Enhanced Fuzzy System Models With Improved Fuzzy Clustering Algorithm
Although traditional fuzzy models have proven to have high capacity of approximating the real-world systems, they have some challenges, such as computational complexity, optimization problems, subjectivity, etc. In order to solve some of these problems, this paper proposes a new fuzzy system modelin...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on fuzzy systems Jg. 16; H. 3; S. 779 - 794 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.06.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1063-6706, 1941-0034 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Although traditional fuzzy models have proven to have high capacity of approximating the real-world systems, they have some challenges, such as computational complexity, optimization problems, subjectivity, etc. In order to solve some of these problems, this paper proposes a new fuzzy system modeling approach based on improved fuzzy functions to model systems with continuous output variable. The new modeling approach introduces three features: i) an improved fuzzy clustering (IFC) algorithm, ii) a new structure identification algorithm, and iii) a nonparametric inference engine. The IFC algorithm yields simultaneous estimates of parameters of c-regression models, together with fuzzy c-partitioning of the data, to calculate improved membership values with a new membership function. The structure identification of the new approach utilizes IFC, instead of standard fuzzy c-means clustering algorithm, to fuzzy partition the data, and it uses improved membership values as additional input variables along with the original scalar input variables for two different choices of regression methods: least squares estimation or support vector regression, to determine ldquofuzzy functionsrdquo for each cluster. With novel IFC, one could learn the system behavior more accurately compared to other FSM models. The nonparametric inference engine is a new approach, which uses the alike -nearest neighbor method for reasoning. Empirical comparisons indicate that the proposed approach yields comparable or better accuracy than fuzzy or neuro-fuzzy models based on fuzzy rules bases, as well as other soft computing methods. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1063-6706 1941-0034 |
| DOI: | 10.1109/TFUZZ.2007.905919 |