-3-642-60767-7_2 10.1109/ICIMA.2004.1384212 10.1109/21.256541 10.1016/S0888-613X(02)00078-6 10.1109/91.995117 10.1109/TFUZZ.2003.817853 10.1109/TFUZZ.1993.390281 10.1016/j.ejor.2005.11.017 10.1109/ICSMC.2005.1571584 10.1109/91.705501 10.1109/KES.2000.885783 10.1109/TSMC.1985.6313399 10.1109/72.159070 10.1016/S0165-0114(97)00280-7 10.1016/0165-0114(93)90024-C 10.1109/21.376490 10.1016/S0165-0114(96)00384-3 10.1016/j.asoc.2007.12.004 10.1109/91.236552 10.1016/S0165-0114(00)00052-X 10.1109/FUZZY.2006.1682003 10.1016/0098-3004(84)90020-7 10.1016/j.fss.2005.01.012 10.1109/FUZZ.2001.1009015 10.1109/CEC.2005.1554965 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7SP F28 FR3 |
| DOI | 10.1109/TFUZZ.2007.905919 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Computer and Information Systems Abstracts Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0034 |
| EndPage | 794 |
| ExternalDocumentID | 2545338431 10_1109_TFUZZ_2007_905919 4385550 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7SP F28 FR3 |
| ID | FETCH-LOGICAL-c355t-df74db75807910306f34b643a7c53bf8650fa276c5a20f77882869c49e299e813 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 89 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000256670200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6706 |
| IngestDate | Wed Oct 01 14:52:45 EDT 2025 Mon Sep 29 03:51:59 EDT 2025 Sun Nov 30 03:55:33 EST 2025 Sat Nov 29 06:46:20 EST 2025 Tue Nov 18 22:21:55 EST 2025 Tue Aug 26 16:47:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c355t-df74db75807910306f34b643a7c53bf8650fa276c5a20f77882869c49e299e813 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 912307852 |
| PQPubID | 23500 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_880649666 crossref_primary_10_1109_TFUZZ_2007_905919 proquest_journals_912307852 ieee_primary_4385550 crossref_citationtrail_10_1109_TFUZZ_2007_905919 proquest_miscellaneous_34504083 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-06-01 |
| PublicationDateYYYYMMDD | 2008-06-01 |
| PublicationDate_xml | – month: 06 year: 2008 text: 2008-06-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationTitleAbbrev | TFUZZ |
| PublicationYear | 2008 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 ref14 ref10 chang (ref7) 2001 gunn (ref13) 1998 ref17 ref19 ref18 hill (ref16) 0 cristianini (ref9) 2000 ref50 uncu (ref43) 2003 ref47 ref41 kosko (ref25) 1992 ref44 ref49 turksen (ref40) 2006; 8 ref8 uncu (ref42) 2001 lin (ref27) 1996 ref4 ref3 weiss (ref48) 1991 montgomery (ref29) 1992 ref35 ref34 ref37 ref36 celikyilmaz (ref6) 2007 vergara (ref46) 1997 ref30 ref33 ref2 ref1 ref39 ref38 vapnik (ref45) 1998 kilic (ref22) 2001 ref23 ref26 ref20 ref21 (ref11) 0 ref28 (ref32) 0 newman (ref31) 1998 celikyilmaz (ref5) 0 kohavi (ref24) 1995 |
| References_xml | – ident: ref23 doi: 10.1109/91.728458 – ident: ref50 doi: 10.1109/NAFIPS.2004.1337399 – year: 1992 ident: ref29 publication-title: Introduction to Linear Regression Analysis – ident: ref44 doi: 10.1109/ICSMC.2004.1400667 – ident: ref19 doi: 10.1109/IJCNN.2004.1380933 – ident: ref33 doi: 10.1016/j.ins.2007.06.028 – year: 1998 ident: ref31 publication-title: UCI repository of machine learning databases – ident: ref1 doi: 10.1007/978-3-642-60767-7_2 – ident: ref49 doi: 10.1109/ICIMA.2004.1384212 – start-page: 252 year: 1997 ident: ref46 publication-title: Fuzzy Model Identification Selected Approaches – ident: ref20 doi: 10.1109/21.256541 – year: 2000 ident: ref9 publication-title: An Introduction to Support Vector Machines – year: 0 ident: ref11 publication-title: DENFIS from ECOS Toolbox for Matlab – year: 0 ident: ref5 article-title: fuzzy functions approximation with support vector machines for fuzzy system modeling publication-title: Inf Sci – year: 1992 ident: ref25 publication-title: Neural Networks and Fuzzy Systems – ident: ref18 doi: 10.1016/S0888-613X(02)00078-6 – start-page: 1137 year: 1995 ident: ref24 article-title: a study of cross-validation and bootstrap for accuracy estimation and model selection publication-title: Proc 14th Int Joint Conf Artificial Intelligence – ident: ref21 doi: 10.1109/91.995117 – year: 0 ident: ref16 publication-title: Indicator Analysis – ident: ref35 doi: 10.1109/TFUZZ.2003.817853 – year: 1998 ident: ref13 publication-title: Support vector machines for classification and regression – year: 1991 ident: ref48 publication-title: Computer Systems That Learn – ident: ref37 doi: 10.1109/TFUZZ.1993.390281 – ident: ref3 doi: 10.1016/j.ejor.2005.11.017 – year: 0 ident: ref32 publication-title: NIST/SEMATECH e-Handbook of Statistical Methods – start-page: 236 year: 2001 ident: ref22 article-title: a -nearest neighborhood based fuzzy reasoning schema publication-title: Proc 10th IEEE Int Conf Fuzzy Systems – start-page: 136 year: 2007 ident: ref6 article-title: new classifier design with fuzzy functions publication-title: Proc 11th Int Conf Rough Sets – ident: ref26 doi: 10.1109/ICSMC.2005.1571584 – volume: 8 start-page: 137 year: 2006 ident: ref40 article-title: comparison of fuzzy functions with fuzzy rule base approaches publication-title: Int J Fuzzy Syst – ident: ref12 doi: 10.1109/91.705501 – year: 2001 ident: ref7 publication-title: LIBSVM A library for support vector machines – ident: ref17 doi: 10.1109/KES.2000.885783 – ident: ref38 doi: 10.1109/TSMC.1985.6313399 – start-page: 191 year: 2003 ident: ref43 article-title: localmfsm: a new fuzzy system modeling approach using a two-step fuzzy inference mechanism based on local fuzziness level selection publication-title: Proc 8th Int Fuzzy Systems Association World Congr – ident: ref47 doi: 10.1109/72.159070 – ident: ref10 doi: 10.1016/S0165-0114(97)00280-7 – ident: ref30 doi: 10.1016/0165-0114(93)90024-C – ident: ref34 doi: 10.1109/21.376490 – ident: ref8 doi: 10.1016/S0165-0114(96)00384-3 – ident: ref39 doi: 10.1016/j.asoc.2007.12.004 – start-page: 381 year: 2001 ident: ref42 article-title: prediction of stock prices with multidimensional fuzzy structure identification and inference publication-title: Sig Proc – year: 1998 ident: ref45 publication-title: Statistical Learning Theory – ident: ref14 doi: 10.1109/91.236552 – ident: ref28 doi: 10.1016/S0165-0114(00)00052-X – ident: ref4 doi: 10.1109/FUZZY.2006.1682003 – ident: ref2 doi: 10.1016/0098-3004(84)90020-7 – year: 1996 ident: ref27 publication-title: Neural Fuzzy Systems/A Neuro-Fuzzy Synergism to Intelligent Systems – ident: ref15 doi: 10.1016/j.fss.2005.01.012 – ident: ref41 doi: 10.1109/FUZZ.2001.1009015 – ident: ref36 doi: 10.1109/CEC.2005.1554965 |
| SSID | ssj0014518 |
| Score | 2.2652202 |
| Snippet | Although traditional fuzzy models have proven to have high capacity of approximating the real-world systems, they have some challenges, such as computational... The structure identification of the new approach utilizes IFC, instead of standard fuzzy c-means clustering algorithm, to fuzzy partition the data, and it uses... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 779 |
| SubjectTerms | Algorithms Clustering Clustering algorithms Computational complexity Engines Fuzzy Fuzzy functions (FFs) Fuzzy logic Fuzzy set theory fuzzy system modeling (FSM) Fuzzy systems improved fuzzy clustering (IFC) Inference algorithms inference mechanisms Input variables Least squares approximation Mathematical analysis Mathematical models Parameter estimation Partitioning algorithms Studies Yield estimation |
| Title | Enhanced Fuzzy System Models With Improved Fuzzy Clustering Algorithm |
| URI | https://ieeexplore.ieee.org/document/4385550 https://www.proquest.com/docview/912307852 https://www.proquest.com/docview/34504083 https://www.proquest.com/docview/880649666 |
| Volume | 16 |
| WOSCitedRecordID | wos000256670200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS-QwFH-4sgf3oK66WL82B09itW3SJD2KzOBhEQ9-4aX0I1mFsSMzU0H_et9LOkXQFfZW6AsteXl5X8nvB7BvuDFKyDhM0DeGgtdlqEtpQnTNlhitC-uKOdd_1Pm5vr3NLhbgsL8LY4xxh8_MET26Xn49rloqlR0LrtOUEvRvSkl_V6vvGIg09tfeJA-limTXwYyj7PhyeHV359EKM4wmCFTnnQ9ypCofdmLnXoYr__djq7DchZHsxOv9JyyYZg1W5hQNrLPYNfjxDm9wHQaD5t51_NmwfX19YR6unBEf2mjKbh5m98wXGXqJ01FLSAo4mp2M_o4nKPK4AVfDweXpWdjxKIQVRhOzsLZK1CUmBpHKiFVMWi5KjEQKVaW8tBqDNFskSlZpkURWYVKcaJlVIjPoq4yO-S9YbMaN2QRG6Pu80gXBuBE2fSmsqqWw6ORLNP40gGg-s3nVgYwT18Uod8lGlOVOGUR-qXKvjAAO-iFPHmHjK-F1mv1esJv4ALbn6ss7G5zmWUyH3HWaBPC7f4vGQx2RojHjdppzkeImpnkA7B8SuL1JgSmh3Pr8y9uw5E-QUF1mBxZnk9bswvfqefYwney5JfoGIqHhzg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFD6UVlAfWm0V06qdB5_E2CRzzWMpu1RcFx-2WvoScpmxhTUruxvB_vqeM5MNBS_gWyBnSJgzZ85t5vsA3lhurRYqjTP0jbHgTRWbStkYXbMjRuvS-WLOl4meTs3lZf55C94Nd2Gstf7wmX1Pj76X3yzqjkplJ4IbKSlB35FCZEm4rTX0DIRMw8U3xWOlE9X3MNMkP5mNL66uAl5hjvEEwerc80KeVuW3vdg7mPHe__3aE9jtA0l2GjT_FLZsuw97G5IG1tvsPjy-hzh4AKNRe-17_mzc3d7-YgGwnBEj2nzFvt6sr1koMwwSZ_OOsBRwNDudf1ssUeT7M7gYj2Zn53HPpBDXGE-s48Zp0VSYGiQ6J14x5bioMBYpdS155QyGaa7MtKplmSVOY1qcGZXXIrforaxJ-XPYbhetfQGM8Pd5bUoCciN0-ko43Sjh0M1XaP4ygmQzs0Xdw4wT28W88OlGkhdeGUR_qYugjAjeDkN-BIyNfwkf0OwPgv3ER3C0UV_RW-GqyFM65m5kFsHx8BbNh3oiZWsX3argQuI2ZngE7C8SuMEpgUmhOvzzl4_h4fns06SYfJh-PIJH4TwJVWlewvZ62dlX8KD-ub5ZLV_75XoHB4rlFQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Fuzzy+System+Models+With+Improved+Fuzzy+Clustering+Algorithm&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Celikyilmaz%2C+A&rft.au=Burhan+Turksen%2C+I&rft.date=2008-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=16&rft.issue=3&rft.spage=779&rft_id=info:doi/10.1109%2FTFUZZ.2007.905919&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2545338431 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |